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Synthetic aircraft RS image 
modelling based on improved 
conditional GAN joint embedding 
network
Junyu Chen1,2, Haiwei Li1*, Liyao Song3, Geng Zhang1*, Bingliang Hu1*, Shuang Wang1, 
Song Liu1, Siyuan Li1, Tieqiao Chen1 & Jia Liu1

Developing an efficient and quality remote sensing (RS) technology using volume and efficient 
modelling in different aircraft RS images is challenging. Generative models serve as a natural and 
convenient simulation method. Because aircraft types belong to the fine class under the rough class, 
the issue of feature entanglement may occur while modelling multiple aircraft classes. Our solution 
to this issue was a novel first-generation realistic aircraft type simulation system (ATSS-1) based 
on the RS images. It realised fine modelling of the seven aircraft types based on a real scene by 
establishing an adaptive weighted conditional attention generative adversarial network and joint 
geospatial embedding (GE) network. An adaptive weighted conditional batch normalisation attention 
block solved the subclass entanglement by reassigning the intra-class-wise characteristic responses. 
Subsequently, an asymmetric residual self-attention module was developed by establishing a 
remote region asymmetric relationship for mining the finer potential spatial representation. The 
mapping relationship between the input RS scene and the potential space of the generated samples 
was explored through the GE network construction that used the selected prior distribution z, as 
an intermediate representation. A public RS dataset (OPT-Aircraft_V1.0) and two public datasets 
(MNIST and Fashion-MNIST) were used for simulation model testing. The results demonstrated the 
effectiveness of ATSS-1, promoting further development of realistic automatic RS simulation.

Modelling and simulation (M&S) in the RS domain is cr ucial for instrument design, algorithm development, 
data classification, target recognition, data augmentation, and disaster  warning1. With the high timeliness and 
high-quality demand for the RS technology, efficient and higher quality simulations have become a critical 
 requirement2.

Several M&S methods in the RS domain have been demonstrated in the literature. Ba sed on the technical 
route, the RS target modelling can be divided into two types: three-dimensional (3D)  modelling3 and deep 
learning (DL)  modelling4.

3D models such as  SENSOR5,  DIRSIG6, or  FASSP7 depend on modelling tools such as AutoCAD or 3DsMAX 
to construct a 3D surface model, which leads to inconvenience and lower efficiency. As a result, these methods 
limit the requirements of the RS applications for volume, velocity, variety, and value (4V).

DL modelling employs the generative adversarial network (GAN)  technology8 to learn the potential space 
distribution by training data samples. For example,  CGAN9 constructs a condition generator by simply entering 
condition label y.  ACGAN10 extends from CGAN, which realises the function of multi-type image generation 
and classification by introducing an auxiliary classifier after the discriminator and a deep convolutional neural 
network (DCNN)10,11 as its underlying architecture. However, since it puts the ground-truth samples and gener-
ated samples into one classifier to judge together, the pattern collapse is easy to occur on intra-class. Later, based 
on CGAN, several variants (e.g.,  styleGAN12,  GauGAN13, OR-AC-GAN14, improved  GAN15.) appeared in succes-
sion and were applied to the face domain, natural scene, medical simulation, hyperspectral anomaly detection, 
and other fields. In this way, we could construct the rich and diverse generated targets through potential spatial 
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representation. Past literature focuses on RS-scene modelling by augmenting data samples to carry out corre-
sponding tasks, such as scene classification, scene recognition. For example,  in16, Attention-GANs were utilised 
to extend samples on public RS classification datasets and were then applied to aerial scene classification. As a 
preliminary attempt, this paper provides a theoretical basis that applies the GAN to the RS-image modelling.

With the growing application requirements, it becomes an urgent task to carry out a precise M&S in a subclass 
field (fine-grained data). For example, aircraft has a profound theoretical significance and substantial applica-
tion value . If the DL technology achieves low-cost 4V simulation for different RS aircraft types, it will have a 
significant impact on academia and  industry4.

However, due to several uncertain factors such as altitude , illumination, occlusion, and background inter-
ference, there are slight inter-class differences and significant intra-class differences. Compared to ordinary 
generative tasks, fine-grained image generation is more complicated. It is easier to classify different subclass 
into the same category because of the short distance between the spatial features of similar sub-classes when 
using a convolutional neural network (CNN)17 or  DCNN10,11 in the generator. As a result, different aircraft types 
generate the same style, resulting in occurrences of feature entanglement between sub-classes. Reviewing the 
past tasks of subcategory feature extraction, relevant scholars used manual labelling (e.g., bounding box, part 
locations), local feature extraction (e.g., scale-invariant feature  transform18, histograms of oriented  gradient19), 
and CNN joint class labels to extract feature. With the development of these methods, the accuracy is constantly 
improving. Moreover, some scholars introduced attention mechanisms into the  networks20, which redistribute the 
available information and focus on the salient components for the input data. In this case,  SAGAN21 combines 
the self-attention block in the network and minimises the hinge version of the adversarial loss from the support 
vector machine (SVM)22,23 to improve the generation accuracy. Conditional Batch Normalisation (CBN)24–26 is 
proposed for the recalibration of different class-wise feature responses by conducting internal normalisation on 
the same category of data feature graphs. However, it ignores the characteristics of the spatial location by using 
conditional information statistics in the CBN process, suppressing the generation of different categories to some 
extent. Therefore, more acceptable simulation methods need to be studied urgently.

The development of GAN makes it possible to build 4V models for RS targets. However, a GAN cannot express 
the mapping relationship between the ground-truth scene and potential space when constructing the specified 
target from an RS scenario. It involves the pre-network mapping problem of the GAN, i.e., GAN-embedding. In 
general, there are two methods to embed the input samples into the potential space. 1. Learn an encoder such 
as an auto-encoder (AE) or a variational auto-encoder (VAE) that maps a given image to a potential  space27. 
2. Select a random initialisation prior vector and optimise it by using gradient  descent28,29. Among these, the 
first approach provides a quick solution for image embedding by performing forward transmission through the 
encoder. However, it often extends beyond the training dataset. In this article, we decided to reference the second 
approach as a more general and stable solution.

According to the above research, there are three main problems in the fine modelling of different aircraft: 1. 
The feature entanglement in fine-grained target modelling when using a GAN; 2. More delicate texture model-
ling; 3. Optimisation of the mapping relationship between a simulated RS aircraft and RS scene.

To address these issues, we utilise a novel synthetic aircraft RS-image modelling technology, the first-gener-
ation highly realistic aircraft type simulation system (ATSS-1), which is based on an improved GAN module in 
combination with an embedding network. The experiment is conducted on a public RS dataset of OPT-Aircraft 
_V1.030, which consists of 14 global aircraft types such as flat-wing, rear-wing, and propeller type. The main 
contributions can be summarised as follows: 

1. In ATSS-1, a novel GAN model (an adaptive weighted conditional attention generative adversarial network, 
AWCA-GAN) is integrated to an improved embedding network (geospatial embedding network, GE) to form 
one system, correlates with real RS scene, and simulates RS data without complex manual manipulation.

2. An adaptive weighted conditional batch normalisation attention mechanism module (AWCBNA) in AWCA-
GAN is presented, applying intra-class-weighted feature statistics to recalibrate category feature responses 
adaptively for the conditional parameters. Such AWCBNA block enables the network to emphasise the 
category features selectively and enhances the ability of presentation learning in different types to alleviate 
the entanglement of subclass features.

3. An asymmetric residual self-attention module (ARSA) is an add-on to the AWCA-GAN that captures the 
spatial geometry and spectral information by establishing a remote region asymmetric relationship to obtain 
a more robust feature representation.

4. An efficient embedding network, called a geospatial embedding network (GE), is investigated, which could 
map a real RS scene into a latent space of the simulated target, which is drawn from prior distribution z as 
the intermediate representation through the trained AWCA-GAN model.

5. In the experiment, we collect aircraft datasets (namely, OPT-Aircraft _V1.030) and investigate the effect 
of aircraft RS-image simulation on high-level visual tasks . This dataset is a fine-grained public dataset of 
aircraft in the RS field. It can provide benchmark data for future research in RS fine-grained identification, 
classification and processing.

Methods
Figure 1 depicts the overall workflow of our ATSS-1. The scheme starts from the RS aircraft datasets: First, we 
use an improved conditional GAN to learn the distribution spaces of multiple aircraft type samples from random 
distributions such as Gaussian or uniform distribution. Then, we use random vectors with labels as intermediar-
ies to calculate the transformation space from the region to be simulated to the RS target. Finally, we apply the 
Poisson blending to synthesise the final RS images. The core part mainly includes two sub-networks. 1) RS-image 
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modelling AWCA-GAN, 2) embedding network GE. For the first part, RS-image modelling utilises AWCA-GAN 
to achieve more elaboration latent space representation for different RS-image types. The second sub-network 
GE extracts an optimizer mapping from input real RS scene to latent space. Because of these two sub-networks, 
the potential space of generative network and features of input real RS scene associated.

Simulated images modelling: AWCA-GAN. The specific network structure of the AWCA-GAN illus-
trated in Fig. 2, consists of a discriminator and a generator. In the AWCA-GAN generator, a fully connected 
layer is fed to extract the potential characteristics from the input. Then, three residual modules (ResBlk_G_1 to 
ResBlk_G_3) with global spectral normalisation (SN)  layers32 are stacked to relieve the gradient vanishing and 
mode collapse. Next, AWCBNA is added after ResBlk_G_1 to reallocate the inter-class-wise feature responses 
adaptively. After that, one ARSA module in the generator is employed to obtain a more robust feature repre-
sentation by establishing the remote regional relationships to extract the global geometric features. Thereafter, 
we use the ReLU activation function to optimise the generator convergence to the global optimum due to its 
advantages of unilateral inhibition, relatively wide excitation boundary, and sparse activation except in the final 
layer of the generator. At the same time, we use a convolutional layer with the tanh activation function to con-
strain the output ranges from -1–1 to ensure that the data range is consistent with the training set when it is sent 
to the discriminator. Furthermore, to introduce more significant nonlinearity and accelerated convergence into 
the discriminator, we select the Leaky-ReLU instead of the ReLU as the activation function to keep the training 
process in Nash equilibrium and set the leaky value equal to 0.2 is empirically obtained for good performance. 
Similar to cGANs of projection  discriminator24, AWCA-GAN uses projection in the discriminator. Figure 2b 
and c for more detail on ResBlk_G and ResBlk_D. Finally, we use the hinge  loss21,22 of the standard conditional 
adversarial loss to guide the network training effectively.

Adaptive weighted conditional batch normalization attention block: AWCBNA. To develop a more robust learn-
ing ability of category feature generation, an AWCBNA module is developed to unmix the feature of inter-class 
by exploring adaptive category-weighted conditional batch normalization statistics.

Figure 3 shows an intermediate data cube F ∈ R
W×H×C being fed into a 1× 1× 1 convolutional kernel to 

learn the spatial adaptive weighted matrix A ∈ R
W×H×1 . Then, an activation function (Softmax) is applied to 

normalise A and multiply F with A to get adaptive weighted channel-wise feature map M ∈ R
C×1 . To make 

Figure 1.  Overall workflow of our ATSS-1. (a) Two sub-networks in ATSS-1 and the training process. (b) 
Diagram of simulating process. When performing a simulating task, each sample is put into the trained ATSS-1 
to generate the required images and then applying the post-processing step of Poisson  blending31 to synthesise 
the final RS images.

Figure 2.  Structure details of AWCA-GAN. (a) The architecture of AWCA-GAN. (b) Residual block of the 
generator (ResBlk_G) in AWCA-GAN. (c) Residual block of the discriminator (ResBlk_D) in AWCA-GAN.
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full use of the class condition information in M, we adopt  CBN24–26 to normalise the set of adaptive weighted 
channel-wise feature map M from the batch by a pair of class-specific scale and bias parameters. We define the 
above procedure as adaptive weighted conditional batch normalisation:

where γ (c) , β(c) are the trainable scale and bias parameters specific to the c class, respectively.
To further optimise the inter-class features, we adopt a simple strategy of applying two convolutional layers 

with 1 ×1×C/4 kernel, 1 ×1× C kernel, and activation functions (Leaky-ReLU and Sigmoid). As a result, we obtain 
channel attention h(F) and then combine the channel attention h(F) and parameter ζ to rescale the intermediate 
data cube F.

where h(F) and ζ are the scaling factors, ζ initialise to 0. Through the training of h(F), ζ , and the operating fac-
tor of AWCBN(·) , AWCBN could recalibrate inter-class-wise characteristics to boost the conditional generated 
ability.

Asymmetric residual self attention block: ARSA. To achieve a more power feature-related learning, we design 
an ARSA block based on a self-attention  mechanism21, which retains meaningful long-distance features and 
suppresses interference information by establishing asymmetric global regional relations. The specific structure 
is shown in Fig. 4.

Just like self-attention21, it contains three branches: F-branch f (xi) , G-branch g(xi) , and H-branch 
h(xi) . f (xi) and g(xi) are used to calculate the attention level of the spatial position f (x) = SN

(

Wf ∗ x
)

 and 
g(x) = SN

(

Wg ∗ x
)

 , SN(·) represents  SN32. To obtain more optimised spatial characteristic parameters, before 
F-branch and G-branch are multiplied, F-channel is subsampled. Thereafter, an activation function (Softmax) 
is used to obtain different attention levels. We define the above process as asymmetric spatial attention ASA(·):

where xi represents the feature cube entering the ARSA block; Down(·) represents the max-pooling.
Integrate global spatial information and local information h(x) = Down(SN(Wh ∗ x)) through h(xi) . Finally, 

the asymmetric attention map is mapped to the input channel through a convolutional layer with a kernel size 
of 1*1. The output result obtains by combining the input data cube x and parameter γ  . 
y = x + γ × v

(

∑N
i=1 ASA(xi)h(xi)

)

 . Where γ is a learnable scalar that initialises as 0 and allocates more weight 
to the ASA map piecemeal according to the global feature in the training process.

Geospatial embedding network: GE. This section focuses on the process of mapping from an input 
sample I ∈ R

n×n×3 to the latent space (i.e., generated image G
(

z∗, y
)

 ) on trained AWCA-GAN. If the prior dis-

(1)AWCBN(M) = γ (c)
M − E[M]√
Var[M] + ǫ

+ β(c)

(2)F̂ = F + ζh(F)F

(3)ASA(xi) =
exp

(

Down
(

f (xi)
)T × g(xi)

)

∑N
i=1 exp

(

Down
(

f (xi)
)T × g(xi)

)

Figure 3.  Network framework of adaptive weighted conditional batch normalisation attention module 
(AWCBNA).

Figure 4.  Detailed architecture structure of ARSA block. The blue dotted box represents the process of ASA(·).
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tribution z∗ ∈ R
n is taken as the intermediate feature representation to establish the projection relationship, it 

can be reduced to the following minimisation problem: z∗ = minz −ExD(G(z, y), y).
GE follows a direct forward optimisation framework embedding a given sample into the manifold projection 

of a pre-trained generator. Acting from a feasible initial latent vector z, the search for an optimised vector z* by 
using gradient descent to minimise the loss function that monitors the semantic and multiple-level perceptual 
diversities between the feature of inputting samples and simulated RS data G

(

z∗, y
)

 from z∗ ∈ R
n . For the loss 

function, we define three weighted combination loss functions of style loss L style , type loss, and pixel-wise 
MSE loss:

where I ∈ R
n×n×3 is the pre-selected inputting sample, G(·) is the trained generator of AWCA-GAN, N is the 

number of scalars in the input samples, z∗ is a prior vector to be optimised. α , β , and γ are controllable hyper-
parameters. α = 0.4 , β = 0.2 , and γ = 0.4 are empirically obtained for good performance.

In Eq. 4, the first, second,and third term are style loss, type reconstruction loss, and pixel loss, respectively. 
The type reconstruction loss measures the difference between the generated image by z∗ and the pre-set type, 
which calculates the minimum value in the final feature space of the trained discriminator. Pixel loss is the 
(normalized) Euclidean distance between the generated image G

(

z∗, y
)

 and the input samples I. The style loss 
term L style (·) penalises the differences in style: radiation, textures, etc.

where x1, x2 ∈ R
n×n×3 are the input two samples, D(·) is the feature map output of the trained discriminator 

layers ResBlk_D_1, ResBlk_D_2, and ResBlk_D_3 respectively, Ni is the number of scalars in the i-th layer 
output data cube, �i is controllable hyperparameters for i-th layer, and �i = 1 are empirically obtained for good 
performance.

Related work
Dataset and evaluation metrics. Datasets To experimentally verify the algorithm’s effectiveness on the 
RS images, we collected an RS dataset (namely OPT-Aircraft_V1.0) and made them available in the  literature30, 
which contains 14 aircraft types for remote sensing globally, with a total number of 3,594 and a size of 96 × 96 
× 3. However, some aircraft types are not suitable for the study of generating models due to their small number 
of samples. Considering this, we choose seven aircraft types, including 656 Swept-back wing aircraft I, 320 
Swept-back wing aircraft III, 75 Swept-back aircraft with leading-edge II, 192 Delta-wing aircraft, 1088 Flat-
wing aircraft II, 414 Propeller aircraft II, 242 Propeller aircraft III, with a large number of samples to guide the 
learning of the proposed algorithm. In addition, we augmented the data in the dataset. We performed rotations 
of the data by 90◦ , 180◦ , and 270◦ , mirror image flipping, up-and-down flipping, and seven other operations to 
keep the subclass samples balanced and obtained a total of 30,464 aircraft RS images. Select 90% of the aircraft 
samples randomly as a training set and 10% of the aircraft samples as a testing set. The training set of aircraft is 
named OPT_Aircraft-7. All the data was limited to 32 × 32 × 3. Besides, to verify the robustness of the model, we 
selected  MNIST33, Fashion-MNIST34 as a more detailed illustration.

Evaluation metrics One metric index used in Fréchet Inception Distance (FID)  index35 to evaluate the per-
formance of the generative model. A smaller FID indicates a better generative model.

where µg and 
∑

g represent the mean and variance of the generative samples, and µdata and 
∑

data represent the 
mean and variance of the training samples, respectively. In this experiment, we used Inception-v3 as the classifier 
and used 1,000 dimensions of the penultimate layer of the network as the feature layer.

Implementation detail. 

(1) Experimental configuration: The experiment framework used was Python 3.6, the programming language 
was TensorFlow 1.14.0, and the computer operating environment was Ubuntu 18.04.3. The computer 
processor was an Intel Xeon®E5-2678 V3; the graphics card was a GeForce GTX 1080ti; the memory was 
64 GB.

(2) Image modelling: To prove the quality of the generated data, we fed  MNIST33, Fashion-MNIST34, and 
OPT_Aircraft-730 datasets into AWCA-GAN. We trained the AWCA-GAN from scratch. In order to ensure 
more stable training of the generated model, we set an imbalanced learning rate according to  reference35. 
The initial learning rate of the generator was 0.0001, and that of the discriminator was 0.0004. The maxi-
mum training epochs set at 30,000. The learning rate fell to 80% with every 300 training epochs. The entire 
process guided the generator towards the global optimum. At this learning rate setting, we observed no 
significant jump in sample quality or FID value during training. The loss of generator and discriminator 
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keep in Nash equilibrium. Because of the Leaky-ReLU activation function, the Xavier initialisation method 
was applied for the network parameters.

(3) Embedding modelling: To analyse the potential association between the RS scene and the generated images 
by the intermediate prior variable z∗ ∈ R

128 ∼ N(0, 1) , we selected a batch of pre-selected RS scene from 
the  DIOR36,  UCAS_AOD37, NWPU_VHR-1038–40,  DOTA41 dataset and high-resolution images in Google 
Earth and fed a 32× 32 embeddable region to the GE network by minimising the loss function described by 
Eq. 4. In the GE experiment, we used Adam optimiser to train the prior variable z∗ for 5000 iterations with 
a learning rate of 0.001. An outstanding embedding process should that an optimised prior vector z∗ map 
to a desired simulated sample G

(

z∗, y
)

 . In this way, it produces an image G
(

z∗, y
)

 that could learn several 
high-level semantic information from the input RS scene when passed through the trained generator.

Visual examples of AWCA-GAN. We conducted experiments on MNIST, Fashion-MNIST and OPT_
Aircraft-7 datasets to verify the AWCA-GAN algorithm’s effectiveness.

As shown in Fig. 5, the images generated by AWCA-GAN were closer to the ground-truth images and pro-
vided complete texture in the geometric structure. As a result, a more precise outline obtained between the target 
and background, and the generated samples were more dynamic, structural and diverse.

Figure 6 provided the loss values of the generator and discriminator in AWCA-GAN during training. Overall, 
the loss values of AWCA-GAN were stable on three datasets. Especially, about 5000 iterations of OPT _Aircraft-7 
dataset, about 2000 iterations of MNIST dataset, and about 4000 iterations of Fashion-MNIST dataset, the upper 
and lower boundaries of the loss function began to narrow. After convergence, the discriminator and generator 
trained steadily.

Figure 5.  Examples of generated samples of AWCA-GAN on three datasets: (a) OPT_Aircraft-7; (b) MNIST; 
and (c) Fashion-MNIST.

Figure 6.  Comparison of AWCA-GAN loss on three datasets of OPT_Aircraft-7, MNIST and Fashion-MNIST 
over training stages. (a) Loss curves of generator and discriminator on OPT_Aircraft -7 dataset over training 
iteration. (b) Loss curves of generator and discriminator on MNIST dataset and Fashion-MNIST datasets over 
training iteration.
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Evaluation of AWCA-GAN with baseline GAN models. To verify the effectiveness of the AWCA-
GAN algorithm, we compared it with the current advanced conditional generative models, including  CGAN9, 
 ACGAN10, and  SAGAN21. In this experiment, the input parameters would affect the performance of the gener-
ated model. For fair comparison, we selected the optimal parameters of the author. The visualisation results of 
CGAN, ACGAN are depicted from left to right in Fig. 7. Each column in each block represented the experimen-
tal results using the same datasets, namely MNIST, Fashion-MNIST, and OPT_Aircraft-7.

As illustrated in the visualisation results of the two models on three datasets in Figs. 5 and 7, the generated 
images from AWAN-GAN come out more distinct and more delicate than that of CGAN and ACGAN. It is the 
same as expected in our experiment in that the loss value is more stable in the transmission process resulting in 
higher image quality. In addition, the diversiform results proved the AWCBNA to solve subclass feature entan-
glement better. The ARSA block could analyse the long-range correlation of feature regions better. Similarly, we 
observed AWAN-GAN results on MNIST and Fashion-MNIST datasets that synthesise high visual fidelity data.

To further verify the excellence of AWCA-GAN, we calculated the FID score on MNIST (300 epochs), 
Fashion-MNIST (800 epochs), and OPT_aircraft-7 datasets (10,000 epochs). Lower is better. Referring to Table1, 
in MNIST and Fashion-MNIST datasets, our model achieved impressive visual effects. In the OPT_aircraft-7 
dataset, the FID score of AWCA-GAN improved significantly compared with that of the baseline GAN models. 
We could see from the score that the AWCBNA and ARSA promote effect on AWCA-GAN and improving the 
simulation results effectively.

Ablation analysis of AWCA-GAN. To explore the effects of AWCBNA and ARSA in AWCA-GAN, we 
carried out several ablation studies by adding AWCBNA and ARSA to different layers on AWCA-GAN’s gen-
erator. The detailed experimental results are listed in Table 2. Table 2 compared FID’s score that AWCBNA and 
ARSA added into different layers. All models trained in three datasets of MNIST (300 epochs), Fashion-MNIST 
(800 epochs), and OPT_aircraft-7datasets (10,000 epochs).

The AWCBNA block at the low-level data cube (Blk-1) implemented better performance than the middle-to-
high level data cube (i.e., Blk-2 Blk-3). The FID of the model ‘AWCA-GAN, Blk-1’ was improved from 0.35 to 
0.27 by ‘AWCA-GAN, Blk-3’ on MNIST. The reason for which is that the AWCBNA can untangle the entangle-
ment features better on the initial feature maps and adjust the value of the inter-class-wise features by adaptive 
weighting category conditional batch normalisation statistics. However, it only played a minor role due to the 
short channels when modelling dependencies for bigger feature maps (e.g., ResBlk-2, ResBlk-3). In addition, the 
comparison of AWCA-GAN (5th column of Table 2) and the ablation model without AWCBNA (4th column of 
Table 2) showed the effectiveness of our AWCBNA.

Figure 7.  Visual comparison of generated samples on three datasets. (a)  CGAN9. (b)  ACGAN10. From left to 
right, they are generative samples of MNIST, Fashion-MNIST, and OPT_Aircraft-7 datasets.

Table 1.  Evaluation of FID values on MNIST, Fashion-MNIST, and OPT_aircraft-7.

Method CGAN9 ACGAN10 SAGAN21 AWCA-GAN

MNIST 2.88 0.94 0.30 0.27

Fashion-MNIST 12.84 10.67 0.81 0.31

OPT_aircraft-7 38.37 40.23 19.5 7.5

Table 2.  Ablation study on datasets of MNIST, Fashion-MNIST, and OPT_aircraft-7, Blk-n means to add 
AWCBNA after the n-th ResBlk feature maps, and the best FID report.

AWCBNA No No No Blk-1 Blk-2 Blk-3 Blk-1

ARSA No SA
√ √ √ √

No

MNIST 0.88 0.54 0.47 0.27 0.30 0.35 0.40

Fashion-MNIST 1.35 1.13 0.76 0.31 0.37 0.42 0.54

Aircraft-7 23.8 21.4 19.3 7.5 8.1 8.8 14.8
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Based on the ablation network, we performed another experiment to inspect the effect of ARSA. AWCA-GAN 
with the ARSA achieved better performance (4th column of Table 2) than AWCA-GAN without the ARSA (2nd 
column of Table 2) and FID metrics of AWCA-GAN with the self-attention (3rd column of Table 2) reached 
0.47, 0.76, and 19.3 on the three datasets. As described in methods, we added the ARSA block to the ResBlk-3 
to catch remote dependencies via asymmetric overall regional operations. Compared with the baseline results, 
the ARSA demonstrated the effectiveness by establishing asymmetric residual distant portions relationships.

Examples of latent space interpolation. To understand the latent space of generated samples in 
the same classes on MNIST, Fashion-MNIST and Aircraft-7 datasets, we initialized the prior distribution 
z ∈ R

128 ∼ N(0, 1) in two latent vectors, say zstart and zend , and interpolated it with the adjustable parameter 
µi to get continuous latent space interpolation vectors zi = µiz start + (1− µi)z end ,µi ∈ [0, 1] . Figure 8 shows 
the latent space interpolation results G

(

z∗, y
)

 on three datasets of trained AWCA-GAN. For OPT_Aircraft-7 in 
Fig. 8c, we can infer that the AWCA-GAN has learned interesting and pertinent latent space representations. 
Specifically, at 17 vectors in a series of interpolations zi , the evolved potential space has smooth transitions, and 
each generated image in latent space appears to be an aircraft. In row 2 of Fig. 8c, a flat-wing plane turned from 
southwest to south gradually. In row 1 of Fig. 8c, a flat-wing plane faced southwest and turned south step by 
step. These results demonstrated that our generative model could maintain the semantic context in the poten-
tial space; thus, confirming that the AWCA-GAN succeeded in controlling the modified region with the user-
specifiable embedding coefficients.

Analysis of embedding results by using GE network. The embedding results were computed by GE 
with several samples I ∈ R

n×n×3 and an embedding label y. In Fig. 9a, two real RS scenes and one aircraft image 
were fed into the GE network and then the input samples were presented to the seven classes embedding results 
on the OPT_Aircraft-7 dataset. It demonstrated that the GE network learns features of the input samples and 
finds more nuanced latent space representations to engender excellent embedding. For example, in the top row 
of the dark background and the middle row of the bright scene in Fig. 9a, the embedding aircraft exhibited 

Figure 8.  The potential space representation of 17 points between two random vectors zi indicates that the 
interpolation space has learned smooth and meaningful semantic information transitions based on the same 
pair of latent variables, allowing nice inter-class interpolation.

Figure 9.  Embedding results and loss value on OPT_Aircraft-7 datasets. (a) Each row displays the embedded 
results from the various ground-truth samples mapped to seven aircraft types, respectively. (b) Embedding 
results on input seven aircraft types samples. The red box represents the ground-truth 32 pixels × 32 pixels 
images. The corresponding rows denote that converted to other classes in turn. (c) Loss values vs. the number of 
optimisation steps on OPT_Aircraft-7.
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multiple intensity levels according to the input RS scenes brightness information; thus confirming that the GE 
network could capture luminance details successfully. In addition, the bottom row in Fig. 9a also demonstrated 
that the GE network could capture the structural details of input aircraft samples such as direction, lighting, and 
shadows.

Figure 9b and 9c depicted the embedding results and the loss curve of input RS images on OPT _Aircraft-7. 
The GE network can learn the intensity of light and the direction of shadows and so on from the input aircraft 
samples in the process of embedding. The loss function of the OPT_Aircraft-7 dataset converges at around 800 
optimisation steps.

Furthermore, we performed embedding experiments on MNIST and Fashion-MNIST datasets. Figure 10 
showed the five embedding examples and loss values. Figure 10a presented the embedding result of the number 
0 from 1 to 9 and four embedding results of Fashion-MNIST samples. Interestingly, the converted 1 to 9 capture 
narrow texture features from the input digit 0 samples successfully, and it appears to be written by the same 
person (e.g., row 1 in Fig. 10a). Similarly, the converted clothes have a similar skinniness to the input clothes 
samples (e.g., row 2,4, column 1,4 in Fig. 10a). This phenomenon revealed that the GE network has good gen-
eralisation and expression power. The well-converged train history of GE was shown in Fig. 10b and c. The loss 
function of the MNIST dataset converged at approximately 800 optimisation steps, and the Fashion-MNIST 
dataset converged at approximately 1200 optimisation steps.

Simulation results of ATSS-1. Because trained GE and AWCA-GAN models cannot disentangle objects 
from the ground-truth images, naively pasting the generated clip to the target image can produce artifacts in the 
region surrounding the object of interest. We cleaned up these artifacts with Poisson blending to the region of 
interest. Figure 11 depicted four examples of the application of ATSS-1 and direct pixel collage comparison. We 
succeeded in making semantic modifications like “changing aircraft type” (Row 2, column 1 in Fig. 11). Column 
4,8 in Fig. 11, the embedding samples fused into the real RS scene using Poisson fusion, which appears naturally 
in the final fused results by changing the intensity of the feature space. The direct collage method (column 3,7) 
exposed abrupt boundary information between the aircraft and the background by comparison. It was found 
that the ATSS-1 could synthesise simulated images with high visual and satisfactory visual effects.

Figure 10.  Embedding results and loss value on MNIST and Fashion-MNIST datasets. (a) The red frames 
represent the ground-truth 32 pixels × 32 pixels images x, and columns 2 to 10 represent the embedding results, 
G
(

z∗, y
)

 , by the GE with various class labels y. (b) Embedding loss values vs. the number of optimisation steps 
on MNIST. (c) Embedding loss values vs. the number of optimisation steps on Fashion-MNIST datasets.

Figure 11.  Examples of ATSS-1 vs pixel collage (naive copy-and-paste). The purple border presents the real 
scenes. The arrows represent the relevant parameters of the ATSS-1, including geographical coordinates, 
embedding type, direction, and resolution. The red-coloured region and blue-coloured region in columns 2,6 
present the blending mask, where red represents the collage area and blue represents areas that are not collaged. 
Column 3,7 represent pixel collage. Columns 4,8 depict the Poisson collage.
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Discussion
We proposed a novel simulation system, based on an improved conditional GAN to achieve different RS images’ 
4V modelling. The ATSS-1 put forward a new exploration idea and solved three existing problems. First, for the 
issue of feature entanglement between the sub-classes using simple GAN to generate different sub-class images, 
we proposed an AWCBNA module in AWCA-GAN. The AWCBNA reassigned the category-wise responses adap-
tively by mining the inter-class-wise feature statistics. Second, we improved the self-attention module ARSA for 
more detailed texture modelling. In ARSA, an asymmetric self-attention map was formed in the spatial channel 
to achieve better feature representation. Third, we introduced the GE network in the front-end of AWCA-GAN 
to optimise the mapping from the input RS scene to a latent space of the generated target. In this manner, we 
preliminarily realised that the generated targets could change with RS scenes such as brightness, shadow, and 
direction. Particularly, we collected and published an aircraft dataset type of OPT_Aircraft-7, which was suc-
cessfully applied in our simulation experiment and its effectiveness was demonstrated. In addition, we also 
performed ablation experiments on the proposed modules and compared them with the state-of-art methods, 
showing superior results. Enabled by the disentanglement and the fine space mapping properties, ATSS-1 realised 
4V modelling on a given RS dataset.

Overall, this paper preliminarily explores a 4V modelling method for a variety of RS aircraft. Our generative 
model joint embedding network demonstrates excellent development potential for the M&S of RS. As the first 
attempt, we mainly conducted simulation analysis on the OPT_aircraft-V1.0 dataset and configured a simulation 
unit at a low resolution of 32*32 pixels. Future research will improve the resolution of simulation targets to 64 * 
64 pixels or 128 * 128 pixels. At the same time, we will expand the RS target dataset to realise different types of 
target simulation, such as buildings, traffic vehicles, and rivers to provide a rich and influential data foundation 
for high-resolution RS.

Data availability
The OPT-Aircraft_V1.0 datasets is available online at http:// www. geodoi. ac. cn/ WebEn/ doi. aspx? Id= 1493.
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