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Abstract

Constructing activity budgets for marine animals when they are at sea and cannot be directly

observed is challenging, but recent advances in bio-logging technology offer solutions to

this problem. Accelerometers can potentially identify a wide range of behaviours for animals

based on unique patterns of acceleration. However, when analysing data derived from

accelerometers, there are many statistical techniques available which when applied to dif-

ferent data sets produce different classification accuracies. We investigated a selection of

supervised machine learning methods for interpreting behavioural data from captive otariids

(fur seals and sea lions). We conducted controlled experiments with 12 seals, where their

behaviours were filmed while they were wearing 3-axis accelerometers. From video we

identified 26 behaviours that could be grouped into one of four categories (foraging, resting,

travelling and grooming) representing key behaviour states for wild seals. We used data

from 10 seals to train four predictive classification models: stochastic gradient boosting

(GBM), random forests, support vector machine using four different kernels and a baseline

model: penalised logistic regression. We then took the best parameters from each model

and cross-validated the results on the two seals unseen so far. We also investigated the

influence of feature statistics (describing some characteristic of the seal), testing the models

both with and without these. Cross-validation accuracies were lower than training accuracy,

but the SVM with a polynomial kernel was still able to classify seal behaviour with high accu-

racy (>70%). Adding feature statistics improved accuracies across all models tested. Most

categories of behaviour -resting, grooming and feeding—were all predicted with reasonable

accuracy (52–81%) by the SVM while travelling was poorly categorised (31–41%). These

results show that model selection is important when classifying behaviour and that by using

animal characteristics we can strengthen the overall accuracy.
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Introduction

Advances in bio-logging technologies have provided a means by which we can accurately

quantify the activity budgets of marine predators [1, 2]. Previously, investigators have used

multiple devices and/or direct observation to investigate a single parameter [e.g. feeding; 3, 4].

Observation allows researchers to record detailed behaviour without directly interacting with

the animal, though this method is often inefficient due to the inability of researchers to record

behaviour at all times and is biased to observations at or near the surface [5]. In addition,

marine predators are difficult if not impossible to observe in the wild as they spend most of

their time underwater and can forage over great distances [1]. Well documented observer

effects add to the limitations of direct observation, and this has lead researchers to develop

devices that allow us to record animal behaviour remotely [6].

Time-depth recorders and stomach temperature loggers have been used in combination to

predict when an animal has captured and ingested prey [7]. However, gaining complete infor-

mation from a multi-instrument approach can be invasive, expensive, analytically complicated

and is not always successful [8]. A more refined approach is to use devices that can measure

physical activity over periods long enough to be representative of typical daily activities, with

minimal discomfort to the animals, and applicable to large populations [9]. Tri-axial acceler-

ometers are one option, as these can measure animals in their natural environments over long

periods and in places where observation is difficult or impossible [1, 10]. These devices are

increasing in popularity and offer opportunity to study marine predators with a level of detail

that other devices do not [11]. They allow us to measure and classify the activity of animals

using data from a single device [12], and can be incorporated into more complex devices along

with sensors that record physical and environmental parameters such as depth and tempera-

ture [13]. Unique combinations of the three accelerometry axes; heave, surge and sway, can be

used to identify different activities [11]. Feeding events can be identified from mandible and

head mounted accelerometers [3, 14, 15], but a wider range of behaviours, and a proxy for the

energy expenditure of those behaviours, may be predicted from mounting the device close to

the mid-point of the animals torso [16].

Currently many methods and techniques exist for the classification of accelerometry data.

Supervised and unsupervised algorithms provide options for classification and interpretation

[14, 17]. Supervised learning can adjust its classifications by using error messages programmed

by the user, whereas unsupervised learning looks for patterns in the data. Supervised learning

requires the input of a ‘teacher’ to manually classify the behaviour and to ‘teach’ the program

how to identify each behaviour [18]. This method can be highly accurate and precise, but is

also very time consuming. In contrast, unsupervised learning classifies behaviour using heuris-

tics [18]. Unsupervised learning has the advantage of speed, trading it for accuracy or preci-

sion. It may also be able to pick up patterns in the data that manual classification methods do

not. When classifying data for supervised learning there is a degree of subjectivity involved on

behalf of the teacher, whereas unsupervised learning algorithms classify data with an unbiased

view [6].

Published ethograms have used a wide variety of these methods with varying degrees of suc-

cess, including quadratic discriminant analysis (QDA) for the classification of activity in cattle

and humans [19], decision trees with turtles [20] random forests with badgers [21, 22], and

neural networks with humans [23]. Each method has advantages and disadvantages, and it is

likely that different methods will work better for different species, device placement and set-

tings. With the significant advancement of computer speed and the relative ease with which

these methods can be implemented an important step is to determine the most appropriate

method of analysis for the particular set of circumstances under study.
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To explore this, we used data from captive otariid pinnipeds to assess the reliability of a

number of different machine learning algorithms in identifying particular behaviours. Activity

budgets of otariids include activity on land and in water, and water behaviours can be more

complex to define as they involve dynamic movement in a 3D environment. To date, quantify-

ing pinniped behaviour using accelerometers has focussed on identifying foraging and travel-

ling behavioural states [24]. Less attention has been paid to other potentially important

behaviour states, such as grooming, reproductive and resting behaviours, despite these being

major components of their behavioural repertoire and possible indicators of important under-

lying indicators such as condition [25, 26]. As yet, no studies have sought to quantify the ter-

restrial behaviours displayed by pinnipeds using accelerometers. The aims of this paper were

(1) to build a detailed ethogram of the key behaviours performed by captive otariid pinnipeds,

applicable to wild populations, and (2) to use a range of machine learning algorithms to classify

these behaviours, providing us with the opportunity to test and compare the accuracy of these

different methods.

Materials and Methods

Animals

We conducted experiments with two Australian fur seals (Arctocephalus pusillus doriferus),
three New Zealand fur seals (Arctocephalus forsteri), one subantarctic fur seal (Arctocephalus
tropicalis), and six Australian sea lions (Neophoca cinerea) (Table 1), from three Australian

marine facilities: Dolphin Marine Magic, Coffs Harbour (RF1: -30˚17’N, 153˚8’E); Underwater

World, Sunshine Coast (RF2: -25˚40’N, 153˚7’E); and Taronga Zoo, Sydney (RF3: -33˚50’N,

151˚14’E). Experiments were conducted from August to November 2014 at all three institu-

tions, and again in August 2015 at RF2. The seals were on permanent display at their respective

marine facilities and were fed and cared for under the guidelines of the individual facility. All

Australian sea lions in the study were born as a part of an ongoing captive breeding program

in Australian aquaria, while all fur seals came into captivity as juveniles, in poor health or

injured, and were considered unsuitable for release. All fur seals were in very good health dur-

ing the study. This study was conducted under permits from Macquarie University ethics com-

mittee (ARA-2012_064) and Taronga zoo ethics committee (4c/10/13).

Experimental protocol

Seals were fitted with a tri-axial accelerometer (CEFAS G6a+: 40mm x 28 mm x 16.3 mm,18 g

in air and 4.3 g in seawater, CEFAS technology Ltd, Lowestoft, UK) positioned between the

shoulder blades. Accelerometers recorded three axes of acceleration: surge (x-axis), sway (y-

axis) and heave (z-axis). They were orientated such that the x-axis was anterior–posterior, the

y axis was lateral and the z axis was dorsal–ventral. Accelerometers recorded at +-8g, at a rate

of 25 samples per second (25Hz), and logged wet/dry events.

For fur seals accelerometers were secured between the shoulder blades on the top layer of

fur using Tesa tape (Tesa, Eastern Creek, NSW, Australia; Fig 1). The process took around 2

minutes to attach and 30–60 seconds to remove. This method could not be used for the sea

lions as the fur was too short for the tape to hold the devices. Instead, we used a custom

designed harness ((c) Guy Bedford) with three clips, one around the neck and two at the back

(Fig 2), and accelerometers were fitted into a pocket sewn to the back.

Each session was recorded using two or three cameras filming at 50 frames per second

(FPS); one or two cameras (GoPro Hero 3 –Black edition, USA) were placed in a pool below

the water line to capture all underwater behaviour and above water behaviour was captured by

a hand held camera (HDRSR11E: Sony, Japan). Depending on the seal and the facility we were
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working at we altered the pools that we were using. At RF1 we used three pools, the first pool

was 11m diameter and 3m deep, the second pool was 12m wide, 24m long and an average

depth of 2m, the third pool was 7m diameter and 2m deep. At RF2 we used one large pool

which was 11m wide, 14m long with an average depth of 8m. At RF3 we used three pools, the

first was 6m wide, 15m long and an average of 3m deep, the second pool was 9m wide, 12m

long and an average of 3m deep, the third pool was 26m long, 9m wide and 5m deep. We

defined a session as a continuous period that seals were wearing the accelerometer and being

filmed, and we attempted only one session per day per seal. Sessions had a maximum duration

Table 1. Identification number, location, species, age weight and sex of seals with number of sessions and attachment method of accelerometer.

AFS—Australian fur seal; NZFS—New Zealand fur seal; SFS—subantarctic fur seal and ASL—Australian sea lion.

Seal ID Marine facility Species Age Weight range (kg) Sex Number of sessions Attachment method

ASF1 RF1 ASL 5 44–47 Female 13 Harness

ASF3 RF2 ASL 17 58–74 Female 4 Harness

ASF4 RF1 ASL 17 66–70 Female 12 Harness

ASF6 RF1 ASL 7 50 Female 2 Harness

ASM1 RF1 ASL 9 108–110 Male 8 Harness

AFF1 RF2 AFS 17 69–79 Female 7 Tape

AFM1 RF2 AFS 16 175–242 Male 7 Tape

ASM2 RF3 ASL 13 160–162 Male 9 Tape

NFM1 RF3 NZFS 8 47–54 Male 5 Tape

NFM2 RF2 NZFS 11 108–152 Male 5 Tape

NFM3 RF3 NZFS 13 111–154 Male 8 Tape

SFM1 RF2 SFS 4 28–30 Male 3 Tape

doi:10.1371/journal.pone.0166898.t001

Fig 1. Process of accelerometer attachment with tape. a) Dry the fur; b) Lift the hair to stick tape to undercoat; c-e) Tape on the

accelerometer; f) Seal with accelerometer.

doi:10.1371/journal.pone.0166898.g001

Classifying Otariid Behaviour Using Supervised Machine Learning

PLOS ONE | DOI:10.1371/journal.pone.0166898 December 21, 2016 4 / 17



of 90 minutes after which the accelerometer removed and the seal was rewarded. Seals partici-

pated in 3–11 sessions.

We observed seals during training sessions where behaviours were requested using oper-

ant-conditioning, and also without conditions. Seals were not restrained or required to give a

behaviour. We observed two types of sessions; feeding and behaviour sessions. The feeding ses-

sions aimed to provide seals with large food items that required some form of processing prior

to eating [see 27]. Seals were given a range of seafood including bream (Abramis brama), mul-

let (Mugil cephalus), Sydney octopus (Octopus tetricus), Australian salmon (Arripis truttaceus),
mackerel tuna (Euthynnus affinis), New Zealand brill (Colistium guntheri) and yellowtail

amberjack (Seriola lalandi). Seals entered the water and were given the particular food item in

the water with an unrestricted amount of time to eat. When a seal did not eat the food either

another seal was introduced to the pool to encourage competition, or the original seal was

returned to its pen and a different seal was fitted with an accelerometer and presented with the

food.

Behaviour sessions also incorporated some feeding events with small fish that did not

require processing. Fish were thrown in the pool so that seals had to capture them mid-water

as they sank. During each behaviour session seals were instructed to perform a series of natural

behaviours from their known behavioural repertoire (S1 File). These behaviours were expected

to emulate the behaviour of wild seals, such as porpoising, swimming and grooming. Behav-

iours were repeated during a session until the food was exhausted or the seal did not respond

to instruction.

Statistical analyses

Data preparation. The acceleration data were downloaded using the G5 Host software

(Version 6.4 CEFAS Technology Ltd). The video from each camera was imported into Adobe

Premiere Pro CC (Adobe Systems Inc., California) where it was synced so that the video files

could be easily viewed together. They were then exported at 25 FPS as a single movie file.

Data were coded manually using Excel (Microsoft Corp., Washington, USA) and Quicktime

(Apple Computer Inc., California, USA). To synchronise the accelerometer and the video, we

“marked” the accelerometer on the video by hitting it against a hard surface while filming.

This caused a large spike in the accelerometry data that we could match exactly to the video.

We matched each accelerometry data sample with the corresponding video frame and the

Fig 2. Harness. a) Back; b) Side; c) Front.

doi:10.1371/journal.pone.0166898.g002
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specific behaviour recorded in Excel (see S1 File for a detailed list of behaviours and their

descriptions). Videos were scored without interruption.

The duration of a behaviour ranged from 0.25 (e.g. shake) to 3.5 minutes (e.g. continuous

swimming). We coded 26 unique behaviours, but because there were not enough samples of

each of the individual behaviours, we grouped behaviours into five categories. These behaviour

categories were chosen based on a combination of ecological and behavioural knowledge of

the target species, rather than on statistically identifiable behaviours (as in unsupervised learn-

ing). The five categories were grooming, travelling, foraging, resting and other. The ‘other’

category consisted of direct feeding by the trainer (when the food was delivered by hand or

thrown and caught), behaviours that could not be clearly placed into one of the other catego-

ries, and time where the seal was out of sight. As these cannot be considered natural behav-

iours, accelerometry data collected at these times was not included in the analysis. Where

behaviours overlapped, or were displayed simultaneously (e.g. foraging and travelling), groom-

ing and foraging took precedent over travelling and resting. Half of the videos were coded by

two coders (JK and ML) and compared for validation. The coders recorded the same behav-

iour in over 95% of cases, therefore the first coder (JK) completed the remaining coding.

Data were summarised into epochs (sliding sample windows) of length 13 which represented

approximately 0.5 sec data. This would ensure that the shortest recorded behaviour would be

captured. Data were further split into training and testing, where ten seals data were used for

training and two seals data were kept for cross-validation of the models. One female sea lion

and one male fur seal were selected which represents the range of animals in our dataset.

Summary statistics. Choosing the number of summary statistics that are put into a model

can be highly subjective. Complex behaviours, and large numbers of example behaviours

means that a large number of summary statistics are likely required. A greater number of sum-

mary statistics improves the algorithms chances of detecting subtle differences between the

behaviours [6, 28]. We coded 52 summary statistics and added five feature statistics describing

some characteristic of the individual or the event to the second stage of model testing. These

were included to assess their overall impact on prediction performance of the models. The fea-

tures we included were device attachment method (harness or tape), age, mass, sex and species

of the individual. We included where the behaviour occurred (surface, underwater or land) in

all models. We calculated summary statistics including mean, median, standard deviation,

skewness, kurtosis, minimum, maximum, absolute value, inverse covariance, autocorrelation

trend (the coefficient derived from a linear regression) for each of the three axes. We also cal-

culated q as the square-root of the sum-of-squares of the three axis [17], and included pair-

wise correlations of the three axis (x-y, y-z, x-z) [29]. The inclination as azimuth were calcu-

lated as per Nathan et al. [17]. We calculated three measures of dynamic body acceleration

(DBA) by first using a running mean of each axis over 3 seconds to create a value for static

acceleration. We then subtracted the static acceleration at each point from the raw acceleration

value to create a value for partial dynamic body acceleration (PDBA). The values of PDBA on

each axis were summed to calculate overall dynamic body acceleration (ODBA; Eq 1) [30, 31].

We calculated vectorial dynamic body acceleration (VeDBA; Eq 2) as the square root of the

squared PDBA of the three axis [32] and calculated the area under the curve for both ODBA

and VeDBA using the package “MESS” in R [33, 34].

ODBA ¼ jXdynj þ jYdynj þ jZdynj ð1Þ

VeDBA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
dyn þ Y2

dyn þ Z2
dyn

q
ð2Þ
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Penalised logistic regression. In logistic regression the probability of each outcome was

estimated via a logistic function which transformed a binary [0, 1] outcome to a continuous

outcome from negative infinity to positive infinity. A linear relationship was then found

between the transformed outcome and the input variables (this process was performed in one

step, but is easier to visualise as a two stage process). A penalty was added to the error function

of this process to avoid over fitting of the problem. Common forms of this penalty are either

the L1 or L2 norm. In effect this penalty shrinks the coefficients of the logistic regression

towards zero, to simplify the model. We implemented logistic regression to set a base line

accuracy against which the other, more complicated models were compared. The penalised

logistic regression was implemented using the R package “glmnet” [35].

Support vector machines. Support vector machines (SVM) are a form of discriminant

classifier, where this discrimination was performed by hyperplanes that divide the input data

into classes according to their labels [36]. In essence two hyperplanes were employed and the

distance between them chosen to maximise the distance between the two classes. Hence a

SVM is often referred to as a maximal margin classifier. The simplest form of SVM used a lin-

ear kernel to find a way to linearly separate the classes. Often the data do not separate linearly

in which case nonlinear kernels were used to map the features to different vector spaces where

it may be possible to better separate the data. We tested linear, polynomial, radial and sigmoid

kernels. The SVM was implemented using the R package “e1071” [37].

Random forests. Random forests are a form of ensemble learning [38]. An ensemble is a

combination of different classifiers (referred to as base learners) each trained to perform the

same classification, generally in a slightly different way, then the results are combined (gener-

ally averaged) to give the final output. In a random forest the base learners are decision trees.

Decision trees attempt to partition the feature space one variable at a time in the way that best

classifies the data (i.e. the input variables are divided such that values above a point go into one

class and values below a point go into a different class). This partitioning (splitting) of the

input variables continues until no more splits can be performed or some stopping criteria are

reached. To create a random forest, many decision trees were trained with each tree only see-

ing a random subset of the data, and at each split a random subsample of the input variables

was tested for partitioning. Finally, all of the trees were averaged to generate output probabili-

ties. The random forest was implemented using the R package “randomForest” [39]

Stochastic gradient boosting. Stochastic gradient boosting machines (GBMs) are another

form of ensemble learning [40]. Although base learners can be in many forms, we imple-

mented tree learners as the base learners. GBMs pre-form classification in an iterative fashion.

In the first iteration a learner is trained to classify the problem. In each successive iteration

another base learner is trained to explain the error from the previous iteration. Thus a GBM

successively learns to explain the error of all previous iterations. Iterations continue until a

stopping criterion is reached, generally the maximum number of iterations. GBMs are stochas-

tic in nature due to each iteration is only shown a randomly selected subset of the data and at

each stage in the tree building process only a random subset of the input variables is assessed

for splitting. To generate output probabilities all of the trees were averaged. The GBM was

implemented using the R package “xgboost” [41]

All models were run in R (version 3.2.1) through the package “caret” [42].

Training and testing. The data classes were imbalanced, therefore the effects of both

under and over-sampling were tested and the resulting model performance assessed. Over-

sampling can cause the model to over-fit, whereas under-sampling may lose vital information

[43]. Initial testing showed that under-sampling performed slightly better than over-sampling,

therefore under-sampling was used for the rest of the testing. Moreover, due to the large

amount of data that we had under-sampling was used with little restriction. We chose a class
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maximum to be 3000, smaller than the minority class size of 4084. Under-sampling was only

used for the training data. Test data was left unchanged as it was more representative of wild

data that would not be evenly distributed among behaviour groups.

In order to assess the influence of the feature statistics on our models we ran each model

twice, once with the summary statistics and once with the feature and summary statistics. To

find the best parameters of the models the data with ten seals were split into training and vali-

dation sets, which were 70% and 30% of the data respectively and run across a grid of parame-

ters. The models were trained on the (70%) data split using 10-fold cross validation. Model

performance for the data is as an average of the out of fold accuracy, e.g. the model is trained

on 9-folds and then tested on the 10th fold. This process was repeated 10 times, each time

using a different fold as the out-of-sample data, until all folds had been used. The final model

performance (reported here) was the accuracy on the 30% validation split from which we

found the best parameters for each model. We used these parameters to train a model with the

data from the ten seals and used it to classify the behaviours of the two seals that were so far

unseen by any model. Thus the final cross-validation accuracy was assessed on data that the

model had not seen during training and gave a true picture of model generalisation.

Results

Through coding more than 20 hours of video footage we classified 5817 bouts split between

the 27 behaviours (Table 2). Bouts of behavioural were clearly identifies from the tri-axial

accelerometry data (Fig 3). 1344 bouts of behaviour were classified as other because they were

behaviours that would not be seen in the wild (i.e. moving in and out of the pool, being fed by

the marine mammal keeper) and were excluded from the analysis. This included 30 bouts of

behaviour classified as playing, and while this behaviour in the wild is an important indicator

of development and condition [44, 45] the sample size was too small to compare it to the other

groups of behaviour.

Using 13 epochs we had a total of 92516 input variables for the model. This consisted of

64642 training inputs and 24795 testing inputs from the two seals selected for cross-validation.

The final average accuracy from the training set of data without feature data for the baseline

model (penalised logistic regression) was 64.0%, with poor testing results (47.0%). From the

training results without features random forests were the most accurate in predicting behav-

iours, classifying on average 75.1% of the behaviours accurately (Table 3). However, the cross-

validation accuracy for this model was poor (48.6%). This was followed by stochastic gradient

boosting machines (GBM) with an average accuracy of 73.7%, with cross-validation accuracy

Table 2. Number of bouts of behaviours classified and their associated categories.

Category Behaviour Number of bouts Category Behaviour Number of bouts

Travelling (N = 2844) Walking 535 Resting (N = 883) Lying 17

Surface swimming 1128 Sitting 532

Swimming 1003 Still 280

Fast 121 Grooming (N = 331) Scratch 67

Porpoising 57 Rubbing 9

Feeding (N = 1759) Chewing 308 Sailing 28

Searching 249 Jugging 19

Thrash 303 Face rub 54

Manipulation 779 Shake 39

Hold and tear 120 Rolling 115

doi:10.1371/journal.pone.0166898.t002
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of 62.0%. SVM’s achieved between 64.2 and 72.6% accuracy, with cross-validation scores rang-

ing from 48.0 to 64.0%. The kernel used for SVM’s was important in determining final accu-

racy where linear kernels produced the lowest accuracies and polynomial kernels produced

the highest accuracies overall (Table 3).

Adding feature data to the models improved the training and testing accuracy of all models.

Random forests and GBM achieved over 80% training accuracy, though GBM had better per-

formance on cross-validation (65.0%) than random forests (54.0%). Despite having lower

training accuracy than the GBM and random forest, the SVM with polynomial, linear and

radial kernels all had higher cross-validation accuracies. The polynomial kernel had the highest

cross-validation accuracy of any model, classifying 72.0% of the data accurately.

Within the training models resting was most often classified accurately (83–89%), followed

by grooming (71–94%) and foraging (59–75%). Travelling was the most difficult category to

classify (32–71%) (Table 3). The confusion matrices for the cross-validation accuracies on the

two seals left out reveal a very different story and model influenced the overall accuracy of

each behaviour category (Table 4). Travelling was still the hardest behaviour to classify (31–

58%) and the models now found resting much harder to classify (41–75%). Foraging was able

to be classified with the highest accuracy now (60–85%) followed by grooming (62–76%).

Discussion

Accelerometers have been used to build ethograms in a range of species, generally being able

to predict the correct classification of a class more than 90% of the time, however we argue

that this may be a result of highly selective data input and choices made in the analysis. In this

study, we trained machine learning models to recognise four distinct, biologically-relevant,

categories of behaviour: travelling, resting, foraging and grooming. Models were then tested

Fig 3. Example of raw acceleration data for a series of behaviours. The * represents a fish capture in the water column.

doi:10.1371/journal.pone.0166898.g003
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on two seals previously unseen by the models and were tested both with and without feature

statistics describing some characteristic of the seal. The choice of machine learning algorithm

contributed to the overall prediction accuracy and adding feature statistics to the model

improved the overall training and testing accuracies. By training our models on all seals and

testing two left out we are ensuring the generalisability of our models and that they are robust

to individual differences.

Table 3. Average training (ten animals) and testing (two unseen animals) accuracy of machine learning models run with and without feature statis-

tics and the best parameters used for testing.

Model Train Accuracy Test Accuracy Best parameters

Features = FALSE

GBM 73.69 61.98 Eta = 0.01; max.depth = 5; nrounds = 5000; subsample = 0.7

RF 75.08 48.63 Mtry = 10; ntree = 1400, nodesize = 1

RLR 63.72 46.91 Param1 = 0.810 param2 = 0.0012

SVM Linear 64.22 48.00 Cost = 100

SVM Sigmoid 65.08 46.29 Gamma = 0.0001; coef0 = 0; cost = 100

SVM Radial 71.25 59.71 Gamma = 0.001; cost = 100000

SVM Polynomial 72.58 63.94 Degree = 4; gamma = 0.01; coef0 = 4; cost = 1

Features = TRUE

GBM 80.81 65.04 Eta = 0.01; max.depth = 4; nrounds = 5000; subsample = 0.8

RF 80.53 53.92 Mtry = 12; ntree = 1000, nodesize = 3

RLR 71.33 64.63 Param1 = 0.10 param2 = 0.0018

SVM Linear 71.50 68.15 Cost = 10

SVM Sigmoid 70.31 55.46 Cost = 100; coef0 = 0; gamma = 0.0001

SVM Radial 79.03 68.87 Cost = 10000; gamma = 0.001

SVM Polynomial 78.83 72.01 Cost = 0.1; coef0 = 4; gamma = 0.01; degree = 4

doi:10.1371/journal.pone.0166898.t003

Table 4. Confusion matrix for the cross-validation results from the GBM, RF, LR and SVM models. ^Only the results from the best SVM (polynomial)

are presented here.

GBM Foraging Grooming Resting Travelling Sensitivity Specificity

Foraging 5717 66 132 821 84.9% 88.3%

Grooming 42 180 10 59 61.9% 71.4%

Resting 363 66 1773 332 70.0% 70.2%

Travelling 2226 1111 5020 11397 57.7% 36.0%

RF Foraging Grooming Resting Travelling Sensitivity Specificity

Foraging 4836 661 257 982 71.8% 74.9%

Grooming 36 183 16 56 62.9% 61.9%

Resting 508 38 1830 158 72.2% 60.2%

Travelling 3996 3681 1037 6520 42.8% 43.7%

LR Foraging Grooming Resting Travelling Sensitivity Specificity

Foraging 5671 115 174 776 84.2% 80.3%

Grooming 14 202 21 54 69.4% 62.4%

Resting 441 47 1843 203 72.7% 60.6%

Travelling 3094 3024 806 8310 54.5% 35.9%

SVM Foraging Grooming Resting Travelling Sensitivity Specificity

Foraging 5856 123 62 695 86.9% 81.3%

Grooming 52 188 6 45 64.6% 62.5%

Resting 697 314 1040 483 41.0% 61.6%

Travelling 2596 1258 483 10772 71.3% 30.9%

doi:10.1371/journal.pone.0166898.t004
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Supervised machine learning

Machine learning algorithms have regularly been used to classify animal behaviour from accel-

erometry data, with varying levels of success [10, 20, 46]. With a range of algorithms available

and the wide array of problems to which they can be applied, it can be overwhelming to be

able to select an appropriate method that will provide the greatest accuracy [17]. Rapidly devel-

oping technology has improved computing speed and the ease by which machine learning

can be implemented. This affords researchers the opportunity to test and examine different

methods for their data. Here we tested four supervised machine learning algorithms on accel-

erometry data collected from captive fur seals and sea lions to assess their ability to predict

behavioural states. We found that SVM with a polynomial kernel was the most accurate in

being able to classify behaviours from testing data (previously unseen by the model), but that

GBM and random forests produced the best training results.

In a study on the behavioural modes of griffon vultures (Gyps fulvus) five machine learning

algorithms were evaluated with random forests being the best predictor of behaviour [17].

While random forests also performed well when evaluating training data in our comparison,

GBM (which was not evaluated by [17]) improved the accuracy. However, SVM with a polyno-

mial kernel had the highest rate of cross-validation classification accuracy. SVM’s have been

used successfully in other behaviour classification studies that used accelerometers [47–49]. It

is likely that the best classification algorithm will differ for each data set and the behaviour type

that is to be predicted. We found that different machine learning algorithms gave better results

depending on whether it was training or testing the data. They also differed in the accuracies

assigned to different behaviour categories. Given the large variety of machine learning algo-

rithms available and the relative ease of implementation and testing, we recommend evaluat-

ing a range of different algorithms to determine which gives the best performance for a

particular problem.

Groups of behaviours

We classified 26 behavioural states (S1 File), one of which (playing), was not used as it

occurred infrequently. This was too many groups for a model to classify realistically in terms

of computational time and power. It also required a large investment of observer time in order

to collect a large enough sample for each of the classes represented in the model. This is

because an important step in the process is to ensure each behaviour or class is equally repre-

sented in the model. Rather than losing the detailed information of each of the observed

behaviours, we grouped behaviours into states [e.g. 50]. This technique can be useful in devel-

oping activity budgets for large data sets, particularly where one state dominates behaviour

(e.g. swimming). This method may also prove useful in wild applications that aim to automati-

cally classify the state of the animal in real time, before uploading a wireless data summary to a

nearby receiver. Summarised data from accelerometers via wireless devices have been success-

fully used for monitoring human behaviours [51], in particular for monitoring health condi-

tions [52, 53], but have not as yet been used for monitoring wild animals. This advance in

technology has the potential to increase the efficiency and the data storage capacity of devices

on wild tagged animals.

The four categories we created for this analysis (grooming, resting, travelling, foraging),

represent the typical behaviours that would be used by these species in the wild [54, 55]. Rest-

ing had fewest cases of misclassification in the training stage as there was minimal movement

on any axis and was consequently easy to predict. However, in the testing stage the prediction

accuracy of resting, while still reasonable dropped 10–30% depending on the model. The mod-

els predicted grooming with reasonable accuracy in both training and testing which was
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probably from using a relatively short epoch allowed more active behaviours to be distin-

guished from immobile behaviours [56]. Travelling was predicted with the least accuracy in

training and testing. Travelling was most commonly mistaken for foraging, which is not sur-

prising considering the behaviours frequently overlapped. Foraging was predicted well, likely

at the detriment of travelling. Usually, foraging behaviours are the most difficult to distinguish,

particularly when they are of very short duration (such as a fish capture here or attack/peck in

the plover [57]). Having a very short epoch likely allowed these behaviours to become more

distinguished, while travelling behaviours became nosier. Repetitive behaviours perform better

with longer epochs as the model is more readily able to find the patterns in the data [48].

Therefore using a longer epoch will likely strengthen the models ability to predict resting and

travelling, but will reduce the accuracy of grooming and foraging.

There are some obvious categories of behaviour fundamental to the ecology of fur seals and

sea lions that we were unable to capture. Play behaviour is an indicator of developmental stage

and also a subtle indicator of changes in condition [44, 45], but we had insufficient samples for

analysis. Mating and social behaviours are largely absent from the accelerometry literature [6],

and here we were unable to fill this gap as we did not record the animals mating. Because it is

inherently difficult to observe mating behaviour, accelerometers have only been used for iden-

tifying reproductive behaviour of free-living animals in a few instances [58]. Other behaviours

that we did not observe but are known to be important in otariid ecology include regurgitation

and vocalisations [59]. The absence of these behaviours from this ethogram means that when

these behaviours are captured in the wild, the learning algorithm will classify these as one of

the pre-determined categories on which we have trained the model. When monitoring an ani-

mal over an extended period it can result in a misrepresentation of how animals spend their

time.

Leave-two-out validation methodology

A goal of this study is to be able to generate a robust model that can be used to predict the

behaviour of wild seals, so it is essential that the model can be applied across a range of individ-

uals. We tested this by training the data on 10 random seals and then testing the model on two

seals previously unseen by the model. While the cross-validation accuracy was lower than the

training accuracy, we were still able to classify the seals behaviour well with some of the mod-

els. Previously, the effect of individual has been shown to have a large influence on the overall

accuracy of the model [48]. Fitting a model to an individual generally causes it to over-fit,

thereby losing the generalisability of the model. By including many different animals of differ-

ent sizes, and testing it on two animals previously unseen by the model, we will be able to use

the best model to predict the behaviours of many otariids. However, it is uncertain whether

this model could be used with other pinniped species. For example, the very different gaits of

the phocids in water and on land would likely influence the overall predictive ability of the

model [60].

Influence of feature statistics (characteristics)

We chose characteristics that could easily be determined from animals tagged in the wild to

test how they would influence the overall accuracy of the models. We found that by including

these variables (place, age, sex, species, mass and accelerometer attachment method) that the

models training and testing accuracies improved.

The individuals in this study differed in age, sex, species and mass, which we hypothesised

to influence model accuracy. Previously it has been shown that with dogs there were no differ-

ences behaviour prediction in inter-breed comparisons [46]. It is suggested that the lack of
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difference in body morphology would explain the lack of difference. Here we suggest that

including these types of information in the model can help improve accuracies. Sea lions as a

class differ from fur seals in several aspects of body locomotion, and allowing the model to dis-

tinguish between the two might explain some of the model improvement [61]. It may also be

explained by differences in prey processing tactics that we observed the species using [62], as

this type of behaviour was not examined in the dogs. Specifically, sea lions can process prey

with their fore-flippers and chew their food, a phenomenon not observed in fur seals [62]. By

including these details in the model we were able to improve training accuracy by between 5.3

and 7.8% cross-validation accuracy by between 5.3 and 20.1%. Considering we would know

these characteristics of wild seals it is a worthwhile endeavour to include these features in

models.

Conclusions

The aim of this research was to determine the optimum method of automatically classifying

many behaviours of a highly dynamic animal living in a complex environment using an accel-

erometer. Due to the large number of behaviours that animals can display, we further sought

to investigate whether behaviours could be grouped for simpler prediction. Classifying behav-

iours of an animal is extremely difficult, and despite having captive animals under command

we were still unable to capture all behaviours. Of the behaviours we did capture we were only

able to classify three of the groups of behaviour with relatively high accuracy (travelling had

poor accuracy results).

These results are important for the application of accelerometers to wild animals. When

using supervised machine learning to classify behaviour it is likely that the animal will display

behaviours that have not been trained into the algorithm. Therefore, the model will do its best

to fit it into a group that is the most representative. For models that have been trained on a few

select behaviours, this means there will be a significant amount of time that the animals mode

of activity will be misclassified, leading to inaccurate activity budgets (if that is indeed the goal

of the research). For example, the poor result for classifying travelling in our study means that

for around half the time that the seal is travelling, they will likely be classified as grooming or

foraging.

These models are complex and need to be treated as such. Providing a model with many

repeats (hundreds if possible) of highly diverse behaviours in a related environment is vital to

being able to use this technology and these models on wild animals. Though, this still does not

guarantee that the behaviours observed from captive animals will directly translate to their

wild counterparts. The environment in which behaviours were observed (captivity) is incredi-

bly different to the wild. Small pools, dead prey and human instruction may alter the way that

animals display behaviour. In particular we were unable to replicate prey chasing in captivity

which would have helped to differentiate between travelling and foraging. Captive surrogates

have been used successfully to train models with vultures [17] and when developing models

from the same species an over 90% accuracy rate can be obtained [47]

Applications of this type of behavioural analysis include developing time-energy budgets of

free living seals. To estimate energy expenditure in the field the durations of different activities

are multiplied by their corresponding energetic cost [63]. Ethograms developed from acceler-

ometers provide the essential information of time spent in various activities, and using acceler-

ometers energy expenditure can be estimated concurrently [56]. Further, these types of models

can be used to monitor populations of animals over time. For example, knowing how much

time animals spend foraging between years can be indicative of the prey availability and can

identify the potential vulnerability within groups [64].
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Supporting Information

S1 File. Description and acceleration profile for 26 unique behaviours recorded. Black

line–x axis acceleration; grey line–y axis acceleration; orange line–z axis acceleration.

(PDF)
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