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A fundamental question in biology is
how multicellular organisms can

arise from their single-celled precursors.
The evolution of multicellularity requires
the adoption of new traits in unicellular
ancestors that allows the generation of
form by, for example, increasing the size
and developing new cell types. But what
are the genetic, cellular and biochemical
bases underlying the evolution of multi-
cellularity? Recent advances in evolution-
ary developmental biology suggest that
the regulation of gene expression by cis-
regulatory factors, gene duplication and
alternative splicing contribute to pheno-
typic evolution. These mechanisms
enable different degrees of phenotypic
divergence and complexity with variation
in traits from genomes with similar gene
contents. In addition, signaling pathways
specific to cell types are developed to
guarantee the modulation of cellular and
developmental processes matched to the
cell types as well as the maintenance of
multicellularity.

“. . .one of the most important discov-
eries in recent developmental genetics has
been the context-dependent actions of reg-
ulatory genes.” (Scott F. Gilbert, 2005)1

The confusing maze behind the molec-
ular mechanisms underlying phenotypic
divergence is one of the most interesting
and, at the same time, the most compli-
cated processes in biology. This also
includes the transition from unicellular
ancestors to multicellular organisms and
the generation of new cell types. The main
challenge to understanding the molecular
mechanisms of evolution is to identify the
genetic basis behind developmental pro-
cesses that lead to shapes. For a long time,
it was largely assumed that species-specific

proteins contribute, almost single-hand-
edly, to phenotypic divergence. Although
changes in protein function can generate
new phenotypes, there is growing evidence
indicating that many homologous pro-
teins show highly conserved functions
among closely related species. Recent
advances in evolutionary developmental
biology show that the regulation of gene
activity is the main source of biodiversity.2

The first evidence of the importance of
gene regulatory mechanisms in evolution-
ary changes came from studies during the
1960s and 1970s that proposed that
affecting gene expression by mutations
and other regulatory mechanisms proba-
bly led to the evolution of organismal
diversity.3,4 Knowledge gained in recent
decades confirms this assessment and
shows that gene regulatory factors play a
central role in the evolution of biodiversity
and the generation of form (reviewed in5).
Collaboration between various sophisti-
cated gene regulatory mechanisms enables
evolutionary novelties by fine-tuning gene
expression and depends on location, tim-
ing and cell type, notably with respect to
the developmental history of the cell. In
this way, various phenotypes can form
from genomes with similar gene contents.
Cis-regulatory elements,6 gene duplica-
tion,7 alternative splicing8 and potentially
micoRNAs9,10 are the key actors in evolu-
tionary developmental biology. Armed
with these insights, I will give an overview
of the potential impact of these regulatory
mechanisms on the evolution of multicel-
lular organisms from unicellular ancestors.

The members of the volvocine algae, a
group of chlorophytes including unicellu-
lar Chlamydomonas reinhardtii (hereafter
Chlamydomonas) and multicellular Volvox
carteri (hereafter Volvox), represent a
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recent case of transition from unicellular
to multicellular life. Based on molecular-
phylogenetic studies, Volvox and Chlamy-
domonas probably diverged »200 million
years ago from a common unicellular
ancestor.11 The evolution of multicellular
life from Chlamydomonas to Volvox
required several developmental traits,
including asymmetric cell division and
embryonic morphogenesis. However, the
most exiting developmental trait was the
evolution of germ-soma differentiation.12

Unlike Chlamydomonas, Volvox has 2 cell
types, i.e. 2000-4000 biflagellate, motile,
terminally differentiated somatic cells and
around 16 much larger immotile repro-
ductive cells, with a clear division of labor
(Figure 1). The cells are embedded in a
transparent sphere of a glycoprotein-rich
extracellular matrix (ECM).13 At the
molecular level, however, both organisms
possess similar gene contents. The nuclear
genome of Chlamydomonas contains 118
Mbp, and that of its multicellular relative
Volvox contains 138 Mbp. The larger
genome of Volvox (»17%) is attributed to
its higher content of transposons and
repetitive DNA, because both species have
almost identical protein-coding potentials,
i.e., 14 516 and 14 520 protein-coding
genes in Chlamydomonas and Volvox,
respectively.14,15 Only a few gene families,
i.e. the pherophorin genes, the VMP
genes (Volvox matrix metalloproteases)
and the cyclin-D-related genes, have more

members in Volvox than in Chlamydomo-
nas.14 The same situation can be observed
in the human genome, which contains
almost as many genes as that of Caeno-
rhabditis elegans.16 This fact strongly sup-
ports the theory of evolutionary
developmental biology and suggests that
the transition from a unicellular Chlamy-
domonas-like ancestor to multicellular Vol-
vox did not require major changes in gene
content.14,17 Based on this observation
together with the fact that Volvox cell
types represent differential patterns of
gene expression in various functional clas-
ses,18-20 the development of species-spe-
cific proteins could not account for the
development of Volvox from a Chlamydo-
monas-like ancestor. This is also supported
by experimental evidence that showed that
2 important proteins, GlsA and InvA,
which are responsible for essential devel-
opmental processes behind the evolution
of multicellularity in Volvox, namely
asymmetric division and embryo inver-
sion, respectively, are conserved in unicel-
lular Chlamydomonas. Interestingly,
Chlamydomonas orthologs can rescue Vol-
vox glsA and invA mutants.21-23 Thus,
rather than species-specific proteins, the
functional divergence of gene regulatory
elements could be the main contributor to
the development of multicellularity during
evolution.

We and others have recently shown
that alternative splicing could contribute

to the appearance of multicellularity by
generating multiple transcripts from a sin-
gle gene.24,25 In many cases, alternative
splicing seems to be a part of the molecu-
lar mechanisms that allow organisms to
decrease the expression of specific genes
by generating non-functional or modified
variants toward attenuation or alteration
of specific cellular and physiological pro-
cesses. Our analyses show that at least
»2.9% of the intron-containing genes in
Volvox are alternatively spliced. Consider-
ing the number of analyzed ESTs, it is
very likely that the Volvox genome pos-
sesses more favorable conditions, e.g.
changes in the length and GC content of
introns, for the occurrence of alternative
splicing than those of the closely related
Chlamydomonas.24,26 On the other hand,
an analysis of the alternative-splicing sta-
tus of homologous genes from the closely
related alga Chlamydomonas could show
that a large fraction of the genes that are
alternatively spliced in Volvox are not
alternatively spliced in Chlamydomonas.
Concurrently with our study, Urrutia and
colleagues examined how alternative splic-
ing was related to organismal complexity
by analyzing alternative splicing in 47
eukaryotic species. They found that alter-
native splicing has steadily increased over
eukaryotic evolution and is strongly asso-
ciated with organismal complexity and
cell-type number.25 Therefore, it might be
conceivable that alternative splicing acts as
a key regulatory factor to facilitate the evo-
lution of multicellularity in volvocine
algae. However, more effort should be
made to provide more insight into the
evolutionary aspects of alternative splicing
behind the development of multicellular-
ity, for example by a genome-wide com-
parative analysis of alternative-splicing
events between Chlamydomonas and Vol-
vox (to investigate species-specific alterna-
tive-splicing events) as well as by
investigating the cell-type-specific regula-
tion of events in multicellular Volvox. In
this respect, it is also worth noting that
the impact of environmental factors, e.g.,
light cues, which have a large impact on
the growth and development of photosyn-
thetic organisms, on the regulation of
alternative splicing should be taken into
account. Light-regulated gene expression,
mediated by photoreceptors, acts as a

Figure 1. Gene regulatory mechanisms behind the evolution of multicellularity. Model illustrating
the role of gene regulatory mechanisms in the evolution of multicellular Volvox from a Chlamydo-
monas-like ancestor.
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multifaceted regulator to control the
abundance of functional genes at different
levels (reviewed in27). Surprisingly, Volvox
photoreceptors are mostly expressed in a
cell-type-specific manner,28 enabling the
alga to use distinct light-signaling path-
ways to modulate the expression of genes
involved in various cellular and metabolic
pathways in a cell-type-specific manner.29

This reflects an early development of cell-
type-specific signaling mechanisms during
evolution to ensure the development as
well as the maintenance of cellular
differentiation.30

Another important regulatory mecha-
nism that should be moved increasingly
into focus is the role of cis-regulatory ele-
ments. Cis-regulatory elements (such as
promoters and enhancers) are transcrip-
tion-factor binding sites and other non-
coding DNA that are normally located
upstream, downstream or in the introns of
genes. These regulatory elements regulate
gene expression in a cell-type-, tissue- or
developmental-stage-specific fashion.2

Considering the fact that Volvox has
almost as many genes as Chlamydomonas,
the species-specific regulation of gene
expression could be the main source of
diversity across volvocine algae. To go fur-
ther, the first step will be to identify the
cis-regulatory elements in those genes (as
has been partially done for regA gene)31

that are of particular importance for the
evolution of multicellularity. It has been
shown that around 50% of the genes from
closely related species show differences in
cis-regulatory elements.32,33 However,
again genome-wide comparative analyses
(e.g. prediction of cis-regulatory ele-
ments)34,35 and supporting experiments
would be of great benefit for identifying
the developmentally important elements–
as well as their candidate sites–and for
studying cis-regulatory divergence and
activity during the transition from unicel-
lular to multicellular life.

Gene duplication and microRNAs
(small noncoding RNAs that regulate
gene expression post-transcriptionally)
could also be considered as additional
sources of novel evolutionary diversity. In
particular, gene duplication could contrib-
ute to the creation of species-specific tran-
scription factors and other essential
proteins for the evolution of gene

regulatory networks.36 An example of spe-
cies-specific transcription factors is RegA,
a Volvox-specific transcription factor
involved in cellular differentiation. Inter-
estingly, regA gene seems to be absent in
the closely related Chlamydomonas. Phyo-
genetic analysis suggests that regA gene
was present in a common unicellular
ancestor of Volvox and Chlamydomonas,
but was later lost in Chlamydomonas.37 In
Volvox, reproductive activities (and subse-
quently growth) are suppressed in somatic
cells by the transcription factor RegA,
which is expressed at very high level in
these cells.18,38 Conversely, the dark green
reproductive cells, which show a low regA
transcript level, possess more photosyn-
thetic activities.39

It is known that an inverse correlation
exists between the size of a gene’s family
and its use of alternatively spliced isoforms
in humans, mice and worms.40-44 How-
ever, a recent study by Cooper and col-
leagues demonstrated that the reduction
in alternative splicing was independent of
the size of the gene family in zebrafish.45

In Volvox, conversely, it even seems that
the more gene duplicates there are, the
more alternative splicing is observed
(Kianianmomeni et al., unpublished
data). Thus, coordination between gene
duplication and alternative splicing pro-
vides resources for functional innovation
to expand protein diversity during the
evolution of multicellularity. Moreover,
microRNAs, which play an important role
in diverse developmental processes,9,10,46

could contribute to evolvability during the
transition to multicellularity. Many
microRNAs have been identified in both
Chlamydomonas and Volvox.47-49 Intrigu-
ingly, many of the Volvox microRNAs are
expressed in a cell-type-specific manner.
On the other hand, only one miRNA was
found to be conserved between Chlamydo-
monas and Volvox,49 suggesting a high rate
of microRNA de novo emergence in
volvocine algae that could contribute to
the creation of species-specific gene
repertoires.

In conclusion, a comparison of the
genomes of 2 closely related organisms,
unicellular Chlamydomonas and multicel-
lular Volvox, highlighted that the transi-
tion from unicellular to multicellular life
does not require large changes in gene

content.17 The evolution of gene regula-
tory mechanisms, rather than the develop-
ment of species-specific proteins, seems to
play a central role in diverse developmen-
tal processes during the unicellular-multi-
cellular transition.
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