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Viral respiratory infections have been related to asthma

in several ways. It is well established that viral common
colds precipitate exacerbations of asthma. Severe
bronchiolitis in early life is related to subsequent wheezing
and therefore may represent a marker of susceptibility to
asthma; alternatively, it could be involved in the initiation
of the disease. Finally, it is possible that some infections
may protect from the development of asthma and allergies
by promoting a type-1 host response. However, whether
respiratory or other viruses could mediate such a protec-
tive effect is debated. The design and implementation of
novel anti- or proviral strategies targeting asthma depends
on the resolution of these questions. This review presents
current evidence on the epidemiologic correlations and
proposed mechanisms for the involvement of viral
infections in the development and progression of asthma.

Introduction
There has been a remarkable increase in the prevalence of
asthma and other allergic diseases in affluent societies during
the past decades [1]. Asthma now affects over 150 million
people worldwide and costs more than tuberculosis and
AIDS combined [2]! Although there is no doubt that both
genetic and environmental factors influence the develop-
ment of asthma, it is difficult to ascribe such rapid epidemio-
logic changes to genetic factors; thus much of the increasing
prevalence should be attributed to the environment [3].
Among myriad factors included in the term “environ-
ment,” viral infections are currently attracting much atten-
tion as possible inducers or triggers of asthma. The
correlation of common colds with asthma episodes is an old
one. However, until recently we lacked sensitive methodolo-
gies for the detection of the most prevalent respiratory

viruses, such as rhinoviruses (RVs) and coronaviruses [4].
Furthermore, some of the most obvious changes in affluent
societies, such as family structure, congregation, and
hygiene, have implications in the epidemiology of
infections, leading to speculation that infection-associated
factors may be implicated in the asthma epidemic [5].

With the advent of powerful detection methods, such
as the polymerase chain reaction (PCR) [6] and detailed
analysis of epidemiologic data [7], our understanding of
the implication of viral infections in asthma has increased.
Nevertheless, there are still some apparently contradictory
effects and many unexplored aspects to be addressed. The
mechanisms by which respiratory viruses exacerbate
asthma are under scrutiny. Furthermore, the possibility
that some viral or intracellular bacterial infections may
initiate asthma is strongly debated. Finally, the possible
protective role of these infections in the development of
allergy and asthma still requires considerable attention.
This article reports on the current status and recent devel-
opments regarding the involvement of viral infections in
the induction and progression of asthma.

Viral Infections and the Development
of Allergy and Asthma
To understand the potential implications of viral infections
in the development of asthma, one has to remember that
asthma has a complex natural history that includes differ-
ent phenotypes, which may have differences in their patho-
genesis. It is well established that the majority of asthma
cases start early in life. However, a significant proportion of
children that wheeze at a young age, mostly secondary to
upper respiratory viral infections (URIs), overcome their
problem before school age. These subjects, characterized as
transient early wheezers, have reduced airway function at
birth; thus it is likely that their disease is at least partly of a
mechanical rather than purely of an immunologic nature
[8]. Other children start wheezing early and continue to do
so, at least until adolescence. These persistent wheezers
have an altered immune response with a rise in IgE levels
during their first reported URI but no reduction in
eosinophil numbers during the acute phase of the URI, in
contrast to transient wheezers [9].

The predominant virus during the first years of life is
respiratory syncytial virus (RSV). RSV infection occurs in
almost all children before their second birthday, and clinical
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Figure 1. Pathogenesis of asthma in early life. Children with small airways at birth develop a wheezing syndrome triggered by viral infections,
which resolves before school age (upper panel). Severe RSV bronchiolitis in early life may lead to immune deviation, lung damage, or both,
leading to persistent asthma (1). Alternatively (2), children with genetic susceptibility to asthma may present with severe bronchiolitis and con-
tinue to wheeze with various stimuli. These two possibilities are not mutually exclusive (3). A predisposition to RSV infection may result in
severe bronchiolitis, further increasing the possibility of persistent asthma. However, because the severity of bronchiolitis might be influenced by
other factors, mild RSV disease may delay asthma onset, result in milder symptoms, or even not induce asthma. Double bars across an arrow
denote that the circumstance is not thought to lead to the indicated result. RSV—respiratory syncytial virus.

presentations vary from subclinical to severe, life-threatening
bronchiolitis [10]. Early studies pointed out that children
suffering from bronchiolitis have an increased risk of
developing asthma in subsequent years [11]. Whether RSV
bronchiolitis represents a marker of susceptibility to
wheezing or it can per se divert the immune system or affect
the lung and initiate asthma is still debated (Fig. 1).

Respiratory syncytial virus bronchiolitis and asthma

In 1971, Rooney and Williams [11] found that 56% of
children hospitalized for bronchiolitis would continue to
wheeze 2 to 7 years later, and this has been confirmed in
several subsequent studies. However, it has been difficult to
ascertain whether this is solely an association or whether
causation is also involved, resulting from either direct lung
damage or an RSV-mediated immunologic deviation towards
type-2 cytokine production [12]. Although pulmonary

function is reduced many years later in children with a
history of lower respiratory tract infection, it seems that this
is a preexisting feature of these children [8,13].

When bronchial responsiveness was assessed, the results
were conflicting; either no difference or an increase in
bronchial reactivity several years after bronchiolitis has been
reported [14]. Equally conflicting are the results relating to
potential effects of RSV in allergic sensitization. One group
has shown that RSV bronchiolitis is an independent risk
factor for the development of asthma and allergic sensitiza-
tion at age 7 years, in fact a stronger risk factor than is family
history of asthma [15<]. In contrast, other studies have failed
to establish such an effect [16,17<]. Differences in disease
severity and age of evaluation may partly account for this
discrepancy. It is conceivable that severe RSV disease may be
required for the establishment of long-lasting effects. In
another study, the correlation of RSV bronchiolitis with
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sensitization that was observed at age 6 years was not present
at age 9 to 10 years [18]. Importantly, RSV-related effects on
wheezing and asthma decline with age, becoming nonsignif-
icant by adolescence [17+,18,19]. These findings should also
be interpreted with caution: asthma symptoms may be
undervalued in adolescence or they may relapse later in life
[20]; thus, prospective evaluation of the current cohorts is
required to evaluate these possibilities.

A type-2/type-1 cytokine imbalance in favor of type-2
responses or with impaired type-1 responses in acute RSV
bronchiolitis has been reported in several instances
[21,22]. These findings could be explained as either an
inherent defect or a direct result of the RSV infection itself.
Recently, we also observed a profound imbalance in
infants with acute RSV bronchiolitis, with significantly
reduced production of the type-1 cytokines interferon
(IFN)—v, interleukin (IL)-12, and IL-18 and increased
production of IL-4 (Legg et al., unpublished data, 2000).
This imbalance was associated with impaired virus
clearance, which suggests that this imbalance may be an
important mechanism in determining disease severity. In
addition, because the imbalance was observed as early as
the 1st or 2nd day after initiation of disease, the immune
deviation was almost certainly already present in these
infants before RSV infection; deviation of the immune
response by the virus itself is highly unlikely to have
occurred so early in the course of the illness, when virus-
specific immunity is only beginning to develop.

From the above, it is obvious that no safe conclusion
about whether RSV bronchiolitis may cause or is only associ-
ated with asthma in later life (through common causality)
can be reached currently (Fig. 1). These two possibilities are
not mutually exclusive. Children with a predisposition to
asthma may be more prone to develop severe RSV bronchi-
olitis; however, this infection may also further affect their
immune responses or lung structure, leading to the develop-
ment of asthma symptoms [23]. With the advent of effective
RSV prevention modalities it is now possible to design
randomized intervention studies. In these studies,
confounding factors are ruled out by randomization; thus
they may offer more conclusive evidence. In one such study,
modest differences in pulmonary function were observed
between infants treated with ribavirin versus placebo-treated
control infants, but the number or subjects was small [24].
Larger intervention studies are awaited.

Most data relating to acute severe infections early in life
and the increased risk of asthma implicate RSV, but most
of the studies on which these conclusions are based did
not adequately look for other respiratory viruses. Stein
etal. [17<] reported a fourfold increased risk of asthma
later in life in children with RSV infections that were severe
enough to lead to a pediatric consultation early in life.
However, increased risks of two- to threefold were observed
with other respiratory viruses, suggesting that any single
acute infection severe enough to lead to a pediatric consul-
tation early in life is also a risk factor for asthma later in

life. A likely explanation for this observation is that these
infants have impaired type-1 immunity, leading to
increased illness with viral infections in infancy and
putting the infants at risk for the development of allergic
sensitization and asthma later in life.

Could viruses protect against allergy and asthma?

In 1989, Strachan [5] first described an inverse relation
between number of siblings and development of allergy in
children. It was proposed that infection in early life,
transmitted by unhygienic contact with older siblings,
might prevent the development of allergic diseases. Conse-
quently, improved hygienic standards in westernized
societies, as well as increased use of antibiotics and wide-
spread immunization programs, may facilitate the
development of allergic diseases by decreasing the
prevalence of infections. In addition to its conceptual
attractiveness, this hypothesis fits with our current under-
standing of the immunologic framework of allergic
disease, ie, an impaired transition from type-2 immunity in
the fetus to the mature type-1 response in normal children
and adults, possibly mediated by an antigenically rich
(dirty) environment, of which infections are an essential
element (Fig. 2) [25]. This is supported by epidemiologic
studies that reported an inverse relationship between
asthma and the overall burden of respiratory infections in
different communities [26—29].

The individual effect of specific viral or bacterial agents
has been more difficult to assess. In Japanese children with
positive tuberculin responses, the prevalence of asthma
and atopy was lower compared with that in negative
responders [30]. In contrast, bacille Calmette-Guérin
immunization after birth did not affect the prevalence of
atopy and asthma [31]. In a study in West Africa, child-
hood measles seemed to protect against asthma in early
adulthood [32]. However, 25% of children aged less than 3
years who contracted measles in that setting died from the
disease, suggesting that the protective effect could be due
to high mortality of allergy-prone individuals. A contrast-
ing cross-sectional study was recently published, showing
increased prevalence of asthma associated with naturally
acquired measles [33].

It is possible that the cumulative effect of repeated
infections with several different microorganisms rather than
with a single microorganism may be responsible for protection
or induction of allergy and asthma. In addition, stimuli that are
not infective per se but are related to infectious agents
(eg, endotoxin) may contribute to the deviation of the immune
system towards a “normal” type-1 immune response (Fig. 2). It
has been recently documented that the protection from allergy
and asthma that is conferred on children living on farms can
best be explained by close exposure to livestock and poultry,
which are rich sources of bacterial stimulation and endotoxin
[34]. In support of this concept, a recent study showed that
indoor endotoxin exposure early in life may protect against
allergen sensitization [35<<]. Unfortunately, there are also
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Figure 2. Could infections both protect
against and induce asthma? Transition from
the normal type-2 fetal immune responses
to the normal mature type-1 responses
(upper panel) may be affected by several
infectious agents that induce the production
of interferon-y, interleukin (IL)-12, and IL-18.
If normal immune maturation fails to develop
(lower panel), the interaction of some of the
same infectious agents with the abnormal
host will lead to severe infections early

in life (including bronchiolitis) and later
development of asthma.
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several reports, including very recent ones, demonstrating a
positive correlation of bacteria or endotoxin exposure, not
necessarily in early life, with increased asthma severity [36].

Another important source of microbial stimulation
without infection could be the normal commensals and
pathogens of the gut. Although there are significant differ-
ences in the composition of the intestinal flora between
normal and atopic children [37], further studies are
required to assess whether this is a causal association and
what its potential effect on asthma may be. Nevertheless, in
Italian military recruits, the prevalence of atopy was signifi-
cantly lower in subjects positive for hepatitis A virus
antibodies [38]. More recent data from the same cohort
include antibodies to Toxoplasma gondii and Helicobacter
pylori in the “protective” effect [39<<]. Measles, mumps,
rubella, chickenpox, cytomegalovirus, and herpes simplex
virus had no effect in the same study. The authors
suggested that the orofecal microbes might be better candi-
dates for a protective effect against atopy than are airborne
respiratory viruses. This is an intriguing idea, but further
prospective studies are required to evaluate the individual
and cumulative effects of different childhood infections on
the development of allergy and asthma.

In considering the above studies, it is important to
differentiate between studies that examine factors that are
likely to represent overall exposure to agents promoting
type-1 immunity (eg, orofecal bacteria and increased
numbers of siblings) and studies that investigate
individual infections. The reason being that a high overall
exposure to these agents is likely to promote type-1
immunity and provide protection against the development

of asthma. In contrast, when examining individual infec-
tions such as RSV, subjects developing severe illness are
likely to have impaired type-1 immunity, thus putting
them at increased risk of developing asthma. Other
individual infections—such as measles, mumps, rubella,
and chickenpox—infect only once, and almost all people
are infected or immunized during childhood. Thus, they
are not likely to reflect the overall load of infectious agents
and would not be expected to be associated with protec-
tion against the development of asthma. In support of this
interpretation, Illi et al. [40<<] recently reported that
infants with frequent “sniffles” during the 1st year of life
(ie, frequent URIs) are protected against the development
of asthma later in life. Further such studies will help
explain why some individual childhood infections may
correlate to an increased rather than a decreased odds ratio
for asthma, even though the protective effect of family size
(or repeated or frequent infections) remains [41].

Viruses in Asthma Exacerbations
Epidemiology of virus-induced asthma exacerbations

Although the role of viruses in the induction of or protection
from allergy and asthma is still inconclusive, the evidence for
the participation of these pathogens in asthma exacerbations
is much stronger. The observation that asthma attacks often
follow URIs (common colds) is old and a daily experience of
practicing physicians, especially pediatricians. Early reports
showed that viral shedding decreased soon after the cold,
before the patient referred to their physician or the hospital,
indicating that early sampling was necessary for viral detec-
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tion [42]. Furthermore, virus detection rates in these studies
fluctuated considerably; this was attributed to difficulties in
RV and coronavirus isolation. With the use of PCR-based
detection for RVs and prospective designs, the magnitude of
the problem was revealed.

In our prospective study in the community, asthmatic
children aged 9 to 11 years were followed-up for 1 year and
sampled as soon as they reported cold symptoms [43]. The
percentage of asthma exacerbations following virologically
confirmed colds was 80% to 85%. In a more recent study
in children hospitalized with severe asthma exacerbations,
the viral detection rate was 82% [44]. In adults, the propor-
tion of virus-attributed asthma exacerbations is generally
lower. However, it is possible that viral shedding is less or
of a shorter duration in adults than in children. In one of
the first community-based prospective studies using PCR
detection for RVs, virus detection rates were 44%, although
cold symptoms preceded 70% of the episodes [45]. In
another study (with a combined longitudinal and cross-
sectional design) of inner-city asthmatic adults [46], virus
detection was once again 44% in followed-up subjects and
50% to 55% in subjects presenting to the emergency
department. In our most recent study, virologic confirma-
tion was achieved in 60% of asthma exacerbations in
adults (Corne and Johnston, unpublished data, 2000).

The conclusion from the above studies is that respiratory
viruses are the most common triggers of asthma attacks.
Moreover, when we performed a time-trend analysis of
hospital admissions for asthma compared with virus
isolation rates during the same time in our cohort, an
impressive correlation was observed, indicating that viruses
are able to induce severe asthma requiring hospitalization
[47]. Peaks in hospital admissions for asthma and in virus
isolation occurred in most instances immediately after
school vacations. This pattern of segregation-dependent
disease is a characteristic of RV colds, in contrast to other
respiratory viruses such as RSV, which have a specific season.
Similar seasonal variation was partly observed in asthma
mortality, especially among young children and the elderly,
who are most susceptible to viral infections [48].

Another important point, on which all of these studies
agreed, is that RVs are the most prevalent agents, accounting
for 50% to 60% of all detected viruses (Fig. 3). This seems to
reflect the prevalence of these viruses in common colds,
rather than any specific asthmogenic properties, because
there are minor or no differences in symptoms produced by
different viruses [43] or in the proportion of asthma
episodes resulting from colds by any specific virus [42].

Virus-induced changes in airway reactivity

The above epidemiologic data have raised considerable
interest regarding the mechanisms of virus-induced
asthma exacerbations, the understanding of which would
suggest potential therapeutic targets. Airway hyperrespon-
siveness is one of the most prominent functional
abnormalities in asthma that can be objectively assessed in
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Figure 3. Viral agents implicated in acute asthma exacerbations in
school children and adults, as a percentage of total isolated viruses.
Rhinoviruses and coronaviruses are responsible for 80% to 90%

of cases. RSV— respiratory syncytial virus. Adapted from Johnston
et al. [43] and Nicholson et al. [45].

human and animal models. An increase in airway respon-
siveness to histamine in normal subjects after URIs, lasting
as long as 7 weeks, was observed more than 20 years ago
[49]. Although results have varied— probably because of
differences in methodology, models, viral strains, and so
forth—increased airway reactivity has since been
documented after RV, RSV, influenza, parainfluenza, and
adenovirus infections, mostly in animal models [50].

Because of the lack of an appropriate animal model,
human experimental infections have been used as a model of
RV infection. Using this model, the increased airway respon-
siveness to histamine after RV infection in atopic asthmatic
subjects was correlated with the severity of the experimental
cold, which was paralleled by an increase in IL-8 in nasal
lavage fluid [51]. In addition, when daily forced expiratory
volume in 1 second was monitored, a variable airway obstruc-
tion was observed [52]. When normal and atopic rhinitic
subjects were compared, lower airway responsiveness was
more affected in the allergic group [53]. However, in another
study, experimental RV infection induced small changes in
either upper or lower airway symptoms in normal and
asthmatic subjects, with no effect on bronchial reactivity,
leading the authors to suggest that RV infection by itself may
not be sufficient to provoke clinical worsening of asthma
[54]. Exposure to allergen during a respiratory viral infection
is the most obvious cofactor, because it is well known that RV
experimental infection enhances the responses to inhaled
allergen [55] and potentiates inflammation after segmental
allergen bronchoprovocation [56].

Most surprisingly, a recent study by Avila et al. [57],
using the same human model in allergic rhinitis subjects,
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Figure 4. Induction of cytopathic effect to
cultured human bronchial epithelium by
rhinovirus (A). A normal, confluent
monolayer is also shown (B). See also
Schroth et al. [60] and Papadopoulos
etal. [61e<].

showed that preexposure of the nose to an allergen signifi-
cantly delayed the onset of cold symptoms, reduced the
duration of the illness, and delayed the appearance of
proinflammatory cytokines locally. An inverse correlation
between nasal eosinophils at the time of inoculation and
eventual cold symptoms was also observed, suggesting that
an allergic response might protect from RV colds. Although
this evidence seems contradictory to most previous find-
ings, it could prove helpful in several ways. First, it suggests
that eosinophils may be involved in RV immunity [58].
Furthermore, it indicates that allergen exposure and viral
infection do not have a simple additive effect, and timing
or dosage may be important.

Mechanisms of virus-induced inflammation

Several characteristics of virus-mediated pathology can
also be seen in asthma. Among these, direct virus-mediated
damage to lower airway epithelium is a characteristic of
several viruses including influenza and RSV. Dead epithe-
lial cells drop into the airway lumen, inducing or increas-
ing airway obstruction. However, the ability of RVs to
infect the lower airways or induce cytotoxicity has long
been debated. One of the most frequent arguments against
this possibility has been the alleged preference of these
viruses for a 33°C environment, as in the nasal cavity, and
their suboptimal replication at 37°C, as in the lung.
However, when we compared the ability of a range of RV
serotypes and wild-type strains to replicate at either 33°C
or 37°C, we found differences to be relatively small and
certainly not prohibitive of RV replication [59].

This was confirmed in another study in which RV
replication was also achieved in primary human bronchial
epithelial cells (HBEC) [60<]. Very recently, we also
reported productive infection of HBEC with different RV
serotypes [61ee]. Using in situ hybridization, we showed
conclusively that RV RNA, of both the genomic and
replicative strand, can be found in the bronchial mucosa of
subjects with an experimentally induced common cold
[61==]. Most interestingly, in both of the above studies the
induction of a cytopathic effect of RV in HBEC was shown,
indicating that under some conditions [61lee], or with
some strains [60<], there can be a cytotoxic effect on the
epithelium (Fig. 4). Furthermore, infection of HBEC with
RV resulted in mRNA expression and production of IL-8,
RANTES (regulated upon activation, normal T-cell
expressed and secreted), and granulocyte-macrophage

colony-stimulating factor [60] or IL-6, IL-8, RANTES, and
IL-16 [61e<]. These studies strongly suggest that RVs infect
the lower airway and induce a local inflammatory response
that could represent the first step in the pathogenesis of an
asthma episode, adding to and clarifying previous attempts
to prove this notion [62,63]. It is possible that the degree
of inflammation, which is similar with other respiratory
viruses [64], and not the degree of cytotoxicity is more
relevant in the induction of an exacerbation.

Epithelial damage and mediator production after viral
infection are only some of the mechanisms that could
initiate or sustain an asthma exacerbation. A dysfunction of
the inhibitory M, muscarinic receptor has been docu-
mented after viral infection, which could lead to increased
reflex bronchoconstriction [65]. A role for tachykinins has
also been suggested, partly explained by reduction of neutral
endopeptidase activity, which is the major metabolizing
enzyme for substance P and neurokinin A [66]. Most of the
above studies have been performed in animal models with
cytotoxic viruses such as influenza, parainfluenza, and RSV.
A neurally mediated effect does not seem to be a prominent
feature of human experimental RV infections [67].

Most puzzling is the potential involvement of the
immune response to respiratory viruses in asthma
exacerbations. Although the asthmatic phenotype is
paradigmatically related to type-2 lymphocyte responses,
predominantly IL-4 and IL-5, viral infections induce strong
type-1 responses with high levels of IFN-y that would be
expected to downregulate, rather than augment, “allergic”
immune responses. Among respiratory viruses, RSV,
influenza, and parainfluenza are more extensively studied in
animal models. Sensitization of BALB/c mice to the virus
attachment protein (G) of RSV, followed by live virus infec-
tion, leads to pulmonary eosinophilia and type-2 cytokine
production. Although IFN-v is still the dominant T-cell
cytokine, a localized relative reduction of IFN-y mRNA
expression with concomitant increase of IL-4 and IL-5
transcripts has been reported [68]. When Dermatophagoides
farinae—sensitized mice were repeatedly infected with RSV, an
increased production of type-2 cytokines was observed [69].
In the presence of IL-4, virus-specific CD8" T-cells can switch
to IL-5 production and induce airway eosinophilia [70].
Interestingly, IL-4 can also inhibit antiviral immunity,
delaying both influenza [71] and RSV [72] clearance.

Unfortunately, no animal model of RV infection
currently exists. However, we have recently observed that
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RV-infected peripheral blood mononuclear cells from
atopic asthmatic subjects produce significantly lower IFN-y
and IL-12 and significantly higher IL-10 and IL-4 than do
cells from normal individuals (Papadopoulos and
Johnston, unpublished data, 2000). Although IFN-vy
remained the dominant T-cell cytokine in this model, a
shift towards a type-2 response may be involved in the
induction of an asthma exacerbation by mechanisms
similar to the ones described above for RSV in the mouse.

Conclusions
Although it is early to reach safe conclusions, there is no
doubt that strong associations exist between viral
infections and the induction and development of asthma.
The most conclusive evidence exists in relation to viral
URIs and subsequent asthma exacerbations. However,
several questions must be answered before this informa-
tion becomes clinically useful. It is likely that viral
infections interact with allergen exposure in the induction
of asthma exacerbations, but the sequence of events and
mechanisms are largely unexplored. As new therapeutic
modalities against viruses become available, it is
imperative to search for windows of opportunity for
antiviral treatment in the context of asthma exacerbations.
In contrast, the relevance of infection early in life to the
development of asthma is less clear. Individual infections
such as RSV are associated with an increased risk of
asthma, most likely because of impaired type-1 immunity.
Conversely, there is strong evidence that improved hygiene
or a reduced overall load of exposure to infectious agents
early in life may be responsible for the increase in allergy
and the asthma epidemic. Although these data could
spontaneously lead to the conclusion that we should
change to a more “natural” or “dirty” lifestyle, we should
bear in mind that improved hygiene was imposed because
of the significant morbidity and mortality due to infectious
diseases in previous eras. More detailed studies are thus
required to identify the best way to train our immune
systems without threatening our health and to identify
those in whom such treatment will be of most benefit.
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