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2.1.  INTRODUCTION

Use of plant-based materials dates back to early periods of human existence 
with several ancient records that provide formulations and evidence of phyto-
therapy. The knowledge derived from ancient and traditional systems of medi-
cine has now transcended to the modern pharmaceutical industry. The focus of 
any phytochemical research is often to discover new drugs or drug leads from 
medicinal plants. One of the important issues in medicinal plant research is the 
appropriate selection of target plant species that may provide lead to new drugs. 
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Throughout the history of drug discovery from plants, serendipity has played a 
significant role (Kinghorn, 1994; Kubinyi, 1999). For example, the discovery 
of dicoumarol from fatal cattle poisoning from Melilotus officinalis was simply 
a serendipitous discovery (Kubinyi, 1999), which then led to the development 
of the well-known anticoagulant warfarin (Fig. 2.1). Conducting research with-
out any working hypotheses may produce such unexpected discoveries, but the 
chances of success are much slimmer than any targeted approach. Research on 
medicinal plants, thus, requires a thorough knowledge of their various proper-
ties that may reflect the hitherto unknown medicinal properties from the plants. 
Challenges lie in devising appropriate methods to uncover the existing or po-
tential medicinal properties as well as selecting the right plants that may fulfil 
these criteria.

A plant is said to be ‘medicinal’ if it possesses certain medicinal or curative 
properties against any ailment or group of ailments. Efficacies of the herbal 
medicine or phytotherapy in their treatment of several diseases may sometimes 
be linked to placebo effects, but often involve active natural products mostly 
of low molecular weight that possess ‘drug-like’ properties. Earliest known in-
vestigation of bioactive plants dates back to 3000 BCE with Egyptians scrolls 
detailing these plants along with their medicinal properties. Modern study of 
bioactive compounds isolated from living organisms for therapeutic purposes 
began around 200 years ago with the isolation of morphine by F.W. Serturner 
(Schmitz, 1985). After this, there was no turning back, but to accelerate the pro-
cess of phytochemical discoveries with tremendous advances in phytochemical 
methods and medicinal chemistry and allied disciplines.

Plant-based medicines have contributed to (and have been continuously do-
ing so) the advancement of modern medical treatments and provision of new 
drug candidates. However, sometimes the progress in medicinal plant research 
has somehow been negatively impacted by the introduction of various mod-
ern technology-based developments in synthetic medicinal chemistry, e.g., 
combinatorial chemistry, and by the sheer completion in library-based high-
throughput-screening (HTS) process in modern drug discovery scene. However, 
the inherent chemical diversity and structural novelty that natural products offer 
are the best, and for this very reason, natural products or drug discovery from 
plant remains as one of the main sources of new drugs. One of the bottlenecks 
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FIG. 2.1  Dicoumarol from Melilotus officinalis, and the well-known anticoagulant warfarin.
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in phytochemical drug discovery is probably the arduous protocols, and in ad-
dition, the overall cost in conventional plant drug discovery methodologies 
sometimes can be prohibitive for any drug discovery initiative when it comes 
to cost-effectiveness. To mitigate some of these issues, various stages of plant-
based drug discovery programmes require much smarter approach and incor-
poration of new computational approaches coupled with mathematical models.

Thousands of structurally diverse bioactive compounds have evolved dur-
ing plant development and evolutionary processes, sometimes to offer plant the 
necessary protection against herbivores and pathogens, while some others to 
serve as signal compounds to facilitate reproduction, as antioxidants and UV 
protectants. Isolation and analysis of potential bioactive phytochemicals may 
include generation of a hypothesis of the target receptor for a particular disorder 
and the subsequent screening of the in vitro and/or in vivo biological activities 
of the candidate drug. The major challenge in phytochemistry is to describe and 
understand the diversity of these molecules, their modes of action, and determi-
nation of their natural combinations found in plants (Sarker and Nahar, 2012; 
Wink, 2015). However, right at the beginning of any plant-based drug discovery 
programme, probably the most important task is to appropriately select the me-
dicinal plants from a vast array of plants available on the earth that may possess 
expected or desired bioactivity.

Success of any drug discovery programme often depends on accurate data 
on pharmacokinetics and metabolism. Initiation of absorption, distribution, me-
tabolism, excretion, and toxicity screening has contributed to the success rate 
of compounds during clinical trials. Pharmacokinetic parameters provide infor-
mation for future experiments involving animal model and clinical studies for 
selection of the dose levels and frequency of administration. Apart from these, 
various techniques and approaches have been attempted to predict potential me-
dicinal activity of plants. One of such attempts is application of phylogenetic 
methods and chemotaxonomic understanding to determine the pattern of evo-
lution of various groups of specialized metabolites and deriving a correlation 
between phylogeny and biosynthetic pathways (Rønsted et  al., 2012). There 
are also attempts to correlate the taste of medicinal plants with their ethno-
pharmacological activities (Gilca and Barbulescu, 2015). These novel or im-
provised methods are increasingly using various mathematical modelling and 
computational approaches such as regression analysis, data mining, or analys-
ing structure-activity relationships (see Chapters 1 and 7).

The fundamental aim of this chapter is to present an overview of methods 
and processes involved in plant selection by utilizing various mathematical 
modelling and computational techniques.

2.2.  MATHEMATICAL MODELS

A mathematical model can be defined as a description of a system using math-
ematical concepts and language to facilitate proper explanation of a system or 
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to study the effects of different components and to make predictions on patterns 
of behaviour (Abramowitz and Stegun, 1968). The process of constructing a 
mathematical model is often called mathematical modelling (Press et al., 1987).

Mathematical modelling is known by various names, such as, predictive 
modelling, simulation, or decision analysis. A traditional mathematical model 
comprises four major elements:

1.	 governing equations;
2.	 defining equations;
3.	 constitutive equations; and
4.	 constraints.

Mathematical models depend on advanced computational tools and can sim-
ulate medical outcomes under some given parameters. Some common meth-
odologies are the Markov Chain and Monte Carlo simulations. Mathematical 
modelling can be applied for predicting outcomes. It is particularly helpful 
when limitations like a rare event prohibit repeating actual studies or expanding 
research on clinical trials. Innovative use of this technique includes estimation 
of missing data points. While common strategies for replacement of missing 
values include a point of central tendency (e.g., mean or median), these methods 
usually have cut off criterion for the minimum allowable proportion. There are 
technical limitations in preserving the variance.

The Markov Chain was first used in the 1940s to model nuclear reactions 
(McKean, 1966). It is a series of conditional probabilities in a fixed dependent 
order. This technique was generalized from its limited applications to different 
disciplines, where one could not derive a single probability function. A Markov 
process, named after the Russian mathematician Andrey Markov, is a stochas-
tic process that satisfies the Markov property. Simply, a process satisfies the 
Markov property only if one can predict the future of the process based solely 
on its present state just as well as one could know the process’s full history. A 
Markov chain is a type of Markov process that has either discrete state space 
or discrete index set, often representing time, but the precise definition of a 
Markov chain may vary.

Monte Carlo simulation is a series of random draws, simulating an event 
within the known parameters of the probability distribution of the event. It is 
a computerized mathematical technique or algorithm that allows people to ac-
count for risk in quantitative analysis and decision-making. Monte Carlo sim-
ulation offers the decision-maker with a range of possible outcomes and the 
probabilities they will occur for any choice of action. This simulation technique 
came as a useful application in the time of Markov Chain processes. In principle, 
Monte Carlo methods can be used to solve any problem having a probabilistic 
interpretation. By the law of large numbers, integrals described by the expected 
value of some random variables can be approximated by taking the empirical 
mean of independent samples of the variables. When the probability distribu-
tion of the variable is parameterized, mathematicians often use a Markov Chain 
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Monte Carlo (MCMC) sampler (Del Moral et al., 2006; Kroese et al., 2014). 
MCMC estimated value preserves the actual variance. Monte Carlo simulation 
has several advantages over deterministic or ‘single-point estimate’ analysis. 
Some of those advantages are:

1.	 Probabilistic results: Results not only display what could happen, but also 
how probable each outcome is.

2.	 Graphical results: Monte Carlo simulation-generated data can be easily pre-
sented in graphs of different outcomes and their chances of occurrence. This 
is particularly important for informing findings to other stakeholders.

3.	 Sensitivity analysis: Deterministic analysis sometimes makes it difficult to 
see which variables influence the outcome the most. However, in Monte 
Carlo simulation, it is easy to observe which inputs have the biggest effect 
on bottom-line results.

4.	 Scenario analysis: It is extremely difficult to model different combinations 
of values for different inputs to see the effects of truly different scenarios in 
deterministic models, but Monte Carlo simulation clearly demonstrates corre-
lations between inputs and several values when certain outcomes are achieved.

5.	 Correlation of inputs: In Monte Carlo simulation, it is possible to model 
interdependent relationships between input variables.

An enhancement to Monte Carlo simulation is the use of Latin Hypercube 
sampling (LHS), which samples more accurately from the entire range of dis-
tribution functions. LHS, first introduced by McKay in 1979, is a statistical 
method for generating a near-random sample of parameter values from a mul-
tidimensional distribution (McKay et  al., 1979; Tang, 1993). The sampling 
method is often used to construct computerized experiments or for Monte-Carlo 
integration.

Many mathematical modelling approaches, including simulated data, have 
been applied in determining the medicinal properties of plants. Some examples 
of the applications of mathematical modelling in predicting medicinal proper-
ties and plant selection are discussed in Section 2.4.

2.3.  COMPUTATIONAL MODELS IN DRUG DISCOVERY

A computational model is a mathematical model in computational science that 
requires extensive computational resources to study the behaviour of a complex 
system by computer simulation. Thus, computational modelling refers to the 
use of computers to simulate and study the behaviour of complex systems us-
ing mathematics, physics, and computer science. A computational model may 
contain numerous variables that characterize the system under investigation.

Computer-aided drug discovery (CADD) methods contribute significantly 
to the development of therapeutically important small molecules, either from 
synthetic or natural sources (Song et al., 2009). CADD methods significantly 
decrease the number of compounds necessary to screen, while retaining the 
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same level of lead compound discovery. Many compounds predicted to be inac-
tive can easily be skipped, and those predicted to be active can be prioritized, 
thus reducing the cost and workload of a full HTS screen without compromising 
lead discovery. CADD methods increase the hit rate of novel drug compounds 
as it uses a much more targeted search than traditional HTS and combinatorial 
chemistry. It not only aims to explain the molecular basis of therapeutic activity, 
but also does help predict possible derivatives for improved activity. Mainly the 
methods can be classified as structure-based or ligand-based methods (Sliwoski 
et al., 2014).

Structure-based methods rely on the knowledge of the target protein struc-
ture to estimate interaction energies for all compounds tested. On the other 
hand, ligand-based CADD utilizes the knowledge of known active and inactive 
molecules through chemical similarity searches or construction of quantita-
tive structure-activity relationships (QSAR models). Important tools, e.g., 
target/ligand databases, homology modelling, and ligand-fingerprint meth-
ods, are necessary for successful implementation of various computer-aided 
drug discovery/design methods in any modern drug discovery programme. 
Computational methods for toxicity prediction and optimization for favourable 
physiologic properties are also parts of modern drug discovery and design pro-
tocols. Various approaches of computer-aided drug design can be represented by 
the following figure (Fig. 2.2) (Aparoy et al., 2012).

Many mathematical modelling approaches, including simulated data, have 
been used to determine the medicinal properties of plants. Computational meth-
ods are powerful knowledge-based approach that helps to select plant material 
or natural products with a high likelihood for biological activity. These methods 
can also offer rationalization of biological activity of natural products. In silico 
simulations can be used to propose protein ligand-binding characteristics for 
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FIG. 2.2  Types of drug design.
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molecular structures, e.g., known constituents of a plant material. Compounds 
that perform well in in silico predictions can be used as promising starting ma-
terials for experimental work. Some examples of the applications of compu-
tational modelling in predicting medicinal properties and plant selection are 
discussed in Section 2.4.

2.3.1  Structure-Based CADD

In principle, structure-based CADDs are similar to HTS in that both target and 
ligand structure information is essential (Douguet et al., 2005). Structure-based 
approaches include ligand docking, pharmacophore, and ligand design methods. 
Structure-based CADDs rely on the knowledge of the target protein structure to 
calculate interaction energies for all compounds tested (Sliwoski et al., 2014).

In structure-based drug discovery approaches, therapeutics are designed 
based on the knowledge of the target structure (Leelananda and Lindert, 2016). 
This approach depends on the ability to determine and analyze the three-
dimensional structures of biological molecules. It is based on the hypothesis 
that a molecule’s ability to interact with a specific protein and exert a desired 
biological effect depends on its ability to favourably interact with a particular 
binding site on that protein (Sliwoski et al., 2014). Molecules sharing favourable 
interactions will possess similar biological effects. Therefore, novel compounds 
can be determined through analysis of a protein’s binding site. Prerequisite for 
this approach is structural information that can be accessed for target databases. 
One of the important requirements is the ability to rapidly determine potential 
binders to the target of biological interest. Computational models are applied 
for rapid screening of a large compound library and determination of potential 
binders through modelling, simulation, and visualization techniques.

The ideal starting point for docking is the determination of a target structure 
that is experimentally confirmed through X-ray crystallography or NMR tech-
niques. Evaluation of appropriate binding pocket is usually performed through 
the analysis of known target–ligand co-crystal structures. Alternative method is 
to use in silico methods for identifying novel binding sites. When the experi-
mental structures are not available or absent, computational models are utilized 
for predicting the 3D structure of the target proteins. Target structure may be 
predicted based on a template with a similar sequence by the process called 
comparative modelling. It is based on the belief that protein structure is better 
conserved than sequence that is proteins with similar sequences have similar 
structures. In essence, comparative modelling involves the following steps:

1.	 Identification of related proteins to serve as template structures
2.	 Sequence alignment of the target and template proteins
3.	 Copying coordinates for confidently aligned regions
4.	 Constructing missing atom coordinates of target structures
5.	 Model refinement and evaluation. The process can be automated through 

computer programmes, e.g., PSIPRED, MODELER, etc.
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One of the most significant approaches is the homology modelling, where the 
template and target proteins share the evolutionary origin. Homology modelling 
is a popular computation method for predicting the 3D coordinates of structures. 
Homology modelling, also known as comparative modelling of protein, actually 
refers to constructing an atomic-resolution model of the target protein from its 
amino acid sequence and an experimental 3D structure of a related homologous 
protein, which is commonly referred to as the template. The basis of this approach 
is the fact that evolution-related proteins often share similar structures. The pro-
tein structure generally remains more conserved than the sequence during evolu-
tion. As such, understanding structures having amino acid sequences similar to 
the target sequence of interest may assist in predicting the target structure, func-
tion, and possible binding and functional sites (Leelananda and Lindert, 2016). 
Application of homology modelling has emerged as the main alternative to get a 
3D representation of the target in the absence of crystal structures (Aparoy et al., 
2012). Combination of homology modelling and docking studies has contributed 
to identification of oxidosqualene cyclases associated with primary and second-
ary metabolism of Centella asiatica (Kumar et al., 2013) and understanding the 
structure and function of chalcone synthase protein from Coleus forskohlii.

Computational tools have become essential in binding site detection and 
characterization, which are fundamental to identification of activity of any drug 
or bioactive molecule. Binding sites can be detected from co-crystal structures 
of the target or a closely related protein. In the absence of a co-crystal structure, 
mutational studies can be used to identify ligand-binding sites. Computational 
methods are used, when there is absence of binding sites or there is need for 
identification of new binding sites. Computational methods can be divided into 
three general groups:

1.	 Geometric algorithms to find shape concave invaginations in the target
2.	 Methods based on energetic consideration
3.	 Methods considering dynamics of protein structures

Optimal interaction of a ligand with a target can be identified through ste-
ric and electronic features derived from a pharmacophore model. Such mod-
els are usually defined by hydrogen bond acceptors, hydrogen bond donors, 
basic groups, acidic groups, partial charge, aliphatic hydrophobic moieties, 
and aromatic hydrophobic moieties. Pharmacophore model can be used for 
querying database for bioactive compounds as well as for guiding design of 
new compounds. Analysis of the target binding site or study of target-ligand 
complex structure is used for performing structure-based pharmacophore meth-
ods. Screening for natural product inhibitors of acetylcholinesterase and cy-
clooxygenase using protein-based pharmacophores led to the identification of 
scopoletin as potent AChE (acetylcholinesterase) inhibitor and sanggenons as 
a potential COX inhibitor (Fig. 2.3) (Barlow et al., 2012). Molecular docking 
studies established that sieboldigenin could bind to the active site of soybean 
lipoxygenase and reduce carrageenan-induced paw oedema. This sterol is found 
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in several species of Smilax, which is traditionally used in arthritic and skin ail-
ments (Barlow et al., 2012).

In recent years, screening of bioactive compounds based on target recog-
nition has become quite popular among researchers. However, these methods 
can hardly be effective in direct screening of bioactive compounds from plant 
extracts, which are often complex mixtures of many compounds. General pro-
cedures follow the strategy of ‘Isolation—Structure Identification—Activity 
confirmation’. One novel protocol allowed determining structural information 
of bioactive compounds without isolating the ligand(s) molecules experimen-
tally by using NMR spectroscopy technique (Tang et al., 2012).

2.3.2  Ligand-Based CADD

Ligand-based methods use only ligand information for predicting activity de-
pending on its similarity/dissimilarity to previously known active ligands. 
Ligand-based methods include ligand-based pharmacophores, molecular de-
scriptors, and quantitative structure-activity relationships. Ligand-based CADDs 
exploit the knowledge of known active and inactive molecules through chemical 
similarity searches or construction of predictive, quantitative structure-activity 
relation (QSAR) models (Acharya et al., 2011; Sliwoski et al., 2014).

Ligand libraries are usually constructed by enriching ligands having desir-
able physiochemical properties suitable for the target of interest. Though there 
are various docking algorithms available, docking of millions of compounds 
requires considerable resources. As such, time can be saved by elimination of 
non-drug like unstable or unfavourable compounds. One of the important pa-
rameters selected for study is drug likeness, which is commonly evaluated using 
Lipinski’s rule of five (Pfizer’s rule of five) (Lipinski et al., 2001). The rule gen-
erally states that an orally active drug should have no more than one violation of 
the following criteria based on multiples of five:

1.	 maximum of five hydrogen bond donors;
2.	 maximum of 10 hydrogen bond acceptors (all oxygen and nitrogen atoms);
3.	 molecular mass of less than 500 Da;
4.	 an octanol-water partition coefficient of not greater than five.
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FIG. 2.3  Scopoletin, and sanggenon A.



52  Computational Phytochemistry

If two or more of these conditions are violated, adsorption will be com-
promised. To improve the predictions of drug likeness, the rules have seen 
many extensions, such as polar surface area no greater than 140 Å2, molecular 
weight ranging from 180 to 500, molar refractivity from 40 to 130, partition 
coefficient in −0.4 to +5.6 range, etc. Before initial virtual HTS, molecules 
are filtered based on predicted ADMET properties. These predictions depend 
on statistical and machine-learning approaches, molecular descriptors, and 
experimental data to model biological processes such as oral bioavailability, 
intestinal absorption, permeability, half-life time, and distribution in human 
blood plasma (Sliwoski et al., 2014). In any drug discovery process, lipophi-
licity and molecular weight are often increased to improve the affinity and 
selectivity of the drug candidate. As a result, it is often difficult to maintain 
strict drug likeness as per RO5 during hit and lead optimization. It has been 
proposed that members of libraries should be biased toward lower molecular 
weight and lipophilicity. The rule of five has been extended to the rule of 
three for defining lead-like compounds as per following criteria (Congreve 
et al., 2003):

1.	 octanol-water partition coefficient log P not greater than 3;
2.	 molecular mass less than 300 Da;
3.	 not more than three hydrogen bond donors;
4.	 not more than three hydrogen bond acceptors; and
5.	 not more than three rotable bonds.

Lipinski’s fifth rule states that the original four rules do not apply to natural 
products nor to any molecule that is recognized by an active transport system for 
considering ‘druggable chemical entities’ (Newman and Cragg, 2012).

Compound libraries (Wessjohann, 2000; Geysen et al., 2003) are usually en-
riched for a particular target or group of targets (see Chapter 5). Physiochemical 
filters determined from observed ligand-target complexes are used for enrich-
ing such libraries by searching for ligands that are similar to known active li-
gands. As molecules are flexible in solvent environment, their representation 
of conformational flexibility remains important criteria for determining their 
potentials. These conformations of protein and ligands are usually precomputed 
using computational simulation or knowledge-based methods (Foloppe and 
Chen, 2009).

Ligand-based computer-aided drug design involves the analysis of ligands 
that can interact with a target molecule. The methods require collection of refer-
ence structures collected from compounds interacting with the target of interest. 
Objective of this activity is to represent these compounds with their physico-
chemical properties that determine desired interactions. There are two main ap-
proaches of ligand-based drug designing methods—(a) selection of compounds 
based on chemical similarity to known actives using some similarity measure 
and (b) construction of a QSAR model.
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For these analyses, molecular properties are converted to numerical vectors 
for descriptors. Conversion is required to ensure that descriptions of molecules 
have a constant length independent of size. Representation of information en-
coded in the molecular structure with one or more numbers is called molecular 
descriptors. These characteristics are used to establish quantitative relationship 
between structures and properties, biological activities, and other experimental 
properties. To date, more than 2000 molecular descriptors that encode the mo-
lecular features have been reported. Molecular descriptors can be classified ac-
cording to their dimensionality, i.e. the representation of molecules from which 
descriptor values are computed.

1.	 One-dimensional (1D) descriptors capture bulk properties, i.e. molecular 
weight, molar refractivity, log P (logarithm of the octanol/water partition 
coefficient), etc.

2.	 Two-dimensional (2D) descriptors describe properties that can be computed 
from two-dimensional representation of molecules, such as number of at-
oms, number of bonds, connectivity indices, etc.

3.	 Three-dimensional (3D) descriptors depend on conformations of molecules, 
i.e. solvent accessible surface areas, principal moment of inertia, van der 
Waals volume, etc.

Some of the descriptors derived from 3D structures may require analysis of 
many molecular conformations if biologically active conformations are usu-
ally not known from previous experiments. Common 3D descriptors may in-
clude pharmacophore type representation of molecules, where features known 
or thought to be responsible for biological activity are mapped to positions in a 
molecule. Molecular descriptors may be divided according to their ‘nature’ into:

1.	 constitutional (fragment additive and reflect mostly the general properties of 
the compound);

2.	 topological (which are calculated using the mathematical graph theory ap-
plied to the scheme of atoms connections of the structure);

3.	 geometrical;
4.	 electronic; and
5.	 quantum-chemical (the last three are derived from the results of empirical 

schemes or molecular orbital calculations).

Among various approaches of ligand-based CADD, application of quantita-
tive structure-activity relationship (QSAR) has contributed significantly in the 
development of predictive models. QSAR methods are based on the assumption 
that the quantitative understanding of the role of molecular structure governed 
the biological or other attributes. The method tries to enumerate how a fragment 
or sub-structure could result in a certain activity. In many cases, SAR (structure-
activity relationships), involving enumeration of a fragment or substructure 
in their biological activity, and QSAR, which quantified the descriptors, are 
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collectively referred to as (Q)SAR (Puzyn et al., 2010). Successful creation of 
QSAR models demands fulfilment of the following conditions:

1.	 consensus data on the structures and biological activity of studied compounds;
2.	 extracting descriptors for the presentation of structures;
3.	 machine-learning methods, either multiple linear regressions, neural net-

works, random forest, similarity, support vector machine, etc.

QSAR models developed because of homogenous data are known as local 
models and traditionally used for the optimization of hit or lead compounds. 
On the other hand, QSAR models are developed based on heterogeneous data 
and are considered as global models with a wide applicability domain. Global 
models may be used for virtual screening, prediction of biological activity, and 
target fishing. QSAR has large potentials across industry, academia, and regu-
latory agencies. Some of the potential uses include identification of new leads 
with pharmacological, biocidal, or pesticidal activity, prediction of toxicity, ra-
tional design of desirable products and selection of compounds with optimal 
pharmacokinetic properties, etc.

If the researchers tend to determine the potential targets of new chemical 
entity, the following tools can be used for studying biological activity—(a) 
pair similarity with known compounds, e.g., Tanimoto coefficient, (b) docking, 
e.g., INVDOCK, (c) pharmacophore-based virtual screening, and (d) classifi-
cation prediction based on Bayesian statistics and substructure descriptors or 
fingerprints.

Successful prediction of the properties of all chemical entities including 
phytochemicals depends on the data on which they are based, the technique to 
develop the model, and the overall quality of the information including the item 
to be modelled. Generally, two types of information are required for a model 
(the effect to be modelled and descriptors on the chemicals) and a technique(s) 
to formulate the relationship(s). The data to be modelled in QSAR may be de-
noted by the X-matrix and the descriptors as the Y-matrix (Table 2.1). By us-
ing this matrix, various types of relationship may be established by statistical 
machine-learning techniques. A QSAR is based on a continuous endpoint where 
activity (X) is a function of one or more descriptors (Y).

The development of SAR is associated with identification of a firm basis 
of relationship. If a compound is identified to elicit a particular effect, and the 
structural determinant is recognized, then the structural fragment can be deter-
mined. It may be flagged as a ‘structural alerť that can be coded into software. 
Greater the number of compounds with the same structural determinant dem-
onstrating the same effect, greater will be the confidence that the flag is associ-
ated with that particular effect. Development of SAR model is usually more 
appropriate for qualitative (such as yes/no, active/inactive, presence of toxicity/
absence of toxicity, etc.) endpoint.

Successful implementation of QSAR depends on selection of appropri-
ate statistical and machine-learning algorithms supplemented with powerful 
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computational tools. In the last few decades, multiple linear regression (MLR) 
is one of the popular methods to derive linear mapping. However, MLR meth-
ods have several limitations of multicollinear, overfitting issues, and non-linear 
relationship, thereby making the researchers to look to other alternative meth-
ods. As such, various methods such as neural networks, genetic algorithms, sup-
port vector machine, and random forests are applied in the QSAR analysis.

Over the last few decades, several QSAR models have been attempted 
to explain or describe the potentials of traditionally used medicinal plants. 
However, application of QSAR methods in herbal formulae, particularly used 
in Traditional Chinese Medicine and Ayurvedic Systems, is somewhat limited 
as structure and composition of all compounds in these formulae are not com-
pletely known (Wang et  al., 2006). Thus, QSAR method cannot be directly 
applicable for prediction of bioactivity of polyherbal medicine. Despite that, 
variation of biological activity of herbal medicine is also associated with the 
variation of their chemical composition. Considering this relationship, another 
relationship called quantitative composition activity relationship (QCAR) has 
been proposed to establish relationship between chemical composition and 
biological activity (Cheng et al., 2006). This method applies the same math-
ematical model used in QSAR studies to derive quantitative relationship of the 
composition bioactivity of the herbal components. One of the advantages of this 
method is deriving optimal combination of herbal medicine (Wang et al., 2006).

Molecular fingerprint-based technique is one approach more qualitative 
in nature as compared to other LB-CADD approaches (Sliwoski et al., 2014). 
Molecular fingerprints are representation of molecular structure and properties 
encoded as binary bit strings whose settings produce a bit ‘pattern’ characteristic 
of a given molecule (Hert et al., 2004). Fingerprints may provide different sets 
of molecular descriptors, structural fragments, and possible connectivity path-
ways through a molecule or different types of pharmacophores. There are sev-
eral methodologies for representing chemical binary information. For instance, 

TABLE 2.1  Typical Data Matrix for QSAR

Chemical 
Identifier

Activity 
(X)

Property/Descriptor (Y)

Fragment 
1

Fragment 
2

Fragment 
3 …

Fragment 
n

Molecule i Xi Y1i Y2i Y3i … Yni

Molecule ii Xii Y1ii Y2ii Y3ii … Ynii

Molecule iii Xiii Y1iii Y2iii Y3iii … Yniii

…. … … … … … …

Molecule n Xn Y1n Y2n Y3n … Ynn
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path-based approach, key-based fingerprint, dictionary approach, and SMARTS 
pattern matching. Molecular fingerprint-based techniques are used to represent 
molecules for rapid structural comparison of phytochemicals. These approaches 
depend more on chemical structure and are less computationally expensive than 
pharmacophore mapping or QSAR models. Fingerprint-based methods provide 
equal treatment to all parts of the molecule and avoid focus only on parts of a 
molecule considered to have important role in bioactivity. Screening of phyto-
chemicals using a molecular fingerprint based on the HIV protease inhibitor, sa-
quinavir, led to the discovery of a potential anti-HIV agent leucovorin. Molecular 
dynamic studies revealed the favourable binding of this compound to the prote-
ase active site (Barlow et al., 2012). Combination of molecular fingerprint-based 
method with docking studies led to the discovery of aurantiamide acetate from 
Artemisia annua (Fig. 2.4) as an inhibitor of severe acute respiratory syndrome 
coronavirus main proteinase (Wang et al., 2007).

In ligand-based-CADD, machine-learning algorithms are used to be trained 
to identify patterns in data and for predictions on test data sets. One of the com-
mon algorithms is support vector machine (SVM) that is being usually used for 
classification of sets of biological data (Leelananda and Lindert, 2016). Other 
significant candidates are Random Forest (Svetnik et al., 2003) and Artificial 
Neural Network (Wang, 2003).

2.3.3  Network Pharmacology

Network pharmacology is the new paradigm in the drug discovery and devel-
opment (Hopkins, 2008) and offers enhanced understanding of drug action. It 
applies network analysis to determine the set of proteins most critical in any dis-
ease, and then chemical biology to identify molecules capable of targeting that 
set of proteins. By addressing the true complexity of disease and by seeking to 
harness the ability of drugs to influence many different proteins, network phar-
macology differs from conventional drug discovery approaches, which have 
usually been based on highly specific targeting of a single protein. Network 
pharmacology has the potential to provide new treatments for complex diseases, 
where conventional approaches have failed to deliver satisfactory therapies. 
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FIG. 2.4  Aurantiamide acetate from Artemisia annua.



Prediction of Medicinal Properties  Chapter | 2  57

With the advancement of bioinformatics, systems biology, and polypharmacol-
ogy, network-based drug discovery has provided promises toward cost-effective 
drug discovery and development in traditional herbal medicine. Network analy-
sis is the study of molecular interactions and is related with the mathematical 
field of graph theory in which the assembly of pairwise connections (edges) 
between discrete objects (nodes) coalesces to form a network or graph (Arrell 
and Terzic, 2010). Biological networks can be derived from:

1.	 de novo through direct experimental interactions;
2.	 applying known interactions to an -omic dataset; or
3.	 reverse engineering to generate a subset of networks ab initio that predict the 

dynamics under study.

In the past, the concept of designing selective ligands to avoid unwanted side 
effects was a major issue in drug discovery. With the emergence of more com-
plex drug action, often it was discovered that there may be many drugs for each 
drug target as well as single drug that can fit to multiple drug targets (Hopkins, 
2007). Network pharmacology tries to understand this complex relationship 
along with validating target combinations and optimizing multiple structure-
activity relationships. Network pharmacology is a system biology-based meth-
odology that tries to exploit the pharmacological mechanism of drug action in 
the biological networks. In the application of network analysis in herbal medi-
cine, a network is a mathematical and computable representation of various 
connections between herbal formulae and diseases in a complex biological sys-
tems (Li and Zhang, 2014). The scope of this new approach includes study of:

1.	 theories, algorithms, models, and software of network pharmacology;
2.	 network construction and interactions prediction;
3.	 theories and methods on dynamics, optimization, and control of pharmaco-

logical networks;
4.	 network analysis of pharmacological networks, including flow balance anal-

ysis, topological analysis, network stability;
5.	 various pharmacological networks and interactions;
6.	 factors that affect drug metabolism;
7.	 network approach for searching targets and discovering medicines; and
8.	 big data analytics of network pharmacology (Zhang, 2016).

One of the important contributions of network pharmacology is changing 
the perspective from ‘one target, one drug’ strategy to a novel version of the 
‘network target multi components’ strategy, which is perfectly applicable to 
Traditional Chinese Medicine and to Ayurvedic medicine system. In one of the 
pioneering works in 1999, the Chinese researcher Li proposed that there was 
a possible relationship between Traditional Chinese Medicine syndrome and 
molecular networks and established a network-based TCM research strategy in 
2007 (Li and Zhang, 2014). Subsequently he also proposed a new concept of 
network target approach in the research of herbal medicine.
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In the biological network approach, a node represents either (a) a gene, gene 
product, or any biological entity in the biomolecular network, gene regulatory 
network, genetic interaction, metabolic network, and signaling network, (b) an 
herb, herb ingredient, or drug, or (c) a clinical phenotype of a disease in the net-
work. An edge represents an association, interaction, or any other well-defined 
relationship. The degree of a node is represented by the number of edges con-
nected to it, while the betweenness of a node is the number of shortest paths that 
can traverse through a given node. Network parameters such as betweenness, 
degree, shortest path, and modules are used to measure the targeted key proteins 
or protein interactions.

Potential of network pharmacology lies in its multidisciplinary approach 
that integrates a large amount of information to make new discoveries by com-
bining both computational and experimental approaches. Main computational 
approach includes graph theory, statistical methods, data mining, modelling, 
and information visualization methods. Network pharmacology can be used to 
identify active herbal ingredients and synergistic combinations as well as con-
tribution to rational design and optimization of drug discovery process from 
herbal formulae. Application of network mapping to a wide array of drugs to 
protein targets both before and after modelling with chemical drug-ligand inter-
actions helps in prediction of new targets. It also enables identification of pri-
mary sites of action and off-target proteins as explanations for well-known side 
effects, with new and unexpected drug binding revealed across major categories 
of proteins unrelated by sequence or structure (Arrell and Terzic, 2010).

2.4.  SELECTION OF MEDICINAL PLANTS

Documentation and analysis of legacy knowledge about medicinal plant pro-
vide certain advantages in identification and designing pharmacological prod-
ucts from plants. Identification and selection of medicinal plants for drug 
discovery studies is a challenging task. In medicinal plants research, what 
type of plants to be selected and what would be the right criteria still remain 
the enigma of the scientists. Conventionally, targeted approach (Mann et  al., 
2000) is favourable, where certain medicinal plants are prioritized, and even 
though expensive, depends on generation of working hypothesis and perform-
ing experimental studies on the bases of the hypothesis. In this approach, care-
ful selection and choosing the right criteria for the targeted botanical species 
usually determine the outcome. Considering the diversity of the higher plant, 
selection of candidate species for the bioprospecting programme is not an easy 
task. Out of total number of higher plants (estimated 400,000 angiosperms and 
1000 gymnosperms), only about 6% have been screened for biological activity 
and about 15% for phytochemical properties (Rates, 2001). Various research 
institutes and pharmaceutical industries have taken up different approaches that 
can be categorized into four broad groups—ethnobotany-directed, random se-
lection, chemotaxonomic, and integrated approach, respectively. Approaches of 
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ethnobotany-directed, chemotaxonomic, and integrated approach can be part of 
targeted approach (Yea et al., 2016).

2.4.1  Ethnobotany-Directed Drug Discovery

As the traditional medicine has been used for many centuries in different cul-
tures, medicinal plants have attracted a lot of attention as a source of medicinal 
products. This approach assumes that the traditional use of plants can provide 
strong clues to the biological activities of the plants (Cox and Balick, 1994). In 
the drug discovery procedure, plants possessing potential medicinal properties 
are recognized through ethnobotanical field studies or literature. Such plants 
are further investigated for bioactive properties in the laboratories for pure com-
pound isolation. Preparation procedure of traditional recipe may provide an in-
dication of best extraction protocol. Formulation method may provide primary 
information about pharmacological activity, optimal doses, and suitable mode 
of application of the future drug (Rates, 2001). Ethno-directed approach was 
initiated by scientists like Luis Lewin, Carl Hartwich, Alexander Tschirch, and 
Richard Evans Schultes by applying molecular interpretation of the pharmaco-
logically active plants in 19th and early part of 20th century (Gertsch, 2009). 
During the early phase of ethno-directed approach, anthropologists worked in 
tandem with chemists and pharmacologists resulting in isolation of various drug 
molecules such as caffeine and quinine (Fig. 2.5). However, in spite of the rich-
ness of the ethnopharmacological surveys worldwide and diversity of traditional 
knowledge, many of the collected data could not be translated successfully into 
bioprospecting programmes (Albuquerque et al., 2014).

One classical example is Shaman Pharmaceuticals, a bioprospecting com-
pany established in 1987 that failed to deliver any blockbuster drugs in spite of 
wealth of ethnopharmacological knowledge and subsequently went bankrupt in 
2001. It is a fact that only a few significant contributions have been made by 
ethno-directed approach in the last few decades (Gertsch, 2009). Research prob-
lems like inadequate design for data collection, misinterpretation of the role of 
medicinal play in the traditional medicine system, unfavourable influence of 
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FIG. 2.5  Caffeine, curare, and quinine.
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sampling, and application of irrelevant informant consensus indices hampered 
ethnobotanical-directed drug discovery programmes, individually or in combi-
nation (Albuquerque et al., 2014).

In the conventional ethnobotanical research, application of computational 
tools along with statistical analysis is a new approach, but still rare. Regression 
analysis of medicinal plant families is a unique method for predicting plant 
families with large number of medicinal plants. The method was first introduced 
by Moerman in his classical work (Moerman, 1991). The work concerned pre-
diction of the families having the large number of potential medicinal plants 
based on linear regression analysis. After that work, there have been many ap-
plications of the approach as well as many derivations including Bayesian ap-
proach, which challenges the earlier regression methods (Bennett and Husby, 
2008; Moerman, 2012). However, application of regression analysis still re-
mains a popular method and helps in identification of plant orders and families 
favoured by traditional healers among ethnomedicinal plants of South Africa, 
proving that the use of these plants by traditional healers is not random (Douwes 
et al., 2008). There was an attempt to apply mathematical and logical method 
of replacing rare herbs and simplifying traditional Chinese medicine formula 
and its applicability in the perspective of pathway enrichment analysis (Fang 
et al., 2013).

2.4.2  Chemotaxonomic and Ecological Approach

The knowledge that a particular group of plants contains a particular group 
of natural product may help in predicting the presence of similar or re-
lated compounds in phylogenetically related species (Rates, 2001); this is 
chemotaxonomy-guided approach. Chemical plant taxonomy, or simply che-
motaxonomy of plants, focuses on the classification of plants based on their 
chemical composition, i.e. secondary metabolites. The selection highlights the 
chemical taxonomy of acetylenic compounds, the distribution of fatty acids in 
plant lipids, distribution of aliphatic polyols, cyclitols, plant glycosides, and 
alkaloids. Chemotaxonomy is a method of biological classification based on 
similarities in the structure of certain compounds produced by the organisms 
in question, e.g., plants. As proteins are more closely controlled by the genes 
and less subjected to natural selection than are anatomical features, they are 
more reliable indicators of genetic relationships or phylogeny. This approach 
may become significant, when a particular compound class is desirable with 
known biological activity. A good example of this approach is targeting Datura 
stramonium for tropane alkaloids, with the knowledge that Atropa belladonna 
contains the alkaloid hyoscyamine, subsequently leading to the discovery of 
similar alkaloid hyoscine (Fig. 2.6) (Heinrich et al., 2012).

Similarly, the discovery of the alkaloid febrifugine (Fig.  2.7) from 
Hydrangea macrophylla, a native Japanese plant, was the result of targeting 
this plant because of its taxonomic status as a member of the Hydrangeaceae 
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family (Heinrich et  al., 2012). Presence of desirable chemicals may rely on 
the knowledge of toxicity of particular plant (Rates, 2001), ecology, or plant-
pathogen relationships (Ottmann et al., 2012). In plant-pathogen interactions, 
molecular frameworks of natural products play significant role in host coloniza-
tion or pathogen immunity. These molecules are the outcome of co-evolutionary 
process enriched with biological activity. Investigation of the mode of action of 
these natural product classes may provide significant outcome as novel mole-
cule and discovery of novel concepts on how living systems can be manipulated 
with small molecules (Ottmann et al., 2012).

In ecological study-based approach, scientists select plants that occupy a 
particular habitats or display characteristics, indicating they produce molecules 
possessing desirable properties. This approach is based on the ecological plant 
defence theory (Coley et al., 2003). For instance, absence of predation might 
suggest presence of toxic chemicals. Many phytochemicals that are toxic to 
insects also exhibit biological activity in humans and might be exploited for 
therapeutic applications. Observation of the planťs environment that reflects the 
toxicological properties of the plant led to the isolation of many antibacterial 
drugs. The ecological approach to select plant material relies on the observa-
tion of interactions between organisms and their environment that might lead 
to the production of bioactive natural compounds. The hypothesis underpinning 
this approach is that secondary metabolites, e.g., in plant species, possess eco-
logical functions that may have also therapeutic potential for humans. For ex-
ample, metabolites involved in plant defence against microbial pathogens may 
be useful as antimicrobials in humans, or secondary products defending a plant 
against herbivores through neurotoxic activity could have beneficial effects in 
humans due to a putative central nervous system activity (Barbosa et al., 2012).

Major potential limitation of this approach lies in the classification of me-
dicinal plant use (Ernst et al., 2016). Before analysing the medicinal plants in 
a phylogenetic context, medicinal plant documented or collected need to be 
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classified according to the diseases used to treat in ethnomedicinal system. 
Some common widely used classifications are International Classification 
of Diseases (ICD) of the WHO and the classification of Cook developed as 
Economic Botany Data Collection Standards (Cook, 1995). These classification 
systems could not fully capture the complexity and idiosyncrasy of local health-
care systems. At the same time, these systems are based on categories reflecting 
systems of the human body or symptoms. These systems provide little infor-
mation in disease etiology and potential underlying biological activity of the 
medicinal plants. In recent years, more extensive studies in cellular and molecu-
lar mechanisms underlying diseases have been carried out providing more in-
formation on disease etiology. Alternative approaches in phylogenetic systems 
emerge by using classification based on modulating the disease response (Ernst 
et al., 2016). For the taxonomic classification, the current default classification 
is usually the Angiosperm Phylogeny Group IV (APG IV, 2016). It is because 
categorization and assemblage of plant species within a particular category or 
sub-categories needs to be based on phylogenetic relationship and APG being 
the most common among the practicing taxonomists. Theoretically, of the vari-
ous chemical compounds used, most reliable are the semantides (DNA, RNA, 
and proteins) that provide more reliable taxonomic information. However, in the 
practical application, the approach is far from perfection and many researchers 
are still trying on other compound types. One such instance is that the applica-
tion of graph-clustering algorithm on the metabolite content of the plant led 
to the successful classification of 217 plants in Japan (Liu et al., 2017). The 
approach provides successful result even in incomplete metabolite data by ob-
taining consistent relationship between plant clusters and known evolutional 
relationship of plants. This finding led to the application of predictive power of 
metabolite content in exploring medicinal properties in plants. As such, apart 
from establishing correlation between the plant group and chemical properties, 
development of reliable cluster analysis with visual representation of dendro-
gram remains the fundamental step. All these processes need selection of ap-
propriate clustering algorithms with application of computational tools.

2.4.3  Random Approach

Random Approach was popular in 60s, but with limited results. It does not re-
quire any computational or mathematical input whatsoever. In this approach, 
plants are collected regardless of any previous knowledge of their phytochemi-
cal or biological activity. This approach relies on availability of plants and is 
purely serendipitious in nature (Heinrich et al., 2012). It requires a lot of invest-
ment in terms of money, time, and sheer amount of luck. This approach has 
made effective contributions to the development of drugs for many diseases 
(Albuquerque et  al., 2014). There are two approaches in the random screen-
ing. In the first approach, plants are screened for selected class of compounds 
like alkaloids, flavonoids, coumarins, or lignans. This approach usually does 
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not provide any idea of the biological efficacies. Second approach screens ran-
domly selected plants for selected bioassays, through focused screening as well 
as general screening. The Central Drug Research Institute, India, started this ap-
proach three decades back. Though the institute has screened about 2000 plants 
for biological efficacy, the screening could not provide any new drug (Katiyar 
et  al., 2012). In the United States, the National Cancer Institute of National 
Institute of Health screened about 35,000 plants for anticancer activity spanning 
two decades from 1960 to 1982, resulting in discovery of chemotypes including 
those of taxanes and camptothecin (Fig. 2.8) (Cragg and Newman, 2005). Their 
development into clinically active agents spanned about 30 years.

2.4.4  Integrated Approach

This approach is also called knowledge or information-driven approach and 
takes into consideration ethnobotanical, random, and chemotaxonomic ap-
proach for selecting the medicinal plants (Katiyar et al., 2012; Lin et al., 2015). 
Computational and mathematical tools are extensively applied in this approach. 
Related information for a particular species are integrated into a database for 
prioritizing the screening process. Hypothesis generation and subsequent analy-
sis requires careful assembly, overlay, and comparison of data from divergent 
sources. Importance of database-driven information sharing in drug discovery 
can be demonstrated by large-scale production of taxol (Fig. 2.8). In 1962, a 
team of researchers in National Cancer Institute in US discovered that extracts 
of Pacific yew (Taxus brevifolia) contained cytotoxic activity. In 1977, the team 
confirmed the bioactive component of the extract as paclitaxel, also known by 
its trade name taxol. After starting clinical phase I in 1984 against number of 
cancer types, taxol was approved by the FDA for the treatment of ovarian can-
cer and breast cancer. However, supply of paclitaxel was a major challenge as 
this compound is found in the thin bark of Taxus in extremely low concentra-
tion. The bark from a single tree could provide only a single dose for clinical 
trial leading to the destruction of whole plant. Large-scale production of taxol 
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was made by developing several pathways to derive 10-deactyl-baccatin III, a 
non-cytotoxic precursor of taxol. This precursor was initially isolated in France 
(Institute de Chimie des Substances Naturelles, Gif-sur-Yvette) from the nee-
dles of European yew Taxus baccata by the French scientists (Raviña, 2011). 
One kilogram of fresh needles can provide 1 g of precursor, making it possible 
for large-scale supply of taxol. In this way, modern drug discovery approaches 
relied on various information resources.

Curation and compilation of various information from different sources 
demand access and sharing of different data curation services and databases. 
Statistically, processing of this varied information through multivariate analysis 
(e.g., Principal Component Analysis, Discriminant Function Analysis) provided 
the potential for understanding the pattern of medicinal properties in several 
target species. Details of curation of medicinal plant and their potentials are 
discussed in the following sections.

2.5.  ROLE OF MEDICINAL PLANTS DATABASES

Phytochemicals, and natural products in general, are recognized to possess 
characteristics of high chemical diversity, biochemical specificity, and other 
properties that make them favourable as lead structures for drug discovery 
programmes. However, assessing the diverse chemical space efficiently and ef-
fectively is still impractical in terms of resource and time. It is expected that 
the application of computational approaches for the identification of bioactive 
phytochemicals can accelerate the drug discovery by exploring on the chemical 
space covered by these molecules or on the application of natural product (phy-
tochemical) libraries (see Chapter 5) in ligand-based and target-based virtual 
screening. Major problems usually encountered in the in silico studies of the 
biological activity of natural products include unavailability of large natural 
products or phytochemical databases having adequate structural and biological 
information.

Medicinal plant databases curate the information about plants covering a 
large spectrum of plant properties including the formulae of traditional medi-
cine (Ningthoujam et  al., 2012). Dozens of databases and Internet resources 
are available on the internet providing various types of information for the last 
decades. Development of an inclusive database with information about clas-
sification, activity, and ready to dock library of medicinal plant compounds 
is essential for drug designing using resources of medicinal plants (Mumtaz 
et al., 2017). If one particular database could not provide a complete picture 
of a medicinal plant, data mining and sharing from different resources may be 
utilized. Such items need unique identification number for a particular plant 
or a particular entity. These databases are required to provide phytochemical 
and pharmacological information on medicinal plants. Number of medici-
nal plant databases increases year by year with specialized or comprehensive 
information giving opportunity for the study of plants and the utilization of 
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traditional knowledge. For instance, development of Global Natural Products 
Social Molecular Networking curated information and enabled sharing of raw, 
processed, or identified tandem mass spectrometry data (Wang et  al., 2016). 
Another example of curating specialized data are plant protein interaction data, 
such as IntAct, The Arabidopsis Information Resource and BioGRID, etc. (Lee 
et al., 2010). Data curated on medicinal plant databases need to be comprehen-
sive as far as possible to serve as important resources for drug discovery stud-
ies. Aggregation of these data allows researchers to visualization, data mining, 
and further analysis to produce new insights. Aggregations would be unachiev-
able if the data are dispersed within largely inaccessible formats (Rodriguez 
et al., 2009). Challenges encountered during aggregating data arising from dif-
ferent formats can be mitigated by ontological linking as well as introduction 
of noSQL data model (Ningthoujam et al., 2014). With the rapidly expanding 
information derived from various analytical and exploratory activities, the role 
of medicinal plant databases is also progressively increasing to house all these 
available information. Availability of comprehensive information about a par-
ticular plant species or plant groups would accelerate the analysis and predic-
tion of their medicinal properties.

2.6.  TOOLS AND TECHNIQUES

Various tools and techniques are used to explore medicinal properties through 
data curated in medicinal plants databases as well as analytical methods such 
as QSAR, molecular modelling, and virtual screening (Lagunin et al., 2014). 
Software and tools that can be used for virtual screening and identification of 
potential mechanism of action of herbal constituents can be categorized (Barlow 
et al., 2012) as shown in Table 2.2.

2.7.  ROLE OF DATA MINING IN MEDICINAL PLANT 
SELECTION

Data mining is the process of sorting through large datasets to identify pat-
terns and establish relationships to solve problems through data analysis by us-
ing machine-learning and statistical methods (Afendi et  al., 2013; Yea et  al., 
2016). Data mining methods use various kinds of information obtained from 
sources such as bibliographic literature, experimental data, clinical data, and 
curated data. Vast amount of data stored in these databases are screened to iden-
tify potential natural products. In the data mining approaches, random selec-
tion approach does not consider taxonomic affinities, ethnomedicinal contexts, 
or other intrinsic qualities. However, random screening is associated with ex-
tremely low probability of discovery of useful compounds (Yea et al., 2016). 
Considering the limitations of random selection, some advanced methods have 
been proposed. For instance, a simple scoring system for searching the local 
alternatives to Phytolacca dodecandra was developed in ways that are more 
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TABLE 2.2  Uses and Tools and/or Algorithms Important in Computational Methods of Herbal Medicine

Methods Prerequisites Use Tools/Algorithms

Ligand-based 
screening

Knowledge of compounds with known activity To identify putatively active 
compounds

Classification/regression trees 
(including Random Forest), 
linear discriminant analysis, 
artificial neural networks, 
support vector machines

Pharmacophore 
(ligand-based or 
target-based)

•	 3D structures of known ligands to chosen targets
(Ligand-based)

•	 known 3D structures of target protein(s)
ideally known as
3D structure(s) of known complex(es) (Target-based)

To identify putative active 
compounds

LigandScout, Schrödinger’s 
Phase program, Accelrys’s 
Discovery Studio Catalyst, etc.

Docking Known 3D structure (s) of target proteins To ‘dock’ potential small molecule 
ligands into protein active sites, 
optimizing their topographical and 
chemical complementarity, and 
scoring their interaction

FlexX, Gold, Dock, Glide, 
MolDock, AutoDock, 
LigandFit, etc.

Pattern 
recognition

 Post-screening analyses (involving 
dimensionality reduction)

Principle components analysis 
(PCA), multidimensional 
scaling, self-organizing maps, 
various forms of cluster 
analysis, etc.

Proteomics and 
genomics data 
visualization 
and analysis

 Application-specific programs 
for statistical processing and 
visualization of data output from 
DNA micro-array experiments, MS 
proteomics experiments, etc.
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complex. Despite the applications of simple scoring, regression analysis, or a 
logical formula method in data mining from random selection, successful min-
ing of vast body of information and knowledge pertaining to biology, medi-
cine, and botany is far from complete. Still today, mining of biomedical data 
to unearth knowledge or generate hypothesis is an active research field. One 
major innovation is inclusion of semantic information of the Medical Subject 
Headings (MeSH) thesaurus to cluster documents of MEDLINE database (Yea 
et al., 2016). In the approach, three categories containing terms related to herbal 
compounds, efficacy, toxicity, and the metabolic processes, were selected and 
subjected to similarity measurement method. Application of this novel approach 
in data mining could predict herbs by 500% more accurately with similar effi-
cacy as compared to random selection.

Association rule mining is one of the powerful tools to derive the relationship 
between different factors with the properties of Chinese traditional medicines. 
As the data mining aims at extracting structured information or discovering new 
knowledge from large data, one of the prerequisites is data availability (Lee, 
2015). So, data mining techniques are intricately related with the advancement 
in technology and curation of medicinal plant databases.

2.8.  SAFETY CONSIDERATIONS

Medicinal plants, though considered to be of lower risk, are not completely 
free from the possibility of toxicity or other adverse effects. Apart from in-
herent toxicity, adverse effects of the herbal preparations may come from 
contamination of products with toxic metals, adulteration, misidentification, 
or substitution of herbal ingredients and improper processing (Jordan et  al., 
2010). There may be interactions between drugs, foods, and other herbal 
products if taken concomitantly. Considering these aspects, there is increased 
concern on the safety assessment of herbs with various protocols and guid-
ance documents have been issued. Documents issued by the International Life 
Sciences Institute, the Union of Pure and Applied Chemistry, the European 
Medicines Agency, and the European Food Safety Authority discuss the as-
sessment of safety of herbs for using in foods and medicines. Assessment of 
safety of herbal products, either as pre-market assessment or post-market sur-
veillance, is subject to challenges. Data deficiencies with regard to quantity 
and the quality of information are the major factors. For efficient assessment, 
proper information of adverse reactions, ideal product quality, composition of 
herbal formulae, and toxicity of the constituents are required. Integration of all 
these parameters can reduce the uncertainty in decision-making and can be ful-
filled if all the available information are in a knowledge base. Development of 
these knowledge base requires integration of various data sources and mapping 
different information (e.g., toxicity, bioassay, herbal formulae, and contraindi-
cations) arising from diverse domains.
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Another dimension in safety consideration is application of predictive 
toxicology (computer-assisted) to screen and assess the potential toxicity of 
chemicals. Predictive toxicology contributes to the aim in transforming toxicol-
ogy testing from primarily observational science to a truly predictive science 
for the benefit of drug development, chemical risk assessment, and food safety, 
using mathematical and computational tools. Predictive toxicology deals with 
the development of new non-animal tests that do not simply duplicate exist-
ing animal tests, but offer a new scientific basis for safety testing. It reflects a 
significant shift away from adverse effects observed in experimental animals, 
sometimes at high doses, to analysing the effects of chronic exposures to low 
concentrations on cells and organ systems. This approach offers the potential for 
reliable, reproducible, faster, and more cost-effective safety assessment in both 
new product development, e.g., new drug development, and eventually in regu-
latory testing and is advantageous when the numbers of individual chemicals to 
be screened far exceed the capacity for assessment.

Prediction of toxicological property uses the computational toxicology 
methods such as QSAR to assessment environmental chemicals. Various QSAR 
models that could predict LD50 in rats, mutagenicity and carcinogenicity of 
chemicals. Interests have increased on computational predictions of toxicologi-
cal properties. In silico methods have been used to predict cytotoxic activity of 
sesquiterpene lactones in members of the Asteraceae family. Fernandes et al. 
(2008) used artificial neural network to examine these compounds with regard 
to their cytotoxic potential. One landmark discovery was made by Valerio by 
using a QSAR model for rodent carcinogenicity. Di Sotto et  al. (2017) have 
reported genotoxicity assessment of peperitenone oxide, a natural flavouring 
agent also known as rotundifolone (Fig. 2.9), based on an integrated in vitro and 
in silico evaluation protocol.

In in silico part of the study, the computational prediction of genotoxicity 
was carried out using the Toxtree and VEGA tools. Computational prediction 
for piperitenone oxide agreed with the toxicological data and highlighted the 
presence of the epoxide function and the α,β-unsaturated carbonyl as possible 
structural alerts for DNA damage. However, it was felt that an improvement 
of the toxicological libraries for natural occurring compounds was essen-
tial to augment the applications of the in silico models to the toxicological 
predictions.

H

O

O

Piperitenone oxide

FIG. 2.9  Piperitenone oxide, a naturally occurring flavouring agent.
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2.9.  CONCLUSION

Study of pleiotropic pharmacological potential of the natural products derived 
from medicinal plants may be possible with the availability of medicinal plant 
databases that stored information on chemical structure and therapeutic uses. 
Modelling may provide answers to hitherto unknown problems and greatly ex-
pand our knowledge base from actual study data. Initially, scientific commu-
nity suffered from lack of large data sets particularly from curated biological 
activity. These limitations have been overcome, to some extent, with the avail-
ability of many open access initiatives like PubChem, DrugBank, ChemBank, 
and ChemSpider. Nevertheless, problem still persists, as there are limitations 
in managing high capacity data in sync with generated big data and the abil-
ity to transform these data into meaningful knowledge. Data integration from 
divergent sources at different platform, coupled with increasingly complex mul-
tidisciplinary approaches, increased the need of data analysis and interpretation.
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