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ORIGINAL RESEARCH

Fecal Microbiome Composition Does Not 
Predict Diet- Induced TMAO Production in 
Healthy Adults
Marc Ferrell, BS; Peter Bazeley, MD; Zeneng Wang , PhD; Bruce S. Levison, PhD; Xinmin S. Li, PhD;  
Xun Jia , BS; Ronald M. Krauss , MD; Rob Knight , PhD; Aldons J. Lusis , PhD; J. C. Garcia- Garcia, PhD; 
Stanley L. Hazen , MD, PhD; W. H. Wilson Tang , MD

BACKGROUND: Trimethylamine- N- oxide (TMAO) is a small molecule derived from the metabolism of dietary nutrients by gut 
microbes and contributes to cardiovascular disease. Plasma TMAO increases following consumption of red meat. This meta-
bolic change is thought to be partly because of the expansion of gut microbes able to use nutrients abundant in red meat.

METHODS AND RESULTS: We used data from a randomized crossover study to estimate the degree to which TMAO can be es-
timated from fecal microbial composition. Healthy participants received a series of 3 diets that differed in protein source (red 
meat, white meat, and non- meat), and fecal, plasma, and urine samples were collected following 4 weeks of exposure to each 
diet. TMAO was quantitated in plasma and urine, while shotgun metagenomic sequencing was performed on fecal DNA. While 
the cai gene cluster was weakly correlated with plasma TMAO (rho=0.17, P=0.0007), elastic net models of TMAO were not im-
proved by abundances of bacterial genes known to contribute to TMAO synthesis. A global analysis of all taxonomic groups, 
genes, and gene families found no meaningful predictors of TMAO. We postulated that abundances of known genes related 
to TMAO production do not predict bacterial metabolism, and we measured choline-  and carnitine- trimethylamine lyase activ-
ity during fecal culture. Trimethylamine lyase genes were only weakly correlated with the activity of the enzymes they encode.

CONCLUSIONS: Fecal microbiome composition does not predict systemic TMAO because, in this case, gene copy number does 
not predict bacterial metabolic activity.

REGISTRATION: URL: https://www.clini caltr ials.gov; Unique identifier: NCT01427855.
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Circulating trimethylamine N- oxide (TMAO) is a con-
tributor to cardiovascular disease (CVD), which in 
turn is the leading cause of disability and mortality 

worldwide.1 TMAO enhances atherosclerosis, thrombo-
sis, and platelet aggregation in animal models and strongly 
predicts incident CVD in humans.2– 7 Understanding the 
determinants of plasma TMAO may lead to the discovery 
of novel targets for the treatment and prevention of CVD 
via TMAO reduction.

Although fish and other foods contain TMAO, the 
major source of circulating TMAO is gut microbial pro-
duction of the metabolic precursor trimethylamine.2,8 
A phylogenetically diverse group of bacterial strains 
convert compounds abundant in beef such as car-
nitine to trimethylamine, which is absorbed and con-
verted to TMAO by host enzymes.9,10 Suppression of 
bacterial trimethylamine production with antibiotics 
also suppresses TMAO production in humans,9– 11 and 
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trimethylamine- lyase enzyme inhibitors suppress TMAO 
production in mice.12,13 Furthermore, self- described 
vegans without prior meat exposure produce far less 
TMAO from ingested carnitine than omnivores.9– 11,14 
A small diet intervention study found that 8 weeks of 
a meat- free diet prevented a meat- induced increase 
in TMAO, but no bacterial taxa were associated with 
TMAO.15 Stool 16S rRNA gene sequencing has identi-
fied bacterial genera more abundant in omnivores and 
high TMAO producers, suggesting that consumption 
of animal products, and specifically red meat, raises 
TMAO by providing a competitive advantage to gut 
microbes with the capacity to use carnitine and other 
substrates abundant in red meat while producing 
trimethylamine as a waste product.8,11,16– 18

If red meat increases TMAO via the growth of 
trimethylamine- producing gut microbes, then the 
abundance of their genes, especially trimethylamine- 
lyases, should predict TMAO. Previous efforts have 
been made to model TMAO and CVD as a function 
of microbial gene abundance, but these experiments 
were insufficient to test the hypothesis that diet- 
induced changes in microbial composition predict 
changes in TMAO. A recent multiomic study of TMAO 
determinants modeled human plasma TMAO as a 

function of stool microbial taxa and basic clinical labs, 
but those factors could only account for 14% of the 
variability in plasma TMAO.19 Importantly, this multio-
mic study could not quantify specific bacterial strains 
or genes. One cross- sectional study of atheroscle-
rotic CVD used metagenomics sequencing to quan-
tify 2 trimethylamine- lyases, and these genes were not 
strongly associated with CVD.20 Both studies were ob-
servational and may have been affected by variation 
in dietary habits that impact both TMAO and the gut 
microbiota.

We present our findings from a randomized di-
etary study of stool microbial gene composition and 
its effect on TMAO in 113 individuals that used shot-
gun metagenomics (mean 11 million reads per sam-
ple) of stool to quantify microbial taxa and genes. 
We used a gene cluster- based approach to quan-
tify low- abundance trimethylamine- lyases and ex-
panded our analysis to include millions of microbial 
genes. Finally, we measured fecal trimethylamine- 
lyase enzyme activities to better understand the 
relationships between gene abundance, trimethyl-
amine production in stool, and TMAO production in 
the host.

METHODS
To minimize the possibility of unintentionally sharing 
information that can be used to re- identify private in-
formation, a subset of the data generated for this study 
are available at the National Center for Biotechnology 
Information Sequence Read Archive and can be ac-
cessed at https://www.ncbi.nlm.nih.gov/biopr oject/ 
PRJEB 44883/.

Study Participants
Healthy subjects were enrolled in the APPROACH 
(Animal and Plant Protein and Cardiovascular Health) 
study, as previously described (NCT0142785518,21,22). 
Briefly, APPROACH assigned healthy participants to 
consume 4 diets prepared in a metabolic kitchen. The 
first diet was designed to reflect a typical American 
diet while the other 3 differed in protein source: red 
meat, white meat, or non- meat. Participants were 
assigned to the latter 3 diets in random order, each 
lasting 4 weeks and separated by a 2-  to 7- week wash-
out period during which participants returned to their 
habitual diets. Following each 4- week period, stool, 
plasma, urine, and body measurements were collected 
in a single clinic visit. TMAO and creatinine were quan-
titated in plasma and urine as previously described.22 
Fractional renal excretion of TMAO was calculated as 
FERTMAO = 100 ×

UTMAOPcreatinine

PTMAOUcreatinine

. Fecal samples were ho-
mogenized and split into 2 parts for metagenomics 
sequencing and determination of trimethylamine- lyase 

CLINICAL PERSPECTIVE

What Is New?
• Although the presence of gut microbes is re-

quired for trimethylamine- N- oxide synthe-
sis, the fecal abundance of microbial genes 
known to produce trimethylamine only pre-
dicted a small amount of variance in plasma 
trimethylamine- N- oxide.

• The abundance of these genes only weakly pre-
dicted the activity of the enzymes they encode.

• The fecal abundance of the cutC gene was 
correlated with plasma trimethylamine- N- oxide 
only in participants who consumed a non- meat 
diet before being exposed to a red meat diet.

What Are the Clinical Implications?
• Fecal microbiome composition cannot be sub-

stituted for trimethylamine- N- oxide as a bio-
marker for cardiovascular risk.

Nonstandard Abbreviations and Acronyms

RMSE root- mean- square- error
RPKM reads per kilobase per million reads
TMAO trimethylamine- N- oxide
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enzyme activities. This study has been approved by 
the local institutional review board, and all participants 
provided written informed consent.

Metagenomic Sequencing
Fecal samples were prepared for shotgun metagen-
omic sequencing using the previously reported BGI 
methods workflow.23 DNA library construction was per-
formed following the manufacturer’s instruction (Illumina 
Hiseq2000). One paired- end library with insert size of 
350 bp for each sample was built and sequenced with 
100 bp read length from each end. SolexaQA24 was used 
to trim bases with Phred score <20 and remove reads 
<45 bp. SOAPAligner2 was then used to mapping high- 
quality reads to the human genome (build hg19, Genome 
Reference Consortium Human Build 37), and only un-
mapped, high- quality reads were used for metagenomic 
analysis (mean 11 million reads per sample).25

Metagenomic data sets are publicly available 
through National Center for Biotechnology Information’s 
Sequence Read Archive Database under BioProject 
PRJEB44883.

Bioinformatics
Microbial genes were quantified globally with MOCAT226 
using the Integrated Genome Catalog27 as a reference. 
Gene families were quantified with Humann2.28 To 
quantify low- abundance trimethylamine- related genes, 
gene cluster reference sequences were constructed 
based on Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Sequence Similarity Database annotations.29 
For each gene, a representative gene was chosen to 
query the prokaryote Sequence Similarity Database 
with a similarity score threshold of 100. The application 
program interface KEGGREST was used to download 
genomic coordinates for gene and gene cluster ho-
mologs. These coordinates were mapped to sequence 
data from KEGG GENOMES. Because of distant genes 
occasionally included in KEGGREST records, gene 
clusters >40 kb were excluded from further analysis. 
The implementation of this gene cluster- based quanti-
fication is available at: https://github.com/maf16 7/Fecal 
- Micro biome - Compo sitio n- Does- Not- Predi ct- Diet- 
Induc ed- TMAO- Produ ction - in- Healt hy- Adults.

High- quality reads were aligned to the result-
ing reference sequences using Bowtie2 with “very- 
sensitive- local” parameters. Gene cluster alignments 
allowed multimapping, and homologs were analyzed 
independently. Gene alignments did not allow mul-
timapping, and read counts were pooled among all 
homologs. Gene and gene cluster abundance was 
expressed in reads per kilobase per million reads 
(RPKM) units, except where indicated. A second 
method of normalization based on universal single 
copy genes yielded nearly identical results. Similar to 

the Metagenomic Universal Single- Copy Correction 
method,30 universal single copy genes (USCGs) were 
quantified in RPKM units and used to normalize gene 
abundances:

Determination of Fecal Enzyme Activities
All fecal samples (n=430) were weighed by subtracting 
the mass of a 2- mL Eppendorf tube. After weighing, 
20% fecal slurries were prepared with TT media (3% 
Trypticase Soy Broth [Becton Dickson]; 1% Trehalose) 
in a Coy anaerobic chamber. Raw fecal slurries were 
filtered by centrifugation at 200 g for 2 minutes using 
100 µm EASYstrainers. DMSO was then added to 5% 
of total volume, and the complete fecal slurries were 
then aliquoted and stored at −80 °C for later incubation 
with labeled trimethylamine precursors.

Eight replicates of each fecal slurry were diluted 
100× in M9 media under anaerobic conditions. Both 
d6- choline and d9- carnitine, which were chemically 
synthesized and purified as previously reported,22 
were added for a final concentration of 200  µmol/L. 
This culture was split in 3 parts. One part was used to 
measure baseline optical density, a second part was 
used to measure baseline cell viability with Thermo 
PrestoBlue, and the final part was incubated at 37 °C 
under anaerobic conditions for 36 hours.

At 18-  and 36- hour time points, the incubated cul-
ture was vortexed and a 100 µL volume was removed. 
This 100 µL sample was quenched with excess formic 
acid and stored at −80 °C for later mass spectrometric 
analysis. All analytes were quantified with stable isotope 
dilution high- performance liquid chromatography with 
on- line electrospray ionization as previously described.22

TMAO Modeling With Elastic Net and 
Random Forest
From 461 clinic visits, clinical data, gene cluster 
abundances (RPKM), fecal trimethylamine- lyase ac-
tivities, TMAO fractional excretion rate, and plasma 
and urine TMAO were concatenated. For 100 par-
ticipants who completed 4  weeks of the non- meat 
and red meat diets, the percent change from non- 
meat to red meat was calculated for each measure-
ment as Δx = 100 ×

xred meat - xnon - meat

xnon - meat

. Urine and plasma 
TMAO were modeled with clinic measurements, while 
ΔTMAO in urine and plasma were modeled with per-
cent changes in measurements.

One hundred training/testing sets were selected 
(70/30, with replacement) using fractional stratification 

Gene copy per genome=
gene RPKM

sum (USCG RPKM)

=
gene counts*USCG mean length

USCG counts*gene length

https://github.com/maf167/Fecal-Microbiome-Composition-Does-Not-Predict-Diet-Induced-TMAO-Production-in-Healthy-Adults
https://github.com/maf167/Fecal-Microbiome-Composition-Does-Not-Predict-Diet-Induced-TMAO-Production-in-Healthy-Adults
https://github.com/maf167/Fecal-Microbiome-Composition-Does-Not-Predict-Diet-Induced-TMAO-Production-in-Healthy-Adults
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(in- house stratFrac function) to ensure the distribution 
of the response variable was approximately the same 
in training and testing sets. Performance measures are 
reported across all 100 testing sets.31

Preprocessing was performed separately for train-
ing and testing sets. Continuous values used as predic-
tors were scaled to represent the number of standard 
deviations from the mean. The R package caret was 
used to perform 10- fold cross validation of elastic net 
and obtain the trained linear model by minimizing root- 
mean- square error, as previously described.31,32 Model 
training is described in greater depth in Data S1. When 
a single predictor was used, linear regression was used 
to obtain the model. Root- mean- square error (RMSE) 
was defined as: 

For each elastic net run, we predicted either plasma 
TMAO (Figure  4), the change in plasma TMAO be-
tween non- meat and red meat diet (ΔTMAO, Figure 4), 
or choline consumption in a fecal culture (18- hour d6- 
choline, Figure  6). The predictors included either the 
clinical measurements listed in Table 1, the homologs 
of a trimethylamine- related microbial gene cluster (cai, 
cut, tor, yea), fecal trimethylamine- lyase enzyme activ-
ities, or, as a sanity check, TMAO fractional excretion 

rate. Interactions and other non- linear terms were not 
included, as they would complicate interpretation.

To quantify non- linear associations between plasma 
TMAO and the predictors listed above, we implemented 
a random forest regressor with the R package random-
Forest. The number of variables sampled at each node 
was tuned with caret, and each model consisted of 500 
trees. TMAO estimates were obtained from 100 training/
testing sets, and variable importance was quantified as 
the mean cross validation residual sum of squares in-
crease across all trees after permuting a given variable.

The implementation of this method in R is acces-
sible at: https://github.com/maf16 7/Fecal - Micro biome 
- Compo sitio n- Does- Not- Predi ct- Diet- Induc ed- TMAO- 
Produ ction - in- Healt hy- Adults.

RESULTS
Diet- Induced Changes in TMAO Are 
Not Predicted by Trimethylamine- Lyase 
Abundance
We sought to measure changes in TMAO and the fecal 
microbiota in healthy individuals undergoing changes 
in diet (baseline characteristics shown in Table  1). 
Plasma and urine TMAO were increased significantly 
during red meat consumption compared with a meat- 
free period, and isotope tracer studies implicated 

RMSE =

√

(predicted−actual)2

n

Table 1. Participant Characteristics at the Time of Sample Collection

Baseline Non- meat Red meat White meat P value

n 116 115 115 115 >.99

Sex (percent women) 60.3 61.7 60.9 60.9 >.99

Age, y 45 (33– 56) 45 (33– 56) 45 (33– 56) 45 (33– 56) >.99

Triglycerides 71.8 (57.1– 95.5) 69.2 (54.5– 87.4) 67.8 (52.9– 93.6) 66.2 (54.6– 83.6) 0.33

TC 172 (152– 196) 153 (141– 177) 160 (144– 184) 164 (144– 183) 0.003

LDL- C 101 (83.9– 122) 86.9 (73.7– 106) 92.2 (80.2– 111) 94.8 (77.3– 114) 0.003

HDL- C 53 (45– 63.5) 51 (42– 59.5) 51.8 (43– 61.5) 53.5 (44– 60.8) 0.6

Apo A1 133 (120– 145) 130 (114– 140) 130 (117– 144) 132 (119– 140) 0.5

ApoB 73.8 (60.5– 86.5) 65 (52.6– 74.4) 69 (55.4– 78.1) 69.5 (54.8– 82) 0.022

BMI 25.4 (22.7– 27.9) 25.5 (22.8– 27.9) 25.6 (22.8– 27.9) 25.6 (22.8– 28.3) 0.99

SBP 108 (102– 116) 107 (101– 116) 107 (99.8– 117) 107 (102– 115) 0.95

DBP 69.5 (63– 74) 69 (62.2– 73) 68 (63– 73) 68 (62– 73) 0.78

Hip circumference, cm 101 (95.4– 107) 101 (94– 106) 100 (95.3– 107) 101 (94.4– 108) 0.95

Waist circumference, cm 82 (73.3– 90) 81.2 (73– 89.6) 81.6 (74.2– 89.9) 81.8 (74.1– 89.5) 0.98

WaistIC 88 (81.9– 97.8) 87.2 (80.9– 95.4) 87.8 (81.2– 96.4) 88.6 (81.7– 96.4) 0.98

Weight, lbs 158 (140– 181) 159 (139– 181) 161 (140– 182) 160 (139– 182) 0.99

Height, cm 168 (161– 177) 168 (161– 177) 168 (161– 177) 168 (161– 177) >.99

Diet compliance 5 (4.5– 5) 5 (4.12– 5) 5 (4– 5) 5 (4.12– 5) >.99

Fecal and plasma samples were collected at baseline and following exposure to 3 prepared diets. Data are shown as median (interquartile range). Diet groups 
were compared with the Kruskal‒ Wallis test, except for sex (Chi- square test). BMI indicates body mass index; DBP, diastolic blood pressure; HDL- C, high- 
density lipoprotein cholesterol; LDL- C, low- density lipoprotein cholesterol; SBP, systolic blood pressure; TC, Total cholesterol; and WaistIc, waist circumference 
measured at superior border of the iliac crest.

https://github.com/maf167/Fecal-Microbiome-Composition-Does-Not-Predict-Diet-Induced-TMAO-Production-in-Healthy-Adults
https://github.com/maf167/Fecal-Microbiome-Composition-Does-Not-Predict-Diet-Induced-TMAO-Production-in-Healthy-Adults
https://github.com/maf167/Fecal-Microbiome-Composition-Does-Not-Predict-Diet-Induced-TMAO-Production-in-Healthy-Adults
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increased microbial production of trimethylamine from 
carnitine, possibly because of expansion of bacterial 
strains selectively using carnitine.22 We hypothesized 
that individual differences in TMAO production among 
the protein sources could be predicted by the copy 
number of genes related to TMAO synthesis in stool, 
and our analyses are summarized in Figure 1.
The Uniprot Knowledgebase lists 5 non- mammalian en-
zymes directly involved in trimethylamine production in the 
human gut (Figure 2): the choline trimethylamine- lyases 
cutC/D,12,33,34 the carnitine oxygenase cntA/B,16,35– 37 the 
non- specific trimethylamine- lyase yeaW/X,35 the beta-
ine reductase component grdH,38– 40 and the TMAO re-
ductase torA.40,41 We also considered homologs of the 
crotonobetainyl- CoA reductase system caiA/B/C, as 
it catalyzes the first step in a 2- step synthesis of trime-
thylamine from carnitine.10,42– 44 For 6 out of 10 of these 
genes, >30% of samples had no sequencing reads align 
to any reference sequence (Table S1). We hypothesized 
that these genes were not absent, but present at low 
abundance. To quantify low- abundance genes, we used 
a novel approach based on conserved gene clusters.

The 6 enzyme systems described above are coded 
by gene clusters conserved within phylogenetic 
clades. We estimated the abundance of each related 
gene cluster as a proxy for the gene of interest. After 
normalizing for reference length, homologs of all gene 
clusters except cnt and cut were highly correlated with 
gene- level quantification, and present in >70% of fecal 
samples (Figure  S1). The cntA gene has been esti-
mated to have <30% prevalence in humans,45 while 
the cut gene cluster is phylogenetically diverse and not 
well conserved.33 Gene cluster- based quantifications 
allowed us to test whether each homolog of each gene 
predicts diet- induced changes in TMAO.

Homologs of the cai gene cluster were weakly cor-
related with plasma TMAO (Table  2, Table  S2). The 
cai gene cluster was also among the most important 
predictors of plasma TMAO in random forest models 
(Figure S4).

A recent diet intervention study observed that par-
ticipants who consumed a meat- free diet first did not 
have increased plasma TMAO after switching to a red 
meat diet, while those assigned to the red meat diet 
first had increased TMAO that decreased after switch-
ing to a meat- free diet.15 This diet order effect could not 
be explained by 16S rRNA taxonomic profiling, so we 
examined correlations between trimethylamine- related 
genes and plasma TMAO in participants assigned 
to non- meat before red meat and vice versa. The 
fecal abundance of cutC was weakly correlated with 
plasma TMAO in those assigned to non- meat before 
red meat (rho=0.21, P=0.002, Figure 3). The same diet 
order effect was observed with an alternative normal-
ization method based on universal single copy genes 
(Tables S3 through S5).

To assess whether any genes directly related to 
trimethylamine metabolism predict TMAO produc-
tion, we trained an elastic net linear model with 70% 
of available samples using 10- fold cross validation 
to minimize RMSE. We then used the resulting linear 
model to predict TMAO concentrations in the held- out 
samples and used Pearson correlation coefficient to 
estimate the portion of variance in TMAO predicted by 
the model. Finally, we repeated training and testing on 
100 randomly selected held- out groups. Using clinical 
data summarized in Table 1, the model accounted for 
41% of the variance in plasma TMAO (Figure  4). We 
used TMAO fractional excretion rate as a sanity check 
to confirm that a valid predictor of plasma TMAO has 
the expected effects on model performance metrics 
(increased adjusted R2 and decreased RMSE). We 
also implemented a random forest to predict TMAO 
with non- linear associations. The percent change in 
the fractional excretion rate of TMAO from a non- meat 
to a red meat diet improved prediction of the percent 
change in urine TMAO by 12%, as predicted by the 
findings of Wang, et al.22 However, trimethylamine- 
lyase gene abundances did not predict plasma or urine 
TMAO nor did they improve the linear models or non- 
linear random forest models based on clinical data 
(Figure 4 and Figure S3).

TMAO is Not Predicted by Functional 
Metagenomic Analysis
While the abundance of candidate, trimethylamine- 
related genes did not predict TMAO, there are many 
undescribed microbial genes that may. Diet- related 
changes in microbial taxa have been reported in this co-
hort using 16S rRNA gene sequencing,18 and we used 
metagenomic data to quantify taxa, genes, and gene 
families. No single taxonomic unit or gene was directly 
correlated with plasma or urine TMAO. Three Uniref gene 
families were weakly correlated with plasma TMAO with 
borderline significance (Table 3). These correlations were 
also significant after multiple testing adjustment with the 
method of Benjamini and Hochberg.46 We next sought to 
understand why TMAO is not more strongly predicted by 
fecal microbiota composition.

Trimethylamine- Lyase Gene Abundance 
Does Not Predict Direct Measurements of 
Enzyme Activity in Fecal Samples
TMAO is a product of both commensal and host me-
tabolism, while trimethylamine is produced only by 
gut microbes.2 Microbial gene abundance may not be 
an effective predictor of microbial trimethylamine pro-
duction, and trimethylamine production may not be a 
strong predictor of TMAO. We first compared trimeth-
ylamine and TMAO production in 13 individuals.
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Isotope tracer studies involving a subset of the 
cohort (n=38) reported increased conversion of oral 
carnitine to urine trimethylamine and TMAO during a 
red meat diet versus white meat and non- meat, con-
sistent with unlabeled TMAO.22 We anoxically cultured 
fecal samples from the same clinic visits in the pres-
ence of isotopically labeled carnitine and choline and 
measured labeled trimethylamine and synthetic inter-
mediates after 18-  and 36- hour incubations. These 
measures allowed us compare trimethylamine pro-
duction by gut microbes to TMAO production in the 
microbe- host system.

Although there were no strong correlations between 
trimethylamine production in feces and TMAO produc-
tion in urine, choline metabolite concentrations were 
moderately correlated in urine and feces (rho=−0.46, 
P=0.003, Figure 5). This correlation was also significant 

after multiple testing adjustment (adjusted P=0.04) with 
the method of Benjamini and Hochberg.46 In the pre-
diction of d6- choline consumption, elastic net linear 
models trained with cutC abundances outperformed 
those trained with clinical data (Table 1), however no 
model of fecal enzyme activity predicted >6 percent of 
the variation in labeled metabolites (Figure 6).

Production of trimethylamine from carnitine in feces 
was not correlated with TMAO production from car-
nitine in the host (Spearman correlation, P=0.5), and 
carnitine trimethylamine- lyase gene abundances did 
not predict carnitine metabolism in feces (Figure S2). 
In short, abundances of genes known to encode en-
zymes that produce trimethylamine in feces fail to pre-
dict systemic TMAO because they cannot predict total 
fecal enzyme activity, at least under the culture condi-
tions described in Methods.

Figure 1. Overview of analyses.
A, Healthy adults were provided non- meat, white meat, or red meat diets for 4- week periods and donated plasma, urine, and stool 
samples during clinic visits. Trimethylamine N- oxide (TMAO) and related metabolites were measured in plasma and urine samples. 
A subset of urine samples (n=38) was taken after oral challenge with isotope labeled choline and carnitine. Isotope- labeled TMAO 
was measured in these urine samples. Stool was used for both anoxic cultures to determine the activities of enzymes related to 
trimethylamine production and metagenomics sequencing. Metagenomic sequence data were used to compute metagenomic 
operational taxonomic units, as well as global gene and gene family abundances. Low abundance trimethylamine- related genes 
were quantified using a gene cluster- base d approach. B, Plasma and urine TMAO were not correlated with any stool data set, 
and stool trimethylamine - related enzyme activities were not correlated with related genes or with TMAO production during the 
oral challenge. C, Elastic net models trained with trimethylamine- related gene abundances did not predict TMAO or stool enzyme 
activities. CV indicates cardiovascular; FMO, flavin mono- oxygenases; GBB, gamma- butyrobetaine; HPLC/MS/MS, high performance 
liquid chromatography with tandem mass spectrometry; MI, myocardial infarction; mOTUs, metagenomic operational taxonomic 
units; and TMAO, trimethylamine- N- oxide.
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DISCUSSION
The gut microbial metabolite TMAO is a major contrib-
utor to cardiovascular disease, and intervention may 
be complicated by the complex interactions that result 
in elevated circulating TMAO.19 Plasma TMAO can be 
raised and lowered with dietary change or gut micro-
bial suppression.12,22 In addition, TMAO response to 
these interventions is modulated by pre- existing vegan 
diet and renal function. A vegan diet, or more specifi-
cally a non- meat diet, has been observed to cause 
changes in both stool microbiome composition and 
TMAO metabolism.9,14 The abundance of carnitine in 
red meat presumably gives an advantage to gut mi-
crobial strains that consume carnitine, thus increas-
ing production of trimethylamine and TMAO. However, 

TMA- related gene abundance did not predict systemic 
TMAO, possibly because of limitations in metagenom-
ics technology or a large impact of host factors.

As interventions to lower TMAO are considered, 
it will be important to understand the relationships 
among diet, gut microbiota composition, and TMAO. 
We hypothesized that if the growth of specific strains 
plays a role in TMAO metabolism, then abundance of 
the relevant taxa or genes would predict TMAO levels. 
We used paired fecal, plasma, and urine samples from 
healthy participants assigned to diets with and without 
meat in a random crossover design to test predictive 
models of TMAO based on the abundance of genes 
related to trimethylamine production. We used shotgun 
metagenomic sequencing to quantify gene abundance 
in feces and measured TMAO in plasma and urine.

Figure 2. Synthesis of trimethylamine N- oxide requires dietary substrate as well as host and 
microbial enzymes.
Nutrients including choline and carnitine, which are abundant in red meat, are converted to 
trimethylamine via multiple synthetic pathways. The copy number of related genes is altered by diet and 
may contribute to trimethylamine N- oxide production by host enzymes. caiA/B/C, crotonobetainyl- CoA 
dehydrogenase; cntA/B, carnitine oxygenase/reductase; cutC/D, choline utilization gene cluster; FMOs, 
flavin monooxygenases; GBB, gamma- butyrobetaine; grdH, betaine reductase complex component 
B subunit beta; MI, myocardial infarction; TMA, trimethylamine; TMAO, trimethylamine- N- oxide; torA, 
trimethylamine- N- oxide reductase (cytochrome c); and yeaX/W, carnitine monooxygenase subunit YeaX.
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Table 2. Abundance of Gene Cluster cai is Correlated With Plasma TMAO

Gene Cluster Organism ρ P value*

cai Escherichia coli O18:K1:H7 0.17 0.040

cai Salmonella enterica subsp. enterica serovar Bareilly 0.16 0.069

cai Citrobacter werkmanii 0.16 0.070

cai Salmonella enterica subsp. enterica serovar Enteritidis 
EC20090332

0.16 0.073

cai Salmonella enterica subsp. enterica serovar Enteritidis 
EC20090135

0.16 0.11

Four candidate genes were quantified using Kyoto Encyclopedia of Genes and Genomes Sequence Similarity Database gene clusters. Of 274 gene cluster 
homologs, 60 were detected in >70% of samples. Spearman correlations were calculated between these 60 homolog abundances and plasma TMAO. The top 
5 cai homologs are shown, and all data are shown in Table S2. TMAO indicates trimethylamine- N- oxide.

*Adjusted according to the method of Bonferroni.
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We first tested whether the abundance of 5 genes 
known to be involved in trimethylamine production 
could predict diet- induced changes in TMAO. Although 
the cai gene cluster and cutC gene were correlated 
with TMAO, (Table 2, Figure 3) none improved machine 
learning models of plasma TMAO over clinical data 
alone (Figure  4). The cutC gene was correlated with 
plasma TMAO only in those assigned to the non- meat 
diet before red meat (Figure 3), but the observed effect 
of diet order on cutC might be diminished by the study 
design. The APPROACH study was designed to mea-
sure independent effects of multiple diet interventions 
in the same individuals. Participants were instructed to 

return to their habitual diets for at least 2 weeks be-
tween experimental diets to “wash out” any transient 
effects of the previous diet. Minimizing the effect of diet 
order was intended to be an advantage, but given the 
diet order effects on cutC, the washout periods may 
be a limitation by diminishing the strength of relation-
ships that require a non- meat diet before a red meat 
diet or vice versa.

Expanding our analysis to the entire metagenome 
did not reveal any associations with plasma or urine 
TMAO. No gene, taxonomic group, or gene family met 
the Bonferroni significance threshold for correlation 
with TMAO. Three gene families met a less stringent 

Figure 3. cutC predicts trimethylamine N- oxide in those assigned to non- meat before red meat.
Plasma trimethylamine N- oxide is higher during red meat consumption vs a meat- free diet regardless 
of diet order. Although cutC is not differentially abundant in red meat vs meat- free, cutC abundance 
is correlated with plasma trimethylamine N- oxide among those assigned to non- meat before red 
meat. P values represent Wilcox tests. RPKM indicates reads per kilobase per million reads; TMAO, 
trimethylamine- N- oxide.
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significance threshold for correlation (Tables 2 and 3). 
The metagenome of human feces did not predict sys-
temic TMAO levels (Figure 4) or in vitro trimethylamine 

production (Figure  S2), and this lack of association 
may be because of the limitations of metagenomic 
functional profiling.

Figure 4. Abundance of genes related to trimethylamine synthesis do not improve models of trimethylamine N- oxide 
(TMAO).
Elastic net was used to train and test linear models of plasma TMAO, as well as percent changes in TMAO from non- meat to red meat 
diets. Models were tested with 100 randomly selected training/testing groups, using adjusted R2 and root- mean- squared error as 
performance metrics. The base model, using data summarized in Table 1, predicted 41% of the variance in TMAO, and the addition of 
trimethylamine- related gene abundances did not improve model performance. TMAO fractional excretion rate outperformed the base 
model in predicting changes in plasma TMAO, in terms of root- mean- squared error (P<0.001, Wilcox test). FER, fractional excretion 
rate; RMSE indicates root- mean- squared error; and TMAO, trimethylamine- N- oxide.
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Table 3. Spearman Correlation Between Plasma TMAO and Gene Families

UniRef90 ID Name ρ P value*

A6BD41 Uncharacterized protein 0.22 0.047

F0R5N1 SF3 helicase domain- containing protein −0.22 0.047

F7JHG5 Uncharacterized protein 0.22 0.047

C0BEB7 Uncharacterized protein 0.22 0.050

G2SXI9 Phosphomethylpyrimidine synthase 0.22 0.050

Gene abundances were aggregated into Uniref90 gene family abundances using Humann2. Of 28 441 gene families detected in >75% of samples, 5 were 
weakly correlated with plasma trimethylamine- N- oxide. TMAO indicates trimethylamine- N- oxide.

*Adjusted according to the method of Benjamani and Hochberg.46



J Am Heart Assoc. 2021;10:e021934. DOI: 10.1161/JAHA.121.021934 10

Ferrell et al Fecal Microbiome Composition and TMAO

Functional metagenomic analysis aims to quantify 
the metabolic potential of a microbial community given 
genomic information.47 The presence of genes coding 

for an enzyme is one of many requirements for enzyme 
activity. Enzymatic reactions require transcription and 
translation of the gene, sufficient substrate, and a 
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microenvironment conducive to maintaining the struc-
ture of the enzyme and the health of the cell.48

Multiomic analyses, in which the metagenome, 
metabolome, etc are surveyed in the same samples, 
elucidate the extent to which the metagenome pre-
dicts metabolic activity and should create an expecta-
tion that TMAO is not predicted by the metagenome. 
Comparisons of fecal gene and transcript abundances 
have estimated the metagenome accounts for less 
than half the variation in the meta- transcriptome.49 
Strong associations between gene abundances and 
metabolites should not be expected when the interme-
diate processes (ie, transcription) are so loosely con-
nected to gene copy number.

Although the presence or absence of 50% of me-
tabolites detected by liquid chromatography mass 
spectrometry can be predicted with metagenomic 
data, <10% of the variation in metabolite levels is ac-
counted for by DNA- level data.49,50 Metabolite produc-
tion is predicted to be low when required genes are 
not detected, but we have demonstrated that aligning 

reads to reference gene sequences often fails to detect 
low- abundance genes whose conserved gene clus-
ters are present (Table  S1). Quantitative polymerase 
chain reaction has been used to measure fecal cutC 
and grdH as low as 0.05% of bacterial genomes.45

The trimethylamine/TMAO synthetic pathway has 
many of the features that complicate prediction of ac-
tivity levels with meta- genomic data. Even with sim-
ulated sequence data, analysis of low- abundance 
strains is challenging, and bacterial strains at <0.4% 
abundance in the mouse gut can have an outsized in-
fluence on trimethylamine and TMAO production.34,51 
The regulation of transcription can also limit the pre-
diction of metabolites from gene abundance data, and 
in fact, the transcription of at least 1 trimethylamine- 
lyase, cutC/D, is regulated by substrate availability.33 
Regulation via translation rate, post- translational mod-
ifications, and cofactor availability may also impact 
enzyme activity independent of gene copy number. 
Trimethylamine- producing microbes active in the gut 
may be inactive in stool or vice versa. Finally, circulat-
ing trimethylamine and TMAO concentrations are im-
pacted by host liver enzymes and renal filtration as well 
as microbial activity.6,22,52

Our isotope tracer studies in humans and fecal 
cultures challenged with labeled carnitine revealed 
discrepancies in the metabolism of microbes and the 
host- microbe system (Figure  4). This metabolic dis-
crepancy is consistent with at least one report of tran-
scriptionally inactive strains in human stool.53 A lack 
of transcription would also account for the observed 
inability of trimethylamine- lyase gene abundance to 
predict enzyme activity in stool (Figure 4). Finally, tools 
like MelonPann that use metagenomic data to predict 
the presence or absence of metabolites would have 
no translational application to TMAO, because low, 
detectable plasma or urine TMAO does not impact 
cardiovascular risk.50,54,55 Metabolomic analysis of 
metagenomes using flux balance analysis and optimi-
zation predicts many microbial metabolites well, but it 
assumes a relationship between gene abundance and 
metabolite concentration and requires high- quality 
annotated genomes of relevant microbes.56 While 
the quantitative prediction of nearly any metabolite 
with metagenomics data are challenging, TMAO is 
an especially difficult case because of the impact of 

Figure 5. Fecal trimethylamine- lyase activities are not correlated with trimethylamine N- oxide (TMAO) production in host.
In a single visit, 13 participants randomly selected from the APPROACH cohort donated a fecal sample and participated in a heavy- 
isotope- labeled choline and carnitine challenge (38 visits total). A, Participants were dosed orally with 250mg d6- choline and d3- 
carnitine. Labeled TMAO and synthetic intermediates were quantitated in 24- hour urine collection. B, Paired fecal samples were 
cultured with 200 µmol/L d6- choline and d9- carnitine and labeled TMAO and synthetic intermediates were quantitated after 18-  and 
36- hour incubations. Analytes not detected in >30% of samples were excluded. C, The heatmap shows Spearman correlations between 
fecal enzyme activities and the indicated isotopologue in 24- hour urine collection. TMAO produced from carnitine in the host was not 
highly correlated with carnitine- derived trimethylamine in fecal cultures. Urine choline- derived TMAO was negatively correlated with 
choline- trimethylamine- lyase activity in feces (ρ=−0.46, P=0.003). Cr, creatinine; RMSE indicates root- mean- squared error; and TMAO, 
trimethylamine- N- oxide. * Adjusted P<0.05. P values adjusted with the method of Benjamani and Hochberg.46

Figure 6. cutC abundance marginally outperforms clinical 
data in predicting fecal choline- trimethylamine lyase 
activity.
Fecal samples were cultured with 200  µmol/L d6- choline 
and labeled trimethylamine and synthetic intermediates were 
quantitated after 18- hour incubation. Elastic net models were 
trained to predict 18- hour d6- choline with 70% of samples and 
tested on the remaining 30%, and testing was iterated over 100 
different training/testing sets. Although the cutC models had 
less error than models trained with clinical data (Table 1), cutC 
models did not result in higher correlations between predicted 
and actual d6- choline concentration. RMSE indicates root- 
mean- squared error.
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host metabolism and the limitations of metagenomic 
analysis.

While microbial trimethylamine production is re-
quired for TMAO synthesis, red- meat‒ induced TMAO 
production is not strongly predicted by fecal microbial 
composition or the abundance of genes related to 
trimethylamine production.
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SUPPLEMENTAL MATERIAL



Supplemental Methods

Induced TMAO Production in Healthy Adults 

Elastic Net Modeling 

The goals of the present analyses were first, to test whether plasma TMAO is associated 

with the abundance of specific strains of bacteria in the fecal microbiome and second, 

identify microbial enzymes or strains whose associations with TMAO are comparable to 

more easily measured predictors such as sex and diet. We were especially focused on 

identifying simple linear relationships amenable to future experiments in model systems. 

Finally, we expected a high degree of collinearity when comparing closely related strains 

and gene homologs. 

Elastic net accomplishes both goals by “selecting” a relatively small number of predictors 

that minimize model error and reporting an effect size (β coefficient) for each predictor 

that can be directly compared. 

For each elastic net run, we predicted either plasma TMAO (Figure 4), the change in 

plasma TMAO between non-meat and red meat diet (ΔTMAO, Figure 4), or choline 

consumption in a fecal culture (18-hour d6-choline, Figure 6). The predictors included 

either the clinical measurements listed in Table 1, the homologs of a TMA-related 

microbial gene cluster (cai, cut, tor, yea), fecal TMA-lyase enzyme activities, or, as a 

sanity check, TMAO fractional excretion rate (see Response #2). Interactions and other 

nonlinear terms were not included, as they would make interpretation more difficult. 

Each outcome-predictor set pair was analyzed as follows. The pseudocode below 

summarizes the elastic net analysis. 

Data S1.



From the set of 461 clinical visits, those visits with complete data were randomly divided 

into training (70%) and testing (30%) sets. Due to the wide variation in model 

performance, we repeated training/testing assignment with replacement to produce a total 

of 100 training/testing sets. Within each training/testing set, model error and variance 

explained were quantified as follows. 

Elastic net models were trained and tested in R 3.5.0 by invoking the glmnet function via 

the train function of the caret package. Briefly, model parameters are tuned by minimizing 

a cost function for each of combination of 9 out of 10 folds within the training set, and the 

root-mean-square error (RMSE) is determined for the prediction of the tenth, held-out 

fold. The optimal parameters producing the lowest RMSE are used to produce a model 

using the entire training set, and this model is then used to predict the held-out testing 

set. The error and variance explained by the model in the testing set is then computed by 

comparing predicted to measured values.  

A grid of 𝜆 and 𝛼 values based on preliminary testing was defined for 𝜆 = {0, 0.1, 0.2 … 12} 

and 𝛼 = {0, 0.1, 0.2 … 1}. These two parameters were optimized, or tuned, by quantifying 

prediction error for all 1200 combinations of 𝜆 and 𝛼 values using 10-fold cross-validation. 

For cross-validation, the training set was divided into ten folds, and each fold was 

iteratively held out. The remaining nine folds are preprocessed independently of the held 

out fold: continuous predictors are scaled and centered, categorical predictors are 

recoded as “dummy variables”, and predictors with missing or zero data in >30% samples 

are excluded. 

Within each cross-validation, �̂� coefficients were computed to minimize the cost function 

𝐶 using the given values of 𝜆 and 𝛼. 

𝐶(�̂�, 𝜆, 𝛼) =
1

2𝑛
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑖

+ 𝜆 (
1 − 𝛼

2
∑ �̂�2 +  𝛼 ∑ |�̂�|) 



Each 10-fold cross validation produced 10 models tested on held out folds to compute 

error as root-mean-square error (RMSE), a value used when predicting data with a 

skewed distribution, such as TMAO. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑖

 

Nearly all the measured values in our manuscript appear to follow a right-skewed 

distribution. We wanted to give more weight to larger absolute errors to construct a more 

clinically useful model. Larger absolute errors will hamper the clinical goal of risk 

stratification more than smaller absolute errors. 

The values of 𝜆 and 𝛼 with the least average RMSE were deemed optimal, and the final 

model was trained as above with all training data using the optimal values of 𝜆 and 𝛼. 

The resulting linear model was then used to predict the data in the held-out testing data. 

These predicted values are compared to actual values using RMSE and adjusted R-

squared. Predictor sets that produce higher median adjusted R-squared and/or lower 

median RMSE across 100 testing sets are said to improve the model. The Wilcox test is 

used to assess a difference in medians. 



Table S1. Proportion of samples in which gene or gene cluster is detected. Metagenomic
sequencing reads from 405 fecal samples were aligned to genes related to TMA production as
well as the associated gene cluster. In almost every case, conserved gene clusters are more
frequently detected than the genes of interest. P values represent Bonferroni-adjusted Chi-
square tests comparing each gene to the related gene cluster.

Gene Cluster Gene Detection Rate (%) P (Chi-Square)
cai 99.8 (404/405)

caiA 76.8 (311/405) < 0.0001
caiB 94.8 (384/405) 0.0004
caiC 93.6 (379/405) < 0.0001

cnt 13.1 (53/405)
cntAB 12.8 (52/405) >0.99

cut 97.3 (394/405)
cutC 94.8 (384/405) >0.99
cutD 38.8 (157/405) < 0.0001

grd 97.8 (396/405)
grdH 94.3 (382/405) 0.19

tor 95.3 (386/405)
torA 64.9 (263/405) < 0.0001

yea 95.1 (385/405)
yeaW 65.2 (264/405) < 0.0001
yeaX 45.2 (183/405) < 0.0001



Table S2. Universal single copy genes used for alternative normalization. Manor and
Banorstein (1) selected prokaryotic orthologous groups with exactly one copy in almost every
prokaryotic genome listed by KEGG. We used only the top ten universal single copy genes to
quantify relative bacterial genome count in fecal samples as an alternative form of
normalization.

KEGG
Orthology COG Annotation Prokaryotic Genomes

With Gene (%)
Prokaryotic Genomes

With >1 Copy (%)

K02988 COG0098 small subunit ribosomal
protein S5 6112 (99) 5 (0.08)

K02994 COG0096 small subunit ribosomal
protein S8 6111 (99) 5 (0.08)

K02933 COG0097 large subunit ribosomal
protein L6 6108 (99) 8 (0.13)

K02931 COG0094 large subunit ribosomal
protein L5 6097 (99) 13 (0.21)

K02863 COG0081 large subunit ribosomal
protein L1 6096 (99) 5 (0.08)

K02876 COG0200 large subunit ribosomal
protein L15 6094 (99) 8 (0.13)

K02967 COG0052 small subunit ribosomal
protein S2 6093 (98) 7 (0.11)

K02864 COG0244 large subunit ribosomal
protein L10 6081 (98) 8 (0.13)

K02881 COG0256 large subunit ribosomal
protein L18 6076 (98) 6 (0.10)

K03110 COG0552 fused signal recognition
particle receptor 5961 (96) 8 (0.13)



Table S3. Spearman correlations with plasma TMAO among all samples. Four

candidate genes were quantified using KEGG SSDB gene clusters. Of 274 gene cluster

homologs, 60 were detected in >70% of samples. Spearman correlations were calculated

between these 60 homolog abundances and plasma TMAO. Gene clusters are named

with KEGG org identifier and genomic coordinates. Universal single-copy gene

normalization (USCG) utilized ten USCGs.

RPKM  USCG 
Gene Cluster  Rho  P  P-Bonferroni Rho  P  P-Bonferroni

cai-eih-27336-52938  0.17  0.00065  0.04  0.17 0.00086  0.053 
cai-senv-57098-100887  0.16 0.0012  0.073  0.16  0.0016  0.099 
cai-sena-57098-100887  0.16 0.0018  0.11  0.16  0.002  0.12 

cai-seeb-3884824-3928761  0.16 0.0011  0.069  0.17 0.00094  0.057 
cai-cwe-3656832-3683530  0.16 0.0011  0.07  0.17 0.00083  0.051 

cai-ecv-27317-52919  0.15 0.0026  0.16  0.15  0.0032  0.19 
cai-sek-57350-101254  0.15 0.0028  0.17  0.15  0.0035  0.21 

cai-senq-57098-100887  0.15 0.0033  0.2  0.15  0.0036  0.22 
cai-sel-57340-101063  0.15 0.0029  0.18  0.15  0.0029  0.18 

cai-senc-1519486-1563447  0.15 0.0029  0.18  0.15  0.0034  0.21 
cai-ses-2844264-2873996 0.14 0.0043  0.26  0.14  0.004  0.24 
cai-ebt-3409854-3439396 0.14  0.005  0.31  0.14  0.0041  0.25 
cai-edh-3821075-3845551 0.13  0.013  0.77  0.12  0.016  0.98 

cai-ecz-27336-52937  0.13 0.0074  0.45  0.14  0.0055  0.34 
cai-setc-3466245-3510218  0.12  0.02  1  0.11  0.023  1 
cai-cko-3102867-3134413 0.12  0.018  1  0.12  0.018  1 
cai-ecl-3947888-3972396  0.11  0.022  1  0.12  0.02  1 

cai-eci-27336-52938  0.11  0.034  1  0.11  0.036  1 
cai-sea-57341-101275  0.11  0.029  1  0.11  0.025  1 

cai-senj-2127653-2171775  0.11  0.023  1  0.12  0.019  1 
cutC-Pooled  0.11  0.029  1  0.11  0.023  1 

cai-ecoi-27459-53061  0.1  0.042  1  0.1  0.041  1 
cai-seep-57183-100834  0.1  0.039  1  0.1  0.038  1 
cai-senl-57098-100886  0.1  0.042  1  0.1  0.044  1 
cai-seno-57098-100887  0.097 0.055  1  0.095  0.058  1 
cai-sens-57342-100598  0.097 0.054  1  0.097  0.054  1 

grd-cace-803252-808152 0.096 0.056  1  0.1  0.048  1 
grd-shi-2784756-2816008  0.091 0.071  1  0.09  0.072  1 
tor-eck-1158853-1178787  0.089 0.078  1  0.091  0.069  1 



cai-elu-4788091-4813693  0.088 0.082  1  0.087  0.083  1 
cai-sene-57344-101308  0.087 0.085  1  0.088  0.079  1 

cai-eal-1458476-1483446  0.079  0.12  1  0.083  0.1  1 
grd-cfm-2173856-2178773  0.077  0.12  1  0.081  0.11  1 

cai-sega-57339-101062  0.073  0.15  1  0.069  0.17  1 
cai-cama-23975-56364  0.069  0.17  1  0.07  0.16  1 

cai-cyo-4142522-4169176  0.066  0.19  1  0.071  0.16  1 
cai-ema-2472536-2497872  0.064  0.2  1  0.065  0.19  1 

cai-eco-25826-50302  0.063  0.21  1  0.065  0.2  1 
cai-sec-51598-95536  0.062  0.22  1  0.069  0.17  1 

cai-eko-4058406-4082885  0.055  0.28  1  0.056  0.27  1 
cai-seec-1052456-1096396  0.053  0.29  1  0.053  0.29  1 

cai-ena-14772-39563  0.051  0.31  1  0.053  0.29  1 
cai-sew-57348-101465  0.047  0.36  1  0.048  0.34  1 
cai-ebc-294299-320969  0.045  0.37  1  0.05  0.32  1 

cai-spq-51689-95628  0.039  0.44  1  0.04  0.43  1 
cai-cif-1056571-1081433 0.037  0.46  1  0.041  0.42  1 

cai-sed-57342-96817  0.033  0.51  1  0.034  0.5  1 
cai-ebf-3985021-4010024  0.033  0.51  1  0.039  0.44  1 

cai-sbg-52520-83258  0.028  0.58  1  0.031  0.53  1 
yea-eco-1878874-1894731  0.027  0.59  1  0.03  0.55  1 

cai-cro-32133-66456  0.021  0.68  1  0.024  0.64  1 
cai-sbv-49201-79934  0.019  0.71  1  0.021  0.67  1 

cai-cfar-891731-923473 0.0064  0.9  1  0.007  0.89  1 
cai-sbz-49701-81116  0.0061  0.9  1  0.011  0.83  1 

cai-cbra-2695495-2727410  0.0022 0.96  1  0.0038  0.94  1 
cai-seo-57344-102030  -0.0039 0.94 1  -0.003 0.95  1 
cai-efe-21905-59475  -0.014 0.78  1  -0.011 0.83  1 

cai-kin-3809521-3836197 -0.03  0.55  1  -0.028 0.58  1 
cai-cir-287785-319507  -0.056 0.27  1  -0.054 0.28  1 

cai-caf-4639362-4680627  -0.062 0.22  1  -0.056 0.27  1 
grd-cdrk-2091059-2111627  -0.066 0.19  1  -0.071 0.16  1 



Table S4. Spearman correlations with plasma TMAO among those assigned to non-

meat before red meat. Four candidate genes were quantified using KEGG SSDB gene

clusters. Of 274 gene cluster homologs, 60 were detected in >70% of samples. Spearman

correlations were calculated between these 60 homolog abundances and plasma TMAO.

Gene clusters are named with KEGG org identifier and genomic co ordinates. Universal

single-copy gene normalization (USCG) utilized ten USCGs.

RPKM USCG
Gene Cluster Rho P P-Bonferroni Rho P P-Bonferroni

cai-ebt-3409854-3439396 0.23 0.00092 0.056 0.220.0017 0.1
cutC-Pooled 0.22 0.0016 0.1 0.210.0019 0.12

cai-eih-27336-52938 0.21 0.0019 0.11 0.2 0.0037 0.23
cai-cwe-3656832-3683530 0.21 0.0029 0.18 0.2 0.0035 0.22
cai-ecl-3947888-3972396 0.2 0.0036 0.22 0.190.0057 0.35

cai-sel-57340-101063 0.19 0.0059 0.36 0.190.0071 0.43
cai-ecz-27336-52937 0.18 0.0098 0.6 0.180.0088 0.54

cai-sena-57098-100887 0.17 0.012 0.73 0.17 0.015 0.91
cai-ecv-27317-52919 0.16 0.019 1 0.15 0.03 1

cai-edh-3821075-3845551 0.15 0.026 1 0.14 0.04 1
cai-seeb-3884824-3928761 0.15 0.028 1 0.14 0.037 1
cai-senc-1519486-1563447 0.15 0.034 1 0.14 0.046 1

cai-senv-57098-100887 0.14 0.045 1 0.13 0.063 1
cai-ses-2844264-2873996 0.14 0.047 1 0.13 0.059 1

cai-eci-27336-52938 0.13 0.058 1 0.13 0.069 1
cai-senj-2127653-2171775 0.13 0.064 1 0.12 0.083 1

cai-sbv-49201-79934 0.13 0.068 1 0.12 0.077 1
cai-ebc-294299-320969 0.13 0.063 1 0.12 0.079 1

cai-setc-3466245-3510218 0.12 0.077 1 0.11 0.11 1
cai-elu-4788091-4813693 0.11 0.11 1 0.1 0.15 1
cai-senq-57098-100887 0.11 0.1 1 0.11 0.12 1
cai-sens-57342-100598 0.1 0.15 1 0.094 0.18 1

grd-shi-2784756-2816008 0.1 0.13 1 0.099 0.16 1
cai-cama-23975-56364 0.098 0.16 1 0.093 0.18 1
cai-sek-57350-101254 0.093 0.18 1 0.086 0.22 1

cai-eko-4058406-4082885 0.092 0.18 1 0.085 0.22 1
cai-sea-57341-101275 0.085 0.22 1 0.079 0.26 1
cai-sbz-49701-81116 0.082 0.24 1 0.079 0.26 1

cai-sene-57344-101308 0.08 0.25 1 0.072 0.3 1



grd-cfm-2173856-2178773 0.078 0.26 1 0.072 0.3 1
cai-sbg-52520-83258 0.077 0.27 1 0.07 0.32 1
cai-seo-57344-102030 0.073 0.29 1 0.063 0.37 1

cai-cyo-4142522-4169176 0.073 0.29 1 0.061 0.38 1
grd-cace-803252-808152 0.067 0.33 1 0.057 0.41 1

cai-ecoi-27459-53061 0.065 0.35 1 0.061 0.38 1
cai-seec-1052456-1096396 0.059 0.39 1 0.059 0.4 1
cai-eal-1458476-1483446 0.057 0.41 1 0.044 0.53 1
cai-seno-57098-100887 0.057 0.41 1 0.055 0.43 1
cai-seep-57183-100834 0.053 0.44 1 0.05 0.47 1
cai-senl-57098-100886 0.052 0.46 1 0.044 0.52 1

cai-cif-1056571-1081433 0.044 0.53 1 0.038 0.59 1
cai-ena-14772-39563 0.032 0.65 1 0.03 0.67 1

cai-sega-57339-101062 0.029 0.68 1 0.016 0.82 1
cai-cko-3102867-3134413 0.029 0.68 1 0.023 0.74 1
tor-eck-1158853-1178787 0.024 0.73 1 0.024 0.73 1
cai-cfar-891731-923473 0.022 0.75 1 0.015 0.83 1

cai-sec-51598-95536 0.017 0.8 1 0.017 0.8 1
cai-spq-51689-95628 0.013 0.85 1 0.0057 0.94 1

yea-eco-1878874-1894731 0.0076 0.91 1 0.007 0.92 1
cai-ema-2472536-2497872 0.00064 0.99 1 -0.0014 0.98 1

cai-sew-57348-101465 -0.0013 0.99 1 -0.0066 0.92 1
cai-cir-287785-319507 -0.0036 0.96 1 -0.011 0.88 1
cai-eco-25826-50302 -0.0045 0.95 1 -0.0075 0.91 1
cai-cro-32133-66456 -0.011 0.88 1 -0.02 0.78 1
cai-efe-21905-59475 -0.018 0.79 1 -0.022 0.76 1

cai-cbra-2695495-2727410 -0.02 0.78 1 -0.032 0.64 1
cai-ebf-3985021-4010024 -0.034 0.62 1 -0.038 0.59 1
cai-caf-4639362-4680627 -0.036 0.61 1 -0.037 0.6 1

cai-sed-57342-96817 -0.045 0.52 1 -0.056 0.42 1
grd-cdrk-2091059-2111627 -0.076 0.27 1 -0.097 0.16 1
cai-kin-3809521-3836197 -0.08 0.25 1 -0.09 0.2 1



Table S5. Spearman correlations with plasma TMAO among those assigned to red

meat before non-meat. Four candidate genes were quantified using KEGG SSDB gene

clusters. Of 274 gene cluster homologs, 60 were detected in >70% of samples. Spearman

correlations were calculated between these 60 homolog abundances and plasma TMAO.

Gene clusters are named with KEGG org identifier and genomic co ordinates. Universal

single-copy gene normalization (USCG) utilized ten USCGs.

RPKM USCG
Gene Cluster Rho P P-Bonferroni Rho P P-Bonferroni

cai-cko-3102867-3134413 0.24 0.0011 0.064 0.24 0.00089 0.055
cai-sek-57350-101254 0.23 0.0016 0.1 0.23 0.0018 0.11

cai-senq-57098-100887 0.19 0.0089 0.54 0.2 0.0064 0.39
cai-senv-57098-100887 0.18 0.012 0.72 0.18 0.012 0.72

cai-seeb-3884824-3928761 0.18 0.011 0.7 0.2 0.0058 0.36
cai-seep-57183-100834 0.17 0.021 1 0.18 0.014 0.83

tor-eck-1158853-1178787 0.16 0.027 1 0.17 0.02 1
cai-ecoi-27459-53061 0.15 0.039 1 0.16 0.033 1
cai-senl-57098-100886 0.15 0.038 1 0.16 0.025 1

cai-ses-2844264-2873996 0.15 0.046 1 0.15 0.036 1
cai-eco-25826-50302 0.14 0.053 1 0.15 0.042 1
cai-sea-57341-101275 0.14 0.06 1 0.15 0.042 1

cai-senc-1519486-1563447 0.14 0.049 1 0.15 0.037 1
cai-eih-27336-52938 0.13 0.087 1 0.13 0.067 1
cai-ecv-27317-52919 0.13 0.067 1 0.14 0.053 1

cai-ema-2472536-2497872 0.13 0.085 1 0.13 0.071 1
cai-seno-57098-100887 0.13 0.076 1 0.13 0.069 1
cai-sena-57098-100887 0.13 0.083 1 0.13 0.067 1
cai-sed-57342-96817 0.13 0.082 1 0.14 0.054 1

cai-sega-57339-101062 0.12 0.11 1 0.12 0.096 1
cai-sec-51598-95536 0.12 0.12 1 0.13 0.075 1

cai-ebf-3985021-4010024 0.12 0.1 1 0.13 0.067 1
grd-cace-803252-808152 0.12 0.11 1 0.14 0.06 1
cai-eal-1458476-1483446 0.11 0.14 1 0.13 0.071 1
cai-setc-3466245-3510218 0.11 0.13 1 0.12 0.094 1
cai-cwe-3656832-3683530 0.11 0.14 1 0.13 0.082 1
cai-edh-3821075-3845551 0.1 0.17 1 0.11 0.14 1

cai-sens-57342-100598 0.1 0.16 1 0.11 0.15 1
cai-senj-2127653-2171775 0.099 0.18 1 0.11 0.12 1



cai-sel-57340-101063 0.098 0.18 1 0.1 0.16 1
cai-sene-57344-101308 0.098 0.18 1 0.12 0.11 1
cai-sew-57348-101465 0.095 0.19 1 0.1 0.15 1
cai-ecz-27336-52937 0.088 0.23 1 0.098 0.18 1
cai-ena-14772-39563 0.077 0.3 1 0.085 0.25 1

grd-cfm-2173856-2178773 0.076 0.3 1 0.091 0.22 1
cai-eci-27336-52938 0.074 0.32 1 0.08 0.28 1

grd-shi-2784756-2816008 0.074 0.31 1 0.082 0.26 1
cai-spq-51689-95628 0.067 0.36 1 0.076 0.3 1

cai-elu-4788091-4813693 0.064 0.38 1 0.072 0.33 1
cai-cro-32133-66456 0.061 0.41 1 0.079 0.29 1

cai-cyo-4142522-4169176 0.057 0.44 1 0.083 0.26 1
yea-eco-1878874-1894731 0.057 0.44 1 0.067 0.36 1
cai-seec-1052456-1096396 0.042 0.57 1 0.053 0.47 1
cai-kin-3809521-3836197 0.04 0.59 1 0.051 0.49 1
cai-cama-23975-56364 0.038 0.61 1 0.046 0.53 1

cai-ebt-3409854-3439396 0.038 0.61 1 0.054 0.46 1
cai-cbra-2695495-2727410 0.034 0.64 1 0.047 0.53 1

cai-efe-21905-59475 0.022 0.77 1 0.034 0.65 1
cai-ecl-3947888-3972396 0.02 0.79 1 0.033 0.65 1
cai-cif-1056571-1081433 0.02 0.78 1 0.038 0.61 1

cai-eko-4058406-4082885 0.011 0.88 1 0.02 0.79 1
cai-cfar-891731-923473 -0.015 0.83 1 -0.0066 0.93 1

cutC-Pooled -0.018 0.81 1 -0.0023 0.97 1
cai-sbg-52520-83258 -0.03 0.68 1 -0.013 0.86 1

grd-cdrk-2091059-2111627 -0.041 0.58 1 -0.032 0.66 1
cai-ebc-294299-320969 -0.051 0.49 1 -0.036 0.63 1

cai-sbz-49701-81116 -0.084 0.25 1 -0.065 0.37 1
cai-seo-57344-102030 -0.09 0.22 1 -0.075 0.31 1

cai-caf-4639362-4680627 -0.091 0.22 1 -0.073 0.32 1
cai-sbv-49201-79934 -0.12 0.1 1 -0.11 0.15 1

cai-cir-287785-319507 -0.12 0.11 1 -0.1 0.16 1



Figure S1. Gene cluster abundances are correlated with gene abundances.
Genes known to be related to TMAO synthesis were quantified as RPKM accord-
ing to the count of reads aligning to any gene homolog. Gene cluster homologs
present in >70% of samples were quantified individually, and multiple homologs
of each gene cluster were highly correlated with and detectable in more fecal
samples than gene-level quantification.



Figure S2. Prediction of fecal enzyme activities with gene abundance.
Performance of elastic net linear models in prediction of choline and carnitine
metabolites following incubation with labeled choline and carnitine. Root mean
square error was reduced and correlation between actual and predicted values
were slightly improved when predicting 18hr d6-choline with cut abundance and
prediction of all other metabolites at both time points was not improved by any
gene’s abundance.
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Figure S3. Abundance of genes related to TMA synthesis do not improve random forest
models of TMAO. Random forest was used to train and test models of plasma TMAO, as
well as percent changes in TMAO from non-meat to red meat diets (∆TMAO). Models were
tested with 100 randomly selected training/testing groups, using adjusted R2 and root-mean-
squared error (RMSE) as performance metrics. The base model, using data summarized in
Table 1, predicted 46% of the variance in TMAO, and the addition of TMA-related gene abun-
dances did not improve model performance. As a sanity check, TMAO fractional excretion
rate (FER) outperformed the base model in predicting changes in plasma ∆TMAO, in terms of
RMSE (p = 0.02, Wilcox test).
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Figure S4. cai gene cluster ranks among the most important predictors of plasma TMAO.
Random forest was used to train and test models of plasma TMAO, as well as percent changes
in TMAO from non-meat to red meat diets (∆TMAO). Models were tested with 100 randomly
selected training/testing groups. During training, the cross-validation error (residual sum of
squares, RSS) was computed after permuting each predictor. Variable importance is reported as
the increase in RSS after permutation. Bars represent mean and standard error.
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