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Abstract: To understand the effects of thermal annealing on the structure of GexAsySe1−x−y thin
films, the thermal evolution of these films was measured by the in situ X-ray diffraction (XRD) at
different temperature (773 K or 1073 K) in a vacuum (10−1 Pa) environment. The entire process of
crystallization can be observed by using in situ XRD, which is from the appearance of a crystal struc-
ture to melting liquid-state and ultimately to the disappearance of the amorphous structure. In the
crystallized process, the corresponding state-transition temperatures Tx (the onset crystallization
temperature), Tl (the transition temperature from glassy-state to liquid-state), Tp (peak crystallization
temperature) are linear with MCN (Mean Coordination Number). In order to obtain information
about changes in the amorphous structural origin of the anneal-induced material, the samples were
analyzed by in situ Raman spectroscopy. Analysis of the results through decomposing the Raman
spectra into different structural units showed that the Ge−Ge, As−As, or Se−Se homopolar bonds
as the nonequilibrium minority carriers could be found in films. It suggests that the formation of
these bonds cannot be completely suppressed in any case, as one falls and another rises.

Keywords: chalcogenide glasses; GexAsySe1−x−y; conduction mechanisms; electrical conductivity

1. Introduction

Chalcogenide glasses are the networks formed usually along with Si, P, Ge, As, Ge,
or Sb containing one or more of the chalcogen elements, such as sulfur, selenium, and tel-
lurium from group VI of the periodic table. Chalcogenide glasses, an important photonics
material, are applied to mid-infrared waveguide devices, supercontinuum optical fiber,
optical modulators, and non-volatile memory [1] due to their unique properties [2–4].
Under certain voltage, illumination, or heating conditions, it is necessary to study the
threshold switching mechanism of chalcogenide glasses to obtain the changes of crystal
texture, optical refractive index, or resistance [5–7]. Although it is generally believed
that threshold switching is an important electronic process, its specific physical mech-
anism is still suspected [8–10], which is also considered as a kind of trapped carrier
transport, namely small polaron transition [11–14] or thermally induced Poole Frenkel pf
conduction [15,16]. The systematic introduction of the threshold switch is the transport
mechanism of the local state in an amorphous semiconductor conceptually, especially in a
nonequilibrium state [17–19]. Zhang et al. [20] studied the conductivity of two-dimensional
chalcogenide material by using density functional theory and experimental heating meth-
ods. The results show that the conductivity of the two-dimensional material can reach
192 cm2 V−1 s−1. They believed that it is a promising material for nano electronic devices.
In addition, the structural changes of amorphous chalcogenide films are still the basis of
their applications and mechanisms. The relationship between the optical refractive index
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of GexAsySe1−x−y chalcogenide glass film under illumination and the glass transition
temperature and crystal state under heating was studied, and the most suitable and stable
optical waveguide material was found. The effect of light on the structure and composition
of amorphous sulfur system materials was studied by Zhang et al. [21]. The results show
that the best glass composition for waveguide manufacturing is Ge15 series chalcogenide
materials. We know that for the chalcogenide material, the main properties of the material
will be changed as the different compositions of elements. Generally speaking, the in-
crease in each element, such as Ge, will change the application direction of materials.
The reason is different elements bonding in different ways, which eventually leads to the
different microstructure. However, there are still problems that need to be solved further.
The research method of structural change has a profound influence on the application and
main properties of materials. Although the best material selection of optical waveguide
can be obtained by illumination, it is not a favorable research method for chalcogenide
materials. The dependence of elements in chalcogenide materials on temperature cannot
be underestimated, but there is a lack of such a systematic research method at present.

In this research, it is more conveniently observed under high-resistance chalcogenide
glass thin film, exploring the threshold conversion rule of crystalline and electrical proper-
ties of GexAsySe1−x−y chalcogenide glass thin-film MCN (Mean Coordination Number)
under heating. Before this, the properties of GexAsySe1−x−y have been systematically char-
acterized [22]. Here, the in situ heating method is used in the testing of XRD and Raman.
The purpose of our study is to find out the effect of temperature on the microstructure of
materials accurately by this method so as to guide our next research on the application
of chalcogenide materials. Therefore, this study has reference value for the application of
chalcogenide materials.

2. Materials and Methods
2.1. Source Material

The source material GexAsySe1−x−y (Aldrich, Shanghai, China) was composed of Ge
(99.99%, 4N), As (99.99%, 4N), Se (99.99%, 4N). The target was prepared by the traditional
melt–quenching technique. The different compositions of GexAsySe1−x−y bulk glasses
ranged from 5 < x < 33 and 5 < y < 35.

2.2. Thermal Evaporation

One hundred millimeter-diameter Silicon wafers (Aldrich, Shanghai, China) were
placed at a distance of 40 cm from the baffled box evaporation source that was set in a
sample holder rotated in planetary motion. Before it was deposited, the pressure of the
chamber was evacuated to 10−6 Torr, and then an ion gun irradiated the substrates by a
50 eV, 1A Ar+ beam for 3 min aiming to enhance the impurities and surface cleanliness.
The films with a thickness of 1 µm were deposited at a rate of 2–5 Å/s. For the various
experiments, they were then cut into small film pieces with the size of 2 × 2 cm2.

2.3. In Situ Measurements

The samples were heated on a Pt hot plate and subjected to a real-time XRD test to
monitor the phase transition of the thin film under a continuous heating environment.
The temperature heated from room temperature to 900 ◦C with a step of 100 ◦C, then cooled
to room temperature and was monitored for phase reversibility in this process. The resis-
tance of GexAsySe1−x−y chalcogenide glass film was measured by the four-probe method
and a real-time variable temperature heating resistance test due to the higher sheet resis-
tance. The sample area was evacuated to 10−2 Pa to avoid the influence of airflow on the
resistance change during the testing for accurate resistance changes.

2.4. Characterization

According to the energy dispersive X-ray analysis (EDX) installed under a scanning
electron microscope (JEOL Ltd., Tokyo, Japan) using commercial Ge33As12Se55 as the refer-
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ence standard, the chemical compositions of the bulk glass and the films were accessible to
be analyzed. The amorphicity of the bulk glass and films was examined by X-ray diffrac-
tion (XRD) using a traditional X-ray diffractometer (Bruker, Karlsruhe, Germany) in a 2θ
scan. The information on bonds vibration and micro-structure was revealed by Raman
spectra (BWTEK MiniRam II, Newark, NJ, USA). The electrical resistance was tested by the
Hall-effect (Tektronix, Inc., Beaverton, OR, USA). The film surface morphology was tested
by AFM (Atomic Force Microscope) using Veeco (Multimode, non-contact measurement,
256 × 256, Bruker, Santa Barbara, CA, USA) instrument.

3. Results and Discussion
3.1. Structural Properties

To study the effects of thermal annealing on the structure of GexAsySe1−x−y thin films,
the thermal evolution of these films was measured by in situ X-ray diffraction (XRD) in the
temperature range from 773 K to 1073 K in a vacuum (1–10 Pa). Figure 1 shows the X-ray
diffraction patterns of GexAsySe1−x−y thin films without thermal annealing. A long-range
structural disorder characteristic of the amorphous network in chalcogenide glasses films
was confirmed by the asymmetric and broad peaks. These curves indicated, regardless of
the difference in chemical composition, the amorphous nature of all initially prepared films.
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Figure 1. X-ray diffraction patterns of GexAsySe1−x−y thin films measured at room temperature.

Figure 2 shows the in situ XRD curves of the GexAsySe1−x−y thin films under differ-
ent annealing temperatures: (a) Ge10As20Se70, (b) Ge17.5As11Se72.5 and (c) Ge33As12Se55.
The reason why we choose these three samples to measure by in situ XRD was that they
had different resistance changing trends, as mentioned above. The second reason was that
MCN values of these three films were distributed in the low, middle, and high values of
2.4~2.78, respectively. For the glassy system GeaAsbSec (a + b + c = 1), the value of MCN
is given by: MCN = 4a + 3b + 2c. Each XRD curve in Figure 2 shows the cubic Pt phase
with (111) diffraction peak at 39.97◦, (200) diffraction peak at 46.52◦, and (220) diffraction
peak at 68.16◦. The above peaks can be assigned to the underlying Pt heating wafer be-
cause the XRD is an in situ heating test method. Therefore, when heating the substrate,
there was a Pt heating source under the substrate, and then it was heated while testing.
Therefore, the peak position of Pt was detected at that moment. Initially, broad peaks
at 29.5◦,17.9◦ and 13.85◦ were observed, meaning the existence of the amorphous glass
phase under 300K in three samples. Then the higher annealing temperature developed
preferential growth of identified crystal phases and a significant reduction in the broad
peak intensity. The sharp peaks at 29.34◦ and 14.95◦ of Ge17.5As11Se72.5 and Ge10As20Se70
samples corresponded to the crystal GeAsSe phase (Jade PDF number: 27-0233). In the case
of the Ge33As12Se55 sample, the (201) peaks at 26.52◦, (110) peaks at 20.84◦ corresponded
to the Hexagonal GeSe phase (Jade PDF number: 24-0459). And the (310) diffraction peak
at 31.76◦ corresponded to the Monoclinic GeAs phase (Jade PDF number: 44-1126). Further
increments, up to 773 K or 1073 K, resulted in the vanishing of the broad, amorphous
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peak at 29.5◦. It was found that the position of lattice peaks was related to the chemical
composition content. The most convincing evidence was that the Ge33As12Se55 sample
showed different peak positions for rich-Ge content. According to [23], the glass transi-
tion temperature Tg of chalcogenide glass depends on the Mean Coordination Number
(MCN, defined as the sum of the respective elemental concentrations times their covalent
coordination number) and thus depends on the rigidity of the vitreous network. Clearly,
from glassy state to crystal state, there were two transition points by in situ XRD whose
corresponding transition temperatures were onset crystallization temperature Tx and peak
temperature Tp. When continuing to heat the glass over Tg, crystallization occurred at
Tx, and the best crystal peak existed at Tp. Both Tx and Tp also depended on the MCN
and the rigidity of the vitreous network, shown in Figure 3. It is worth mentioning that a
completely amorphous phase suddenly appeared between Tx and Tp in the Ge10As20Se70
film sample with the lowest MCN value. The lower MCN, the lower transition temperature
was confirmed, including Tx, Tp, and Tl. Therefore, the amorphous phase reappeared at
the temperature Tl, which was the transition temperature from glassy-state to liquid-state.
Essentially, for the chalcogenide glass films, the electron distribution of the outer layer of
the atom and the network structure of molecules were major determinants of resistance
and crystal phase with the increase in annealing temperature. Using in situ XRD, the entire
process of crystallization could be observed, which was from the appearance of the crystal
structure to melting liquid-state and ultimately to the disappearance of the amorphous
structure. In the crystallization process, the corresponding state-transition temperatures Tx,
Tl, Tp were linear with MCN. The influence of composition on different lattice structures
could also be judged by the peak position. Based on the above results, it is accessible
to expand the glass phase region and increase the initial crystallization temperature by
introducing targeted protective atmospheres or doping inhibitors.
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and (c) Ge33As12Se55.

3.2. In Situ Raman

The samples were analyzed by Raman spectroscopy. The broad peaks appeared in
the Raman spectra between 150 cm−1 and 330 cm−1 for the amorphous nature of the
glasses and the proximity of the elements in the periodic table. Figure 4 depicts the Raman
spectra for the initial GeAsSe deposited with increasing MCN by changing the contents
ratio and the results of decomposing the spectra into individual peaks. With the MCN
and germanium content increasing, the position of the broad peak occurred in a blue shift.
The excited light of Raman was 785 nm.
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Figure 5 shows the in situ Raman patterns of GexAsySe1−x−y thin films heated to
temperature (473K), (a) Ge20As10Se70, (b) Ge17.5As11Se72.5 and (c) Ge33As12Se55. Choosing
this temperature can avoid annealing temperatures higher than that of the glass transition
temperature Tg. With the increase in annealing temperature, the Raman signal intensity
increased greatly for phononic vibration amplitude.
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The red arrow indicates the location of the new peak. When the temperature rose to
423 K, the red scissors showed that the new peak appeared near 173 cm−1 in Figure 5a,b,
231 cm−1 and 221 cm−1 in Figure 5c. The new Raman modes of Ge−Ge homopolar bond
were observed in Ge20As10Se70 and Ge17.5As11Se72.5 samples, A1(ν2) modes of As4Se3
cage-like molecules in Ge33As12Se55 sample.

Because the wide Raman peak corresponded to the overlapping individual vibration
peak, the Raman peak was decomposed into several characteristic vibration peaks by
computer simulation. Each characteristic vibration peak represented a single characteristic
of each vibration that can be directly recognized. Figure 6 shows that the Ge−As−Se
glass network consists of basic structural units, specifically GeSe4/2 tetrahedron, AsSe3/2
pyramid, and Ge−Ge or Se−Se homopolar bonds. Raman peaks drifted with the increase
in temperature. Some of them had a blue shift; others had a red shift. The reason for this
phenomenon is that the change in bonding energy leads to the change in microstructure.
The peaks at 195 cm−1 and 213 cm−1 can be attributed to Corner-sharing (CS) and edge-
sharing (ES) GeSe4/2 tetrahedral units [24,25]. The bands with their maximum at 230 cm−1

and 268 cm−1 were mainly connected to the AsSe3/2 pyramidal unit [26]. In addition,
ethane-like Ge–Ge bond vibration modes could be observed at ~300cm−1 and ~175 cm−1

in Se-poor glasses [27,28]. The vibrational modes of Se chains or rings had Raman peaks at
250 cm−1 [24]. The As–As vibration modes had Raman peaks at 247 cm−1 [26,29–33].

To see the evolution of the bonds with increasing annealing temperature clearly,
Figure 7 presents the relative ratio of the area of each decomposed peak to the entire
integrated area of Raman spectra as a function of annealing temperature. Obviously,
GeSe4/2 bonds existed in all cases, and the content was not less than 30%. The percentage
of new peaks mentioned in Figure 5 was too small compared with the original area, so they
did not appear in Figures 6 and 7. For Ge20As10Se70 film, the GeSe4/2 Corner-sharing (CS)
mode and GeSe4/2 edge-sharing (ES) mode transformed each other near the glass transition
temperature. For Ge17.5As11Se72.5 film, the contribution of Ge–Se increased while that of
As–Se decreased. Specifically, the content of Ge−Ge bonds changed from 13% up to about
53%. At the same time, the content of the Se−Se bond decreased from 42% to 13%. For the
Ge33As12Se55 film, the contribution of Se–Se and As–Se bonds were converted to each
other. As one fell, another rose. Homopolar Ge−Ge and Se−Se bonds all existed in both of
rich-Se film Ge17.5As11Se72.5 or rich-Ge film Ge33As12Se55. With the increase in temperature,
chemical bonds affected or inhibited each other near the glass transition temperature.

In our previous work, the refractive index and the optical bandgap were almost
constant under long-time thermal annealing or irradiation by sub-bandgap light [34–36].
Generally, GexAsySe1−x−y thin films had high resistance values ranging from 1012 to
1013 Ω. The reason can be explained by the fact that a large concentration of donor and
acceptor states that exist near the Fermi level tend to be localized in the energy gap. For the
Ge−As−Se high resistivity structure system, under unbalanced conditions, the number
of nonequilibrium minority carriers changes significantly, resulting in a strong change in
electrical performance. So the changes of the Ge−Ge and Se−Se homopolar bonds are
more concerned.

The resistance decreased with the increase in annealing temperature in Ge20As10Se70
film, as shown in Figure 8. With the increase in annealing temperature, the resistance
increased first and then decreased in rich-Se Ge17.5As11Se72.5 film and rich-Ge Ge33As12Se55
film. For rich-Se and rich-Ge films, the nonequilibrium minority carriers were Ge−Ge or
As−As bonds. Specifically, the number of Ge−Ge bonds of Ge20As10Se70 was relatively
small, so the electrical properties changed greatly.
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Figure 6. The set of in situ Raman spectra of GexAsySe1−x−y thin films up to temperature (473 K), de-
composing the spectra into individual peaks. (a) Ge20As10Se70 (b) Ge17.5As11Se72.5 (c) Ge33As12Se55

and Ge20As10Se70.

The AFM image of the Ge17.5As11Se72.5 thin film is demonstrated in Figure 9. The whole
image was taken at a scale of 1 × 1 µm. The surface morphology of the films was compact
and uniform. The larger particles on the film surface were also found, which were the
impurity particles absorbed on the film surface during thermal evaporation. On the whole,
the preparation of the thin film was successful without big defects. The uniformity of
morphology also indirectly indicated that the microstructure of the material was stable,
and its transmission characteristics should be kept at a certain value.
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4. Conclusions

The series of Ge–As–Se glasses films in which MCN from 2.46 to 2.78 was achieved by
this work. Thermal kinetics analysis of in situ measures indicated that the change in crystal
structure from an amorphous structure to a melting liquid state. In the crystallization
process, the corresponding state-transition temperatures Tx, Tl, Tp were linear with MCN.
Analysis of the results through decomposing the Raman spectra into different structural
units showed that the Ge−Ge, As−As, or Se−Se homopolar bonds could be found, and the
nonequilibrium minority carriers contributed to the conduction process so that the elec-
trical properties changed greatly. The glasses exhibited homopolar bonds with changing
temperature; thus, the lowest thermal loss is promising for applications.
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