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Abstract

Background: Small nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs
required for ribosomal RNA modification, implying a ubiquitous tissue distribution
linked to ribosome synthesis. However, increasing numbers of studies identify extra-
ribosomal roles of snoRNAs in modulating gene expression, suggesting more
complex snoRNA abundance patterns. Therefore, there is a great need for mapping
the snoRNome in different human tissues as the blueprint for snoRNA functions.

Results: We used a low structure bias RNA-Seq approach to accurately quantify
snoRNAs and compare them to the entire transcriptome in seven healthy human
tissues (breast, ovary, prostate, testis, skeletal muscle, liver, and brain). We identify 475
expressed snoRNAs categorized in two abundance classes that differ significantly in
their function, conservation level, and correlation with their host gene: 390 snoRNAs
are uniformly expressed and 85 are enriched in the brain or reproductive tissues.
Most tissue-enriched snoRNAs are embedded in lncRNAs and display strong
correlation of abundance with them, whereas uniformly expressed snoRNAs are
mostly embedded in protein-coding host genes and are mainly non- or
anticorrelated with them. Fifty-nine percent of the non-correlated or anticorrelated
protein-coding host gene/snoRNA pairs feature dual-initiation promoters, compared
to only 16% of the correlated non-coding host gene/snoRNA pairs.

Conclusions: Our results demonstrate that snoRNAs are not a single homogeneous
group of housekeeping genes but include highly regulated tissue-enriched RNAs.
Indeed, our work indicates that the architecture of snoRNA host genes varies to
uncouple the host and snoRNA expressions in order to meet the different snoRNA
abundance levels and functional needs of human tissues.

Keywords: SnoRNA, Human tissues, RNA-Seq, TGIRT-Seq, Transcriptome, SnoRNA/
host gene relationship, Nonsense-mediated decay, Dual-initiation promoters
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Background
Small nucleolar RNAs (snoRNAs) are a conserved family of mid-size non-coding RNA

best characterized as guides for the chemical modification of nascent ribosomal RNA

(rRNA) [1–3]. Functional snoRNAs are a part of larger ribonucleoprotein complexes

(snoRNPs) composed of core proteins required for snoRNA stability that represent an

enzymatic moiety needed for the RNA modification reaction [2, 4–6]. SnoRNAs are di-

vided in two types based on their structure and the modification they catalyze. Box C/

D snoRNAs interact with the methyltransferase fibrillarin and guide the 2′-O-methyla-

tion of their target RNA while box H/ACA snoRNAs bind the pseudouridine synthase

dyskerin and catalyze pseudouridylation [4, 7, 8]. Recently, a small number of box C/D

snoRNAs have been shown to guide the acetylation of rRNA [9, 10]. In addition to

rRNA, snoRNAs also guide modifications on small nuclear RNAs (snRNAs) and a small

subset including SNORD3 (U3) and SNORD118 (U8) are involved in rRNA processing

[1, 11]. Other snoRNAs have no known target in rRNA or snRNAs and are referred to

as “orphan” snoRNAs [8].

A growing number of orphan snoRNAs as well as snoRNAs with rRNA or snRNA

targets are being assigned alternative functions in the regulation of gene expression in-

cluding at the level of chromatin remodeling, pre-mRNA stability, alternative splicing,

and polyadenylation (reviewed in [3, 8, 12]). In most cases, snoRNAs regulate their tar-

gets through base-pairing with the target sequence. This pairing may occur either in

trans as in the case of rRNA modification guides or through cis base pairing that modi-

fies the local structure surrounding the snoRNA, a mechanism that may be involved in

snoRNA biogenesis [13]. It can be noted that despite their name, not all snoRNAs func-

tion in the nucleolus, particularly those involved in non-canonical roles [14, 15]. The

importance of the regulatory roles of snoRNAs is becoming increasingly clear by their

association with a multitude of human diseases (reviewed in [16–19]). The scope and

breadth of snoRNA regulatory functions likely extends beyond the few currently docu-

mented examples, given the large number of orphan snoRNAs and the fact that some

rRNA- and snRNA-guiding snoRNAs have also been shown to have gene expression

regulatory functions [3, 12]. This raises the question of how the abundance of snoRNAs

is controlled to support their non-canonical functions.

In human, with the exception of the few snoRNAs required for rRNA processing, the

majority of snoRNAs are expressed from the introns of either protein-coding or non-

coding host genes (HGs) (Fig. 1A and [20]). Accordingly, the expression of most snoR-

NAs depends, at least theoretically, on the transcription and splicing of their HG [5,

20]. However, recent studies have started to provide examples of snoRNAs that might

be uncoupled from the expression of their HG and even one orphan snoRNA that

could regulate the splicing of its HG as a function of the amount of protein produced

by the host [13]. The main mechanism uncovered so far uses nonsense-mediated decay

(NMD) that permits degradation of the host transcript while preserving the expression

of the snoRNA [6, 21]. The idea of uncoupled snoRNA/HG expression was recently

supported by the study of acute myeloid leukemia (AML) cells, human ovarian cell

lines, and mouse cell types that displayed limited correlation between a snoRNA and

its HG expression [22–24]. However, the uncoupling seen in these proliferative models

could also be the result of a methylation and pseudouridylation system that is unable

to keep up with increased ribosome biogenesis, leading to discrepancies between
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Fig. 1 SnoRNAs are among the most abundant RNAs in the cell. A SnoRNAs are expressed from various
genomic contexts. Shown is a schematic representation of the three most common classes of human
snoRNA genomic contexts. Intergenic, mono-intronic HG, and multi-intronic HG indicate respectively
snoRNAs expressed as independent genes, host genes that encode a single snoRNA in one of their introns
and host genes that encode multiple snoRNAs each in a separate intron. Protein-coding and non-coding
host genes are indicated in purple and magenta respectively. The total number of expressed snoRNAs in
each context is indicated under each title. The number and proportion of box C/D and H/ACA snoRNAs in
each context are indicated under each schematic representation. The percentages are calculated for C/D
and H/ACA box snoRNAs separately. B The highest relative abundance of snoRNAs is detected in prostate
and female reproductive tissues. The RNA was sequenced using TGIRT-Seq from three replicates per tissue
and the distribution of the average total abundance (in transcript per million (TPM)) per RNA biotype for
each considered tissue is illustrated in the form of pie charts. Only RNAs with an abundance greater than 1
TPM in at least one tissue sample are considered. The color legend for the RNA biotype is shown on the far
right, with an arrow representing the average ranking of RNA biotype abundance across tissues. C The
abundance of snoRNAs is at the interface between regulatory RNAs and housekeeping RNAs. The
distribution of snoRNA coefficient of variation (CV) was compared to that of the main classes of regulatory
RNAs (protein-coding RNA and lncRNA) and housekeeping RNAs (tRNA and snRNA). The CV of each RNA is
indicated by a vertical black line above the x-axis. The number of expressed RNAs considered in the density
plots is indicated between parentheses on top of the graphs

Fafard-Couture et al. Genome Biology          (2021) 22:172 Page 3 of 24



snoRNA and HG abundances. More recently, it was hypothesized that promoters with

dual initiation of transcription may provide means to separate the expression of

snoRNA from that of the HGs [25]. Nonetheless, it is unclear if these heterogeneities in

snoRNA and host expression are stochastic differences arising from variation in cell

cultures or reflect a stable tissue-specific regulatory program.

The most reported tissue-specific expression of snoRNA is found in the brain, where

several snoRNAs were found to be predominantly expressed including the SNORD115

and SNORD116 families [26, 27]. Despite these sporadic examples, the tissue distribution

of the majority of the human snoRNome remains largely unexplored. Defining the human

snoRNome is challenging due to the inherent difficulty in sequencing and quantifying the

highly structured snoRNAs, especially when considered in relation to the abundance of

their HG transcripts [23, 28]. Indeed, the highly stable structure of snoRNAs impairs their

reverse transcription, biasing most sequencing techniques towards the detection of less

structured RNAs such as protein-coding transcripts [23, 29]. The sequencing bias is not

limited to non-snoRNA transcripts but is also detected between snoRNA types. Most se-

quencing techniques strongly favor the detection of box C/D snoRNAs over box H/ACA

snoRNAs, presumably due to differences in the structure of these two snoRNA types (e.g.,

[22, 27, 30, 31]). Aside from the reverse transcription sequencing bias, quantification er-

rors are often encountered in assigning the snoRNA reads since the majority of snoRNAs

exist in multiple copies and/or are embedded in introns, causing their reads to be either

discarded or erroneously assigned to the HG [32, 33].

Driven by the need to characterize the human snoRNome, we have used our newly

developed snoRNA sensitive RNA-Seq pipeline [23] to measure the abundance of both

snoRNAs and HG transcripts in seven healthy human tissues (breast, ovary, prostate,

testis, skeletal muscle, liver, and brain). By using a combination of thermostable group

II intron reverse transcriptase sequencing (TGIRT-Seq) [23] and a read assignment

pipeline that increases the accuracy of quantifying repeated and intron-embedded

RNAs [33], we simultaneously followed the snoRNA and HG accumulations in the dif-

ferent tissues and provide a detailed portrait of the human snoRNome. Altogether, the

results indicate that the abundance of snoRNAs is mostly defined by their genomic

context and the architecture of their HG, which determines the level and type of tissue

specificity and the degree of correlation between the snoRNA and HG abundance.

Results
Most expressed human snoRNAs are produced from intron-embedded genes

To determine the tissue distribution of snoRNAs and their relative abundance within

the human transcriptome, we sequenced total ribodepleted fragmented RNA from

seven healthy human tissues (breast, ovary, prostate, testis, skeletal muscle, liver, and

brain). Each tissue was sourced from 3 different individuals and sequenced using TGIR

T-Seq methodology, which was shown to reliably quantify the abundance of different

types of RNA in a same sample [23, 29]. Indeed, in general our ranking of the abun-

dance of RNAs was in agreement with the Genotype-Tissue Expression (GTEx) esti-

mates for protein-coding genes (Additional file 1 - Tables S1A-G) [34]. The clustering

of the quantified transcripts of all detected biotypes supports the quality of our data-

sets. Indeed, despite the expected differences between individuals and variations in
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sample cell composition, we notice little variability between samples of same tissue

(Additional file 1 - Figure S1). Using this sequencing method, we detected RNA (> 1

transcript per million (TPM) in at least one tissue sample) generated from 475 (50%)

snoRNA genes out of a total 947 annotated human snoRNA genes (Additional file 1 -

Table S2). This is consistent with the fact that most RNAs are poorly expressed and

only a minority of the transcriptome is highly expressed (Additional file 1 - Figure S1),

as we have previously reported [23]. The majority (433 out of 475 snoRNAs, i.e., 91%)

of the expressed snoRNA genes are located in introns, while only 9% (42 out of 475

snoRNAs) are located in intergenic regions and thus likely expressed from an inde-

pendent promoter (Fig. 1A). In contrast, 21% of all annotated snoRNAs are located in

intergenic regions, suggesting that most annotated intergenic snoRNA genes are not

expressed. Indeed, intergenic snoRNAs contribute only to 2% of the total snoRNA

abundance, confirming the mostly intronic origin of human snoRNAs [35]. Interest-

ingly, most expressed box H/ACA snoRNAs (67%) are found in protein-coding HGs

while expressed box C/D snoRNAs do not show clear HG biotype preference (Fig. 1A).

Variations in the number of snoRNA embedded in each HG are also observed between

the two types of snoRNAs. The majority of box H/ACA snoRNAs (50%) are the only

snoRNA embedded within their HG (Fig. 1A middle panel, mono-intronic HG), while

the majority of box C/D snoRNAs (78%) are encoded with multiple snoRNAs in separ-

ate introns of the same HG (Fig. 1A right panel, multi-intronic HG). Together, these

results indicate that the two types of snoRNA have distinct embedding preferences.

SnoRNAs are among the most abundant RNAs in the cell

To evaluate the relative contribution of snoRNAs to the transcriptome of the different

human tissues, we compared their abundance to other RNA biotypes detected in each

of the tissues examined. Overall, the highest percentage of expressed non-rRNA tran-

scripts was detected within tRNAs where 84% of the annotated genes are expressed at

least in one tissue, followed by the protein-coding genes and snoRNA genes (Additional

file 1 - Table S2). The lowest proportion of expressed genes was detected in the snRNA

and lncRNA biotypes, which put the snoRNAs at the interface between translation as-

sociated RNAs and RNAs associated with RNA processing and regulation. Comparison

of the number of transcripts (in TPM) generated from each biotype indicates that

tRNA genes generate the highest number of transcripts regardless of the tissues exam-

ined (Fig. 1B), which is in accordance with biochemical estimates [36]. On the other

hand, the snoRNA and snRNA biotypes compete for the second place in the transcrip-

tome in a tissue-dependent manner. In the tissues derived from reproductive organs,

except for testis, the snoRNAs are more abundant than snRNAs, while the snRNAs are

more abundant in the other tissues, with the highest relative proportion of snRNA

abundance detected in testis (Fig. 1B). However, it is important to note that unlike

snoRNAs, the snRNA transcripts are generated by only 24% of the annotated snRNA

genes and are driven by only a few genes that each generate more than 1000 TPMs like

7SK and spliceosomal snRNA genes (Additional file 1 - Table S2, Figures S2B and

S3B). In contrast, half of the annotated snoRNAs generate around 15–20% of non-

rRNA transcripts which is half-way between the tRNAs at one extreme where 84% of

the annotated genes generated 45% of transcripts and protein-coding RNAs where 73%
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of the genes generate only 5% of transcripts (Fig. 1B and Additional file 1 - Table S2).

In general, box C/D snoRNAs are on average 3 times more abundant than box H/ACA

snoRNAs across tissues (Additional file 1 - Figure S4A). This ratio represents a lower

abundance difference than what was previously reported between the two snoRNA

types [22, 27, 30, 31], which is likely explainable by the low structure bias approach we

used. Nonetheless, both box C/D and H/ACA snoRNAs are mostly abundant to at least

1 TPM in all the studied tissues (Additional file 1 - Figure S4B), underlining the wide-

spread importance of both snoRNA types in all human tissues. Overall, the abundance

of most snoRNAs and tRNAs is more than 10 TPM in each tissue, whereas the abun-

dance of other biotypes is mostly between 0 and 10 TPM (Additional file 1 - Figure

S2). We conclude that on average snoRNA genes generate the highest diversity and

number of non-rRNA transcripts after tRNAs in the human genome.

Tissue-dependent distribution of RNA accumulation identifies two snoRNA abundance

classes

In most cases, variations of RNA abundance are often taken as a basis for gene regula-

tion and tissue specificity. Accordingly, we examined the pattern of snoRNA abundance

in the different tissues and compared it to that of other RNA biotypes. As with snRNAs

and tRNAs, the cumulative abundance curves seen with snoRNAs are less variable be-

tween tissues than those observed with protein-coding RNAs and lncRNAs (Additional

file 1 - Figure S3), highlighting the widespread distribution of housekeeping RNAs

across tissues. Of note, the most extreme examples of tissue specialization were ob-

served in the case of the genes coding for albumin (ALB) and haptoglobin (HP), which

produce as high as 20% of all protein-coding transcripts in liver (Additional file 1 - Fig-

ure S3D). Similarly, most tissues express a very small number of lncRNAs except testis

which is known for its permissive chromatin environment (Additional file 1 - Figure

S3E) [37]. To enable direct comparison between the tissue distribution patterns of the

different RNAs, we calculated the coefficient of variation (CV) for each RNA based on

its abundance across the studied tissues (see “Methods” for more details). This metric

allows us to numerically differentiate between the different degrees of tissue uniformity

and enrichment of the different transcripts. Uniformly expressed RNAs are identified

by low CV value, while tissue-enriched RNAs are identified by high CV value. Interest-

ingly, comparison of the CV value of the different biotypes indicates that snoRNAs oc-

cupy a middle ground between the highly uniform tRNAs and snRNAs (CV < 125) and

highly variable protein-coding RNAs and lncRNAs (CV > 125) (Fig. 1C). In general, the

uniformly expressed biotypes like tRNA and snRNA display a single peak with a me-

dian CV of around 65. In contrast, the tissue-enriched biotypes like protein-coding

RNA and lncRNA display a bimodal distribution of CV, which indicates the presence

of two RNA subpopulations, the first peak around a CV of 65 and the other around

260. Like the tissue-enriched protein-coding RNAs and lncRNAs, snoRNAs include

two RNA subpopulations, the main one peaking at a CV of 70. However, unlike these

tissue-enriched RNAs, the right-most snoRNA peak is much smaller and centered

around a CV of 180. This bimodal distribution of snoRNA CVs can be split into two

snoRNA abundance classes separated by a CV threshold of 125 (Fig. 1C and Additional

file 1 - Figure S5; see “Methods” for more information). Accordingly, we termed the
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snoRNAs with a CV < 125 “Uniformly expressed” or “UE” and snoRNAs with a CV >

125 “Tissue-enriched” or “TE.” Taken together, these results indicate that snoRNA

abundance is at the interface between that of housekeeping RNAs and regulatory RNAs

and that snoRNAs can be categorized into two distinct abundance classes.

The majority of tissue-enriched snoRNAs are enriched in brain and reproductive tissues

To understand the origin and distribution of the two snoRNA abundance classes, we

followed the accumulation of each RNA of these two classes in the different tissues. As

indicated in Fig. 2A, TE and UE snoRNAs generally clustered separately, validating the

group identity of most RNA in each class. In addition, snoRNA abundance results in

an adequate clustering of the tissues, once again confirming the validity of our datasets

(Fig. 2A). Analysis of individual snoRNA distribution indicates that the majority of

snoRNAs (n = 390) are uniformly expressed across tissues, whereas 85 snoRNAs are

enriched in specific tissues (Fig. 2B). Overall, 47 TE snoRNAs are enriched in the brain

and 38 are enriched in male or female reproductive tissues (Fig. 2A and Additional file

1 - Figure S6B). The brain-enriched snoRNAs include the previously established brain-

specific snoRNA family SNORD115 (Additional file 1 - Figure S6A) [26], validating our

CV-based classification of snoRNAs. Interestingly, four snoRNAs with known rRNA

targets (SNORA81, SNORA19, SNORD36A, and SNORD111B) are highly enriched in

both studied female reproductive tissues (Additional file 1 - Figure S6).

Most UE snoRNAs are present at an abundance of > 1 TPM in all the examined tis-

sues and the majority has an abundance greater than 100 TPM whereas, in contrast,

many TE snoRNAs have an abundance below 1 TPM in most tissues and the majority

has an abundance that is less than 100 TPM (Additional file 1 - Figure S7A; Fig. 2C

and D, left panel). Interestingly, most of TE snoRNA total abundance is attributable to

their expression in the brain, whereas UE snoRNA total abundance is mostly attribut-

able to their expression in reproductive tissues (except for testis) (Fig. 2D, right panel).

The snoRNA abundance classes exhibit distinct RNA levels, target preference, and

conservation patterns

The discovery of two snoRNA abundance classes raises the question of whether the

tissue-dependent expression of snoRNAs reflects functional specialization, different

evolutionary origin, snoRNA type, or simple stochastic variation in expression. To dif-

ferentiate between these possibilities, we first examined the variation in the abundance

of the UE and TE classes in each of the different tissues. As indicated in Fig. 3A, all tis-

sues display a broad spectrum of RNA abundance for both groups. Notably, we observe

a loose and subtle inverse correlation between the abundance of the two groups: the

tissue expressing the lowest amount of TE snoRNAs (Fig. 3A, breast tissue) appears to

express the highest level of the UE class and vice versa. This suggests that the distribu-

tion of these two classes is not random but reflects a tissue-specific expression program

that chooses between the housekeeping UE snoRNAs and the specialized TE snoRNAs.

To determine whether the abundance classes are driven at least in part by snoRNA

type, we then compared the proportion of box C/D and H/ACA snoRNAs in each class.

As indicated in Fig. 3B, box C/D snoRNAs are well represented in both classes, but the

greatest difference is observed with box H/ACA snoRNA, which are significantly more
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represented in the UE class (Fisher’s exact test, p < 0.001). These differences in abun-

dance and snoRNA type appear to reflect a degree of functional specialization of the

snoRNA abundance classes. Indeed, examining the type of RNA targeted by the

snoRNA classes, we notice clear differences in the groups’ target preferences. In

Fig. 2 RNA abundance divides snoRNAs into two classes with distinct tissue distribution. A SnoRNA
abundance accurately clusters healthy human tissues. The heatmap indicates the abundance level of the
expressed snoRNAs in 21 RNA samples from 7 different human tissues (legend for the abundance class
color bar on the left is shown in B). Only snoRNAs with an abundance greater than 1 TPM in at least one
sample are considered. The color scale for the abundance is shown on the right. B SnoRNAs are divided
into two abundance classes. The number of snoRNAs in the uniformly expressed and tissue-enriched
classes is shown in the form of a pie chart. C Most tissue-enriched snoRNAs are less abundant than their
uniformly expressed counterparts. The bar chart indicates the number of both tissue-enriched and
uniformly expressed snoRNAs in the different ranges of average RNA abundance across tissues. D Most
tissue-enriched snoRNAs are expressed in the brain. The number of uniformly expressed and tissue-
enriched snoRNAs with an abundance of at least 1 TPM in the examined tissues is displayed on the left,
while the total RNA abundance of each class of snoRNAs detected in the different tissues is shown on
the right.
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Fig. 3 The snoRNA abundance classes represent two groups with distinct characteristics, RNA levels and
conservation patterns. A The TE and UE snoRNA abundances peak in different tissue types. The abundance
of snoRNAs in each tissue per abundance class is represented in the form of a violin plot. B Box C/D
snoRNAs form the majority of both abundance classes. The percentage of box C/D and H/ACA snoRNAs in
each abundance class is shown in the form of a stacked bar chart. The stars indicate the statistical
significance of the difference between the two classes of snoRNA abundance (Fisher’s exact test ***p <
0.001). C Most TE snoRNAs are orphans, whereas most UE snoRNAs target rRNA. The stacked bar charts
indicate the distribution of the targets (either rRNA, snRNA or orphan, i.e., no known canonical target) of
the different snoRNAs in each abundance class. The stars indicate the statistical significance of the
difference between the two classes of snoRNA abundance (Fisher’s exact test ***p < 2 × 10− 14). D Most TE
snoRNAs are embedded in the introns of non-coding HGs, whereas UE snoRNAs are mostly embedded in
the introns of protein-coding HGs. The distribution of snoRNA HG biotype in each abundance class is
shown as a stacked bar chart. The stars indicate the statistical significance of the difference between the
two classes of snoRNA abundance (Fisher’s exact test ***p < 2 × 10− 10). E TE snoRNAs are less evolutionarily
conserved than the UE class. The violin plots indicate the distribution of the phastCons conservation score
in vertebrates for each abundance class. The stars indicate the statistical difference between the two
distributions (Mann-Whitney U test, ***p < 8 × 10− 11)
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general, most targets of the UE class are in rRNA or snRNA, while most TE snoRNAs

have no known canonical targets (Fisher’s exact test, p < 2 × 10−14) (Fig. 3C).

To further characterize the differences between the two snoRNA abundance classes,

we compared the genomic organization and conservation of the genes in each class.

Interestingly, we found that while the majority of UE snoRNAs are embedded in the in-

trons of protein-coding genes, the majority of the TE snoRNAs are embedded in the in-

trons of non-coding HGs (mainly lncRNAs) (Fisher’s exact test, p < 2 × 10−10) (Fig.

3D). The presence of snoRNAs in non-coding HGs also suggests a more modern evolu-

tionary origin, since many lncRNAs show low sequence conservation [38]. Indeed,

comparison of the gene conservation between the two snoRNA groups indicates that

the UE class is much more conserved among vertebrates than TE snoRNAs (Mann-

Whitney U test, p < 8 × 10−11) (Fig. 3E). TE snoRNAs also tend to be slightly more

conserved across primates than vertebrates, but still significantly less than UE snoRNAs

(Mann-Whitney U test, p < 4 × 10−9) (Additional file 1 - Figure S7B and Fig. 3E),

highlighting the fact that some TE snoRNAs are potentially only conserved in humans.

Altogether, these results indicate that the snoRNA abundance classes represent two

groups of snoRNAs with distinct genomic context, conservation, expression patterns,

and function.

The snoRNA abundance classes display different degrees of correlation with their HG

depending on their HG function and characteristics

Since most snoRNAs in the human genome are embedded in introns [39, 40], it is pre-

sumed that their expression is linked to that of their HG. To further characterize the

relationship between the abundance of snoRNAs and their HG, we thus calculated

Pearson correlation coefficients (Pearson’s r or correlation of abundance) and their as-

sociated false discovery rate (FDR)-adjusted p value based on the abundance of the dif-

ferent snoRNA/HG pairs across tissues (Fig. 4A). Surprisingly, we find that 40% of

expressed snoRNAs are either non-correlated (− 0.25 ≤ correlation of abundance ≤

0.25) or anticorrelated (correlation of abundance < − 0.25) with the abundance of their

HG transcripts, suggesting that not all snoRNAs are linked to the expression of their

HG and supporting recent findings in other models [22–24]. Indeed, only 60% of snoR-

NAs are positively correlated with their HG (correlation of abundance > 0.25) (Fig. 4A).

The difference in the correlation patterns is not linked to the abundance of snoRNAs

as we find that anticorrelated snoRNAs are expressed at similar levels to non-

correlated or positively correlated snoRNAs (Additional file 1 - Figure S8A). On the

other hand, snoRNAs are generally more abundant than their HG, and the anticorre-

lated group in particular is significantly more abundant than their HGs compared to

non- or positively correlated snoRNAs (Mann-Whitney U test, p < 0.05 and p < 0.0005,

respectively) (Additional file 1 - Figure S9). In addition, we find that in general anticor-

related snoRNAs, regardless of their HG biotype, are more evolutionarily conserved

than the other two correlation classes, which underlines their importance in the snoR-

Nome (Additional file 1 - Figure S8B).

Since snoRNA abundance spans a wide and variable range of correlation with the

HG abundance (Fig. 4A), we next wanted to uncover where the two snoRNA abun-

dance classes occur within this broad range of correlation. Interestingly, the TE
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Fig. 4 (See legend on next page.)

Fafard-Couture et al. Genome Biology          (2021) 22:172 Page 11 of 24



snoRNAs are much more likely to be correlated with the abundance of their HG tran-

scripts than the UE class, which is represented all along the spectrum of correlation of

abundance with the HG (Fig. 4B). Since UE and TE snoRNAs have distinct embedding

preferences (Fig. 3D), we then re-examined the distribution of correlation of abun-

dance, but this time by splitting the two snoRNA abundance classes based on their HG

coding potential (Fig. 4C). Remarkably, non-coding HGs display clear positive correl-

ation of abundance with either UE or TE snoRNAs, whereas protein-coding HGs ex-

hibit a more complex abundance relationship with their embedded snoRNAs (Mann-

Whitney U test, p < 4 × 10−15 and p < 1 × 10−5, respectively for UE and TE snoRNAs)

(Fig. 4C). Overall, these findings suggest that snoRNAs are not always strictly linked to

the expression of their HGs and that the snoRNA abundance classes display distinct

patterns of correlation with their HG.

Given that snoRNA abundance classes displayed differences in their HG coding po-

tential, we examined the possibility of a link between the snoRNA abundance patterns

and the function of their protein-coding genes. Remarkably, we find that UE and posi-

tively correlated snoRNAs are predominantly embedded in HGs coding for ribosomal

protein (Fisher’s exact test, p < 2 × 10−4) (Fig. 4E, left panel). On the other hand, most

anticorrelated UE snoRNAs are located in genes coding for RNA processing and ribo-

some biogenesis factors (Fisher’s exact test, p < 0.05) (Fig. 4E, left panel). A similar pat-

tern is observed in the few protein-coding HGs harboring TE snoRNAs, but the small

number of HGs prevents accurate estimation of statistical significance (Fig. 4E, right

panel). Following the same logic but with non-coding HGs, we explored the possibility

that lncRNA functionality could be associated with a snoRNA’s correlation of abun-

dance. Indeed, based on previous characterizations of lncRNAs [41], those with docu-

mented functions are significantly more positively correlated with the abundance of

their embedded snoRNAs than lncRNAs with no reported function (Mann-Whitney U

test, p < 2 × 10−21) (Additional file 1 - Figure S10). Altogether, these results indicate

that correlation between the snoRNAs and their HG reflects at least in part the func-

tional relationship of these pairs.

(See figure on previous page.)
Fig. 4 The snoRNA abundance classes correlate differently with their HG abundance due to different HG
characteristics. A SnoRNAs display a wide range of correlation with their HG abundance. The scatter plot
indicates the correlation of abundance of the snoRNA/HG pairs and their associated false discovery rate
(FDR)-adjusted p value for each snoRNA. The green and gray dots indicate respectively significant (p < 0.05)
and non-statistically significant correlations. B The abundance of most TE snoRNAs positively correlates with
that of their HG as opposed to UE snoRNAs. The number of snoRNAs displaying various degrees of
correlation depending on the abundance class is represented as a bar graph. C Non-coding HGs are more
positively correlated with their embedded snoRNAs than protein-coding HGs. Shown are the density
distributions for either UE or TE snoRNAs as a function of the correlation of abundance between the
snoRNA and either their protein-coding or non-coding HG. The stars represent the statistical significance of
the difference between the two distributions (Mann-Whitney U test, ***p < 4 × 10− 15 and ***p < 1 × 10− 5,
respectively for UE and TE snoRNAs). D Most anticorrelated non-coding HGs are subject to NMD. The
proportion of protein-coding and non-coding HGs subject to NMD is plotted as a function of the
correlation of abundance with their embedded snoRNAs (< − 0.25: anticorrelation [− 0.25; 0.25]: non-
correlation and > 0.25: positive correlation), for each snoRNA abundance class. E Correlation between UE
snoRNAs and their HG abundance is determined at least in part by the HG function. The proportion of
anticorrelated and positively correlated snoRNAs embedded in each functional HG group is shown as a
stacked bar chart, for each snoRNA abundance class. The number above each bar represents the number of
HGs in that subgroup. The stars indicate the statistical significance of the difference between anticorrelated
and correlated groups of HGs (Fisher’s exact test, *p < 0.05 and ***p < 2 × 10− 4)
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An important characteristic of snoRNA HG groups is the differing stability of their

transcripts. Indeed, as reported in [42], mature transcripts encoding ribosomal proteins

have a significantly lower decay rate than transcripts from other host gene groups

(Mann-Whitney U test, p < 0.01) (Additional file 1 - Figure S11A). The abundance of

the highly stable mRNA encoding ribosomal protein correlates better in general with

their embedded snoRNAs than other HG types (Additional file 1 - Figure S11B). This

increased correlation between the abundance of snoRNA and their host ribosomal pro-

tein mRNA may reflect high demand for ribosome synthesis and the need for coordin-

ating the different steps of ribosome biogenesis. We do not observe strong links

between the snoRNA-HG correlation of abundance and the stability of non-ribosomal

protein host mRNA (Additional file 1 - Figure S11B). In addition, we note that the sta-

bility of the host mRNA will affect the ratio of snoRNA to HG transcript abundance

within a tissue, but not their correlation of abundance since the decay rate is presumed

to be constant across tissues.

To understand the basis of the difference in the abundance pattern of anti-, non-,

and positively correlated HGs, we evaluated the susceptibility of HGs to NMD, bearing

in mind that NMD could regulate HG transcript levels and thereby modulate the cor-

relation of abundance. NMD-sensitive HGs were defined as such based on their previ-

ously determined response to the depletion of NMD factors (see “Methods” for more

details) [21]. Interestingly, we find an increased susceptibility to NMD in anticorrelated

non-coding HGs which are enriched in the UE snoRNA class (Fig. 4D, top panel). In

contrast, we find no association with NMD in the TE class of snoRNAs. This is due to

the lack of anticorrelated non-coding HGs of TE snoRNAs and also because non- and

positively correlated non-coding HGs of TE snoRNAs are not subject to NMD (Fig.

4D, bottom panel), which is consistent with the fact that most TE snoRNAs are highly

correlated with the abundance of their non-coding HG transcripts (Fig. 4C). Of note,

NMD does not seem to modulate alone the correlation of abundance between protein-

coding HGs and their embedded snoRNAs, as we observe no significant trend across

correlations of abundance for either UE or TE snoRNAs (Fig. 4D). Taken together,

these findings indicate that NMD may provide means to repress the expression of the

HGs without affecting the expression of the embedded snoRNAs and thus enable the

uncoupling of the HG and snoRNA expression.

Dual initiation of transcription uncouples the expression of the host and snoRNA genes

and generates various snoRNA abundance patterns

Since it was recently suggested that promoters with dual transcription initiation sites

may uncouple the expression of host and snoRNA genes [25], we compared the num-

ber of HGs with only one type of transcription initiation site (termed here simple-

initiation sites (SI)) to those with dual-initiation (DI) promoters in both the UE and TE

classes of snoRNAs. In addition to a canonical initiation promoter with pyrimidine/pur-

ine (YR) dinucleotide, DI promoters carry an additional intertwined polypyrimidine ini-

tiation site (YC or 5’TOP) [25]. We therefore defined HGs with DI promoters based on

the presence of both YR and YC initiation sites within the HG, which were previously

reported using Cap analysis gene expression sequencing (CAGE-Seq) [25] (see

“Methods” for more details). All other HGs were considered as containing an SI
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promoter. Interestingly, we find that DI promoters are significantly more present in

non- and anticorrelated snoRNA/HG pairs regardless of whether they are UE or TE (p

< 6 × 10−4 and p < 2 × 10−5, respectively for UE and TE snoRNAs) (Fig. 5A). Further-

more, significantly more HGs with DI promoters than SI promoters are detected in the

UE class of snoRNAs (Fisher’s exact test, p < 3 × 10−8) (Fig. 5B). This is consistent with

the increased number of non- and anticorrelated genes detected in the UE class of

snoRNAs (Fig. 4B) and supports the duality of transcription initiation as a means for

uncoupling the HG and snoRNA expression. The initiation pattern-dependent uncoup-

ling of either UE and TE snoRNA abundance is also supported by the increased suscep-

tibility of HG transcripts produced from DI promoter to NMD when compared to

those generated from an SI promoter (Fisher’s exact test, p < 2 × 10−14 and p < 0.01, re-

spectively for UE and TE snoRNAs) (Fig. 5C). Strikingly, TE snoRNAs produced from

DI and SI promoters have distinct tissue distribution patterns. The SI types are mainly

enriched in brain and display positive correlation between the snoRNA and HG,

whereas the DI types are highly abundant in breast and ovary tissues and are mostly

non- or anticorrelated with their HG (Fig. 5D). Collectively, these results indicate that

DI promoters present a way for cells to independently optimize the expression of the

HG and snoRNA to meet the difference in the functional requirements of human

tissues.

Discussion
In this study, we present a detailed portrait of the human snoRNome and define the

basis of snoRNA tissue specificity and abundance patterns. By simultaneously detecting

both protein-coding and non-coding RNAs with considerably less structural bias than

standard approaches [23, 29], we were able to directly compare the snoRNA abundance

patterns to the abundance of all non-rRNA biotypes in each studied tissue type (Fig. 1),

thereby defining a core group of 475 expressed snoRNAs that will serve as valuable re-

sources for future functional analysis. To carry out this analysis, we quantified all hu-

man transcripts in seven normal tissues each originating from three different

individuals. Interestingly, the data indicate that snoRNAs produce the highest number

and diversity of transcripts on average across human tissues after tRNAs (Fig. 1). In-

deed, unlike snRNAs which occupy a major part of the transcriptome through the ex-

pression of only a handful of genes, more than 50% of snoRNA genes contribute to the

abundance of this biotype (Additional file 1 - Figures S2 and S3). Interestingly, and un-

like most highly abundant RNAs in the cells such as snRNAs and tRNAs, not all snoR-

NAs are uniformly expressed in all tissues (Figs. 1 and 2). Instead, a subset of snoRNAs

are specifically enriched in brain and reproductive tissues (Fig. 2 and Additional file 1 -

Figure S6). Comparison between the UE and TE classes of snoRNAs indicate that they

diverge in their target preferences and conservation levels and that the majority of TE

snoRNAs are generated from the introns of lncRNAs that mostly correlate with the

abundance of their embedded snoRNAs (Figs. 3 and 4). In contrast, UE snoRNAs are

divided into two groups: the first is highly correlated with its ribosomal protein-coding

HG and the second is either non- or anticorrelated with the abundance of its HG tran-

scripts (Fig. 4). The non- and anticorrelated snoRNAs are mostly expressed from HGs

with DI promoters and their HG transcript is susceptible to NMD, which provides a

mechanism to independently regulate the expression of the HG and snoRNA (Fig. 5).
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Fig. 5 Dual initiation of transcription uncouples the expression of the host and snoRNA genes and
generates various RNA abundance patterns. A Most non- or anticorrelated snoRNA/HG pairs are expressed
from promoters with dual-initiation sites. The density of snoRNA/HG pairs with dual-initiation (DI promoter)
or simple-initiation (SI promoter) promoter is plotted as a factor of the correlation of abundance between
snoRNA and their HG, for either UE or TE snoRNAs. The stars indicate the statistical significance of the
difference between the DI and SI promoter groups (Mann-Whitney U test, ***p < 6 × 10− 4 and ***p < 2 ×
10− 5, respectively for UE and TE snoRNAs). B TE snoRNAs are mostly expressed from genes with SI
promoters. The proportion of snoRNAs with HGs displaying DI or SI promoters is represented in the form of
a stacked bar chart, depending on their abundance class. The stars indicate the statistical significance of the
difference between the two HG promoter types (Fisher’s exact test, ***p < 3 × 10− 8). C Most HGs displaying
DI promoters are subject to NMD. The proportion of snoRNAs with a HG displaying a DI or a SI promoter,
depending on if the HG is subject to NMD or not, was plotted as a stacked bar chart, for either UE or TE
snoRNAs. The stars indicate the statistical significance of the difference between the two HG promoter
types (Fisher’s exact test, ***p < 2 × 10− 14 and **p < 0.01, respectively for UE and TE snoRNAs). D Anti- or
non-correlated TE snoRNAs embedded in a DI promoter HG are mainly expressed at high levels in female
reproductive tissues. The HG name, the correlation of abundance, the tissue enrichment and the average
abundance in the enriched tissue(s) of the seven non- or anticorrelated snoRNAs embedded in DI promoter
HGs are indicated in a summary table
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Overall, the results indicate that snoRNAs are not a mere group of uniformly expressed

genes that obey the instruction of their HG but include subgroups with distinct gene

organization and abundance patterns that meet the demand for both housekeeping and

tissue-specific functions.

Altogether, our data suggest a model in which intron-embedded snoRNA expression

patterns and tissue specificity are products of the HG function and architecture (Fig. 6).

In this model, the majority of TE snoRNAs are encoded in the introns of lncRNA

genes, while the majority of UE snoRNAs are encoded in protein-coding genes. Non-

coding HGs free the cell to optimize the expression and/or rapidly evolve specialized

snoRNAs to meet tissue-specific requirements while embedding snoRNAs within

protein-coding genes provides a broad range of regulatory relationships between the

snoRNA and host protein functions. Indeed, the majority of non-coding HGs use un-

complicated expression modules where the abundance of the host transcript and

snoRNA are positively correlated (Fig. 6, third expression module from the left),

whereas in contrast, most protein-coding HGs are non- or anticorrelated with the

abundance of their embedded snoRNAs (Fig. 6, second expression module from the

left).

Almost all positively correlated snoRNAs are expressed from promoters with a simple

transcription initiation site, confirming their obligate joint expression pattern (Fig. 6,

first and third expression modules from the left). Conversely, non- or anticorrelated

snoRNAs embedded in lncRNAs are also generated through SI transcription, but since

the HG transcript has no known associated function and is highly susceptible to NMD,

only a stable UE snoRNA remains after the transcription of the HG that thereby serves

the only purpose of expressing its embedded snoRNA (Fig. 6, right-most expression mod-

ule). Given the correlated expression pattern of host and snoRNA genes combined with

the observed insensitivity to NMD of positively correlated snoRNA-containing lncRNAs

(Fig. 6, third expression module from the left), it is thus likely that these stable lncRNAs

play compatible or complementary roles with their embedded snoRNAs. Interestingly,

most brain-enriched snoRNAs, which are encoded in the Prader-Willi syndrome region,

are generated through this joint expression with their non-coding HG (Fig. 6, third ex-

pression module from the left). Genes of this genomic region were recently reported to

produce 5′-snoRNA-capped and 3′-polyadenylated lncRNAs (SPAs) and lncRNAs

flanked by snoRNA (sno-lncRNAs), which are hybrids involved in RNA-binding protein

trapping [18, 43, 44]. This suggests that these TE snoRNA/lncRNAs pairs either work as a

whole or as separate entities to achieve common tissue-specific functions. Following the

same logic, positively correlated protein-coding HGs (Fig. 6, first expression module from

the left) produce through simple expression both the snoRNA and the HG transcript,

which is most likely coding for a ribosomal protein. Since this expression module pro-

duces UE snoRNAs, which mostly target rRNA, this underlines that a positive correlation

of abundance reflects a functional link between snoRNAs and their HG: UE snoRNA-

guided modification of rRNA and ribosomal proteins being both important factors of

ribosome structure integrity [45].

In contrast to the simple positive expression module of most TE snoRNAs, the ma-

jority of UE snoRNAs and few ovary- and breast-enriched snoRNAs use a complex

regulatory module that separates the expression of the snoRNA from its HG (Fig. 6,

second expression from the left). In most cases, this separation of expression is
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achieved through DI promoters that use different transcription initiation sites (either

canonical YR-initiation or non-canonical YC-initiation) depending on the need of the

different tissues. The snoRNA is expressed regardless of the initiation site, but the host

transcript accumulates only when the YR-initiation is used, which protects the tran-

script from degradation by NMD. In this way, the cell may regulate the expression of

the HG without interfering with the uniformity of snoRNA abundance, which likely re-

sponds to the need for snoRNAs with a housekeeping function such as most UE snoR-

NAs. As expected, the non- and anticorrelated HGs using DI sites are not enriched in

housekeeping genes like ribosomal protein genes. Instead, they mainly include genes

that regulate RNA maturation and processing such as genes involved in ribosome bio-

genesis. Indeed, it seems that in most cases the separation of HG and snoRNA func-

tions is needed to liberate the snoRNA from tissue and condition-dependent control of

the HG. Interestingly, in few cases like SNORD63 and SNORD50A, the promoter dual-

ity may even allow the snoRNA to develop non-canonical functions such as regulating

pre-mRNA stability and polyadenylation [46, 47]. Further studies are however needed

to characterize the biological relevance of a lack of positive correlation between a

snoRNA and its HG and to decipher what distinguishes anticorrelated from non-

correlated snoRNAs. Collectively, the data presented here and summarized in Fig. 6

Fig. 6 Model explaining the modulation of snoRNA expression. In this model, the abundance pattern of
snoRNAs is determined by the host function and transcription pattern. Alternative initiation of transcription
(either canonical YR-initiation or non-canonical YC-initiation) provides a means to independently regulate
the expression of the snoRNA and its HG and is often found in UE and a few TE snoRNAs embedded in
protein-coding HGs. On the other hand, simple transcription initiation is the hallmark of positively
correlated snoRNA/HG pairs. Only the main pathways and features determining the snoRNA abundance
patterns are illustrated. The anticorrelated, non-correlated, and positively correlated snoRNAs are indicated
by −, 0, and +, respectively. Bold arrows represent the principal expression pathways adopted by snoRNAs.
NMD, SI, and DI promoters stand for nonsense-mediated decay, simple-initiation, and dual-initiation
promoters respectively
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indicate that the human snoRNome meets the demands of both uniform and tissue-

enriched abundance through a broad spectrum of regulatory mechanisms that define

the relationship between the snoRNA and its HG expression.

Conclusions
SnoRNAs are implicated in a myriad of crucial functions in eukaryotic cells, yet their

abundance patterns across healthy human tissues and their relationships with their HG

had never been comprehensively studied. In this study, we generated fragmented and

ribodepleted TGIRT-Seq abundance datasets of both structured and non-structured

RNAs in seven healthy human tissues, enabling us to reliably characterize for the first

time the entire human snoRNome. SnoRNAs were identified as major contributors of

the abundance in all the tissues and were divisible in two abundance classes with clear

and distinct characteristics: UE and TE snoRNAs. Almost half of all expressed snoR-

NAs were found to be non- or anticorrelated with the abundance of their HG tran-

scripts, highlighting a complex abundance regulation. The HG function and promoter

duality were identified as crucial features that modulate the abundance patterns of

snoRNAs and their HG in order to meet the functional requirements of both UE and

TE snoRNAs in human tissues. Overall, our study represents a reliable reference from

which future research can draw upon to better characterize the importance of snoR-

NAs in human physiological and pathological conditions.

Methods
Sample origin and preparation

RNA from healthy skeletal muscle, liver, testis, and brain tissues was purchased from

BioChain (3 RNA samples per tissue originating from different individual donors).

Healthy breast, ovary, and prostate tissue samples were obtained from the FRSQ tissue

bank (Université de Sherbrooke). Each 30mg tissue sample was homogenized in 1 mL

of TRIzol Reagent (Ambion) using a Polytron tissue homogenizer and kept at − 80 °C

until RNA extraction. Characteristics of the samples are available in Additional file 1 -

Table S4.

RNA extraction

Since RNA was directly purchased for the skeletal muscle, liver, testis, and brain tissues,

only total RNA extractions from breast, ovary, and prostate tissues were performed

using RNeasy Mini Kit (Qiagen) as recommended by the manufacturer including on

column DNase digestion with RNase-Free DNase Set (Qiagen). However, 1.5 volume of

ethanol 100% was used instead of the recommended 1 volume of ethanol 70% in order

to retain smaller RNA. RNA integrity of each sample was assessed with a 2100 Bioana-

lyzer (Agilent). These values are available from Additional file 1 - Table S4 for all

samples.

Ribodepletion, library preparation, and paired-end sequencing

RNA-Seq libraries were built as previously described [23]. Briefly, 2 μg of DNA-free

total RNA was ribodepleted using Ribo-Zero Gold (Illumina) according to the manu-

facturer protocol. The resulting rRNA-depleted RNA was then purified with RNA
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Clean and Concentrator (RCC) kit (Zymo Research) using a modified protocol to retain

all RNA including RNAs ≤ 80 nucleotides (400 μL ethanol 100% per 50 μL sample).

Purified RNA was fragmented 2–4 min (depending on the RNA Integrity Number)

using NebNext Magnesium RNA Fragmentation Module (New England Biolabs) and

once again purified with the RCC kit (Zymo Research) followed by dephosphorylation

using T4 Polynucleotide Kinase (Epicentre) and final purification using, again, the RCC

kit (Zymo Research).

cDNAs were synthesized via TGIRT template-switching with 1 μM TGIRT-III reverse

transcriptase (Ingex, LLC) for 15 min at 60 °C, during which a DNA oligonucleotide

containing the complement of an Illumina Read 2 sequencing primer-binding site be-

came seamlessly linked to the 5′ cDNA end. After reaction cleanup, a 5′ adenylated

DNA oligonucleotide containing the complement of an Illumina Read 1 sequencing

primer-binding site was then ligated to the 3′ cDNA end with Thermostable 5′

AppDNA / RNA Ligase (New England Biolabs). Properly ligated cDNAs were amplified

by PCR (12 cycles) to synthesize the second strand and add Illumina flowcell capture

and index sequences. Libraries were purified with 2 rounds of Ampure XP beads (Beck-

man-Coulter) and evaluated on a 2100 Bioanalyzer (Agilent). Libraries were then

pooled and sequenced on a NextSeq 500 platform (Illumina) (2 × 75 bp) using a Next-

Seq 500/550 High Output Kit v2.5 (150 cycles) (Illumina). Three distinct sequencing

runs were performed to sequence all tissue samples: the first pool was composed of the

Breast_1, Breast_2, Ovary_1, Ovary_2, Ovary_3, Prostate_1, Prostate_2, and Prostate_3

RNA samples; the second pool was composed of the Brain_1, Brain_2, Brain_3, Liver_

1, Liver_2, Liver_3, Testis_1, and Testis_2 RNA samples; the third pool was composed

of the Breast_3, Skeletal_muscle_1, Skeletal_muscle_2, Skeletal_muscle_3, and Testis_3

RNA samples.

TGIRT-Seq processing pipeline

All RNA abundance datasets were generated using a succession of bioinformatics tools

regrouped in a reproducible Snakemake workflow [48]. All details about parameters

and tools used can be found in the Snakemake workflow at https://github.com/

etiennefc/TGIRT_Seq_pipeline.git [49], but are also briefly described below. The data-

sets we generated are of high depth and quality for each tissue (Additional file 1 - Table

S3) and are available for download from the Gene Expression Omnibus (the breast,

ovary, and prostate datasets are available under the accession number GSE126797 [50]

and the remaining datasets are available under the accession number GSE157846 [51]).

In short, paired-end reads were first trimmed using Trimmomatic v0.36 [52] (with the

following parameters: ILLUMINACLIP:<fastaWithAdaptersEtc>:2:12:10:8, TRAILING

:30, LEADING:30, MINLEN:20, all other parameters at default values) to remove

adapters and low-quality reads. FastQC v0.11.5 was used before and after trimming to

assess the quality of the reads. Trimmed reads were aligned to the human genome as-

sembly GRCh38 (hg38, v87) using the aligner STAR v2.6.1a [53] (with the following pa-

rameters: --runMode alignReads, --outSAMunmapped None, --outSAMtype BAM

SortedByCoordinates, --outFilterScoreMinOverLread 0.3, --outFilterMatchNminOverL-

read 0.3, --outFilterMultimapNmax 100, --winAnchorMultimapNmax 100, --alignEnd-

sProtrude 5 ConcordantPair, all other parameters at default values). The index needed
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to align reads to the human genome was generated using STAR v2.6.1a [53] (with the

following parameters: --runMode genomeGenerate and --sjdbOverhang 74). Counts

were attributed to genomic features using CoCo v0.2.1p4 [33] (with the following pa-

rameters: cc -countType both -strand 1 --paired, all other parameters at default values),

using our custom annotation (.gtf file available at https://zenodo.org/record/3981426/

files/human_ensembl_87_wo_dup_v2.BB_v3.correct_annotation.gtf) described in [23].

Normalized counts in TPM were obtained from the output of CoCo. Only snoRNAs

with an abundance greater than 1 TPM in at least one tissue sample, thus referred to

as “expressed snoRNAs”, were included in this study in order to filter out low abun-

dance snoRNAs. Also, even though their associated biotype was “snoRNA”, 4 snoRNAs

with a gene name starting with “SCARNA” were manually excluded from this analysis.

Collection of GTEx expression data

The 10 most abundant protein-coding genes in GTEx for the seven tissues studied were

manually curated through the GTEx portal [34]. Mitochondrial genes were excluded

from both the GTEx and TGIRT-Seq rankings.

Grouping of RNA biotypes

In order to simplify the analysis, RNA biotypes obtained from our custom annotation

were grouped in classes according to Ensembl nomenclature. Thus, IG_C_gene, IG_D_

gene, IG_J_gene, IG_V_gene, TR_C_gene, TR_D_gene, TR_J_gene, TR_V_gene, poly-

morphic_pseudogene and protein_coding biotypes were grouped under the generic

"protein-coding" biotype; unitary_pseudogene, unprocessed_pseudogene, processed_

pseudogene, transcribed_unprocessed_pseudogene, transcribed_unitary_pseudogene,

transcribed_processed_pseudogene, IG_pseudogene, IG_C_pseudogene, IG_J_pseudo-

gene, IG_V_pseudogene, TR_J_pseudogene, TR_V_pseudogene, and pseudogene bio-

types were grouped under the generic “pseudogene” biotype; 3prime_overlapping_

ncRNA, antisense, lincRNA, macro_lncRNA, bidirectional_promoter_lncRNA, proc-

essed_transcript, sense_intronic, sense_overlapping, non_coding, and lncRNA biotypes

were grouped under the generic “lncRNA” biotype; Mt_tRNA and tRNA biotypes were

grouped under the generic “tRNA” biotype; rRNA, Mt_rRNA, ribozyme, scRNA,

vaultRNA, and sRNA biotypes were grouped under the generic “other” biotype. Of

note, RNAs with missing abundance value in any tissue sample and RNAs with the

“TEC” biotype were not considered in this study. Following the same logic, HG bio-

types were grouped under three generic biotypes: “protein-coding” for all protein-

coding HG, “intergenic” for snoRNAs without a HG, and “non-coding” for all other

HG biotypes.

Collection of snoRNA related information

Protein-coding HG biological functions were manually curated from UniProt [54] and

non-coding HG (lncRNAs) associated functions in various human diseases were re-

trieved from LncTarD [41]. NMD susceptibility of the HG was based on the presence

of the HG in the Supplementary table S4 of Lykke-Andersen et al. (corrigendum ver-

sion of the original paper) using their relaxed criterion [21]. This table lists all genes

determined as NMD substrates based on their increased accumulation after different
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depletions of NMD factors [21]. The presence of DI promoters within a HG was defined by

the presence of the HG in the Supplementary Data 7 of Nepal et al. [25]. This table lists all

genes identified as containing both YR and YC promoters using CAGE-Seq in the human

HepG2 cell line [25]. The score of conservation across vertebrates (“phastCons 100 Verte-

brates”) and across primates (“phastCons 30 primates”) for each snoRNA was obtained from

the UCSC Genome Browser [55, 56]. In short, a conservation score was associated to each nu-

cleotide of a snoRNA and the conservation score per snoRNA was generated by calculating

the average score of all the nucleotides included in that snoRNA sequence. Otherwise, all

other information (e.g., a snoRNA’s target, HG name, and biotype) was retrieved from snoDB

[40]. SnoRNAs without known target in rRNA or snRNA were designated as “orphan” snoR-

NAs. All snoRNA abundance and features are available in Additional file 2 - Table S5.

Abundance class categorization

To categorize snoRNAs according to their abundance patterns across healthy human

tissues, a coefficient of variation (CV) was calculated for each snoRNA. This method

was also applied to other RNA biotypes (snRNA, tRNA, protein-coding RNA, and

lncRNA). In short, the CV was calculated as the standard deviation of the abundance of

that snoRNA across the tissues divided by the average abundance of that snoRNA

across the tissues, all of that multiplied by 100. These CVs were represented in a kernel

density estimate plot and the resulting bimodal curve was divided in two by tracing the

tangent at the point where the derivative of the bimodal curve function was the most

negative. The point at which the tangent crossed the x-axis was defined as the thresh-

old for the two snoRNA abundance classes. Above that threshold of CV = 125, snoR-

NAs were dubbed “Tissue-enriched” or “TE”, whereas snoRNAs with a CV below that

threshold were dubbed “Uniformly expressed” or “UE”. To classify in which tissue TE

snoRNAs were predominantly expressed, the tissue where the snoRNA abundance (in

TPM) was the highest was established as the enrichment tissue. This was the case for

all TE snoRNAs except for 4 snoRNAs (SNORA81, SNORA19, SNORD36A, and

SNORD111B) that were highly abundant in both breast and ovary and had a difference

of abundance (in TPM) of at most 2 times the abundance seen in the other tissue (ei-

ther breast or ovary).

Statistical analyses and graph generation

All statistical analyses and graphs were realized using Python-based packages. Pearson

correlation coefficients (Pearson’s r) and their associated p values, Fisher’s exact test p

values, and Mann-Whitney U test p values were generated using the Stats module from

Scipy v1.4.1. SnoRNAs with a correlation of abundance with their HG (Pearson’s r) in-

ferior to − 0.25 were considered “anticorrelated” whereas those with a Pearson’s r

greater than 0.25 were considered “positively correlated”; snoRNAs with a Pearson’s r

comprised inclusively between − 0.25 and 0.25 were considered “non-correlated”. P

value correction for false-discovery rate (FDR) using the Benjamini-Hochberg correc-

tion (for the correlation of abundance between snoRNAs and their HG) was performed

using the Multitest module from Statsmodels v0.11.0. Throughout this study, all results

were considered significant at *p < 0.05, **p < 0.01, and ***p < 0.001. Graphs were gen-

erated using either the pandas v1.0.1, Matplotlib v3.1.1 or Seaborn v0.9.0 libraries.
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