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Since the Human Genome Project assembled the first draft
human genome 20 years ago [1], immense manpower, material,

and financial resources have been cast for generating accurate,
continuous, complete, and informative reference genome for
each important species. Nowadays, although the qualities of

these genome assemblies have been significantly improved
compared to their initial draft versions, the efforts for pursuing
better ones have never stopped. With the aid of the cutting-

edge sequencing technologies in recent years, researchers
focusing on de novo genome assembly have been working hard
trying to address some core problems that were believed excep-
tionally difficult or even ‘‘unsolvable” before and to improve

the reference genomes in various ways. First of all, new contig
assemblers have been developed to take advantage of Pacific
Biosciences (PacBio) high-fidelity (HiFi) long reads to differen-

tiate homologous genomic sequences with only small differ-
ences and avoid sequence collapses [2,3]. Second, Oxford
Nanopore Technologies (ONT) ultra-long (UL) reads have

been applied to span long dispersed repeat units and assemble
long tandem repeats like centromeres [4]. Third, Hi-C data are
used to generate chromosome-level phased reference genomes
for diploid and polyploid species [5]. Fourth, besides single
genomes, HiFi reads have been used to improve the quality

of reference metagenome [6]. Fifth, in addition to linear refer-
ence genome from one individual assembly, more informative
graph-based reference genomes from a group of assemblies

(pan-genome) have been built to reflect the diversity and vari-
ety in population [7–9].

Among all these efforts, the ongoing ‘‘Telomere-to-

Telomere” (T2T) project, which aims at building totally com-
plete and accurate chromosome-level reference genomes of
important species, is one of the most noticeable with no doubt.
For a long time, due to the high difficulty in assembling tan-

dem repeats and dispersed duplications such as centromeres,
telomeres, rDNA arrays, simple sequence repeats (SSRs),
retrotransposons, DNA transposons, and segmental duplica-

tions, almost all assemblies of large eukaryotic genomes (hun-
dreds of millions to billions of base pairs) contain a large
number of gaps and misassemblies. Even in the widely used

human reference genome (Hg38.p13), which is considered to
be of the highest-quality among all the species, there are about
151-Mb missing genomic regions, not to mention the assem-

blies of other animals and plants. Due to their importance in
fundamental cellular processes, the absence of these repetitive
regions impedes the studies of the related diseases such as can-
cer and infertility [10–12], limits the association and functional

analyses in genetics and genomics [13,14], and also hinders
addressing open problems like centromere evolution [15]. In
ciences /
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addition, when applied in data analyses, the incomplete refer-
ence genomes may cause unintended consequences, e.g., the
contamination of bacterial gene datasets by host sequences

[16] and the paralogous sequence variants called as allelic vari-
ants [17]. Therefore, it is in urgent need to solve the problem of
repeat assembly, and generate T2T reference genomes for

humans, animals, plants, and other important species.
Due to their advantages in accuracy and length respectively,

HiFi reads and UL reads provide us with an opportunity to

solve this long-standing problem. By combining these two types
of data, after publishing the complete human chromosome X
[18] and chromosome 8 [19] as the first T2T sex chromosome
and autosome, respectively, the international T2T Consortium

finally successfully assembled the whole human genome in a
T2T way, and opened a new T2T era in genomics [20]. This
new human genome assembly was built mostly manually and

is almost totally complete and correct except the rDNA regions
that contain some ‘‘fake” model sequences. Practically, except
human genome, it is not feasible for so many experienced scien-

tists in genome assembly area to gather in any other assembly
projects and work manually. Therefore, methodological inno-
vations are needed for assembling T2T reference genomes more

automatically. Moreover, due to the large difference between
the genomes from different kingdoms (e.g., animals and
plants), more T2T assemblies need to be built for systematically
studying the composition and structures of centromeres, rDNA

arrays, and other repetitive regions.
As the most important model plant, Arabidopsis thaliana is

one of the earliest species with draft reference genomes pub-

lished [21]. However, until recently, centromeres, telomeres,
and nucleolar organizing regions (NORs) have been either lost
or misassembled in the existing ‘‘gold standard” reference gen-

ome. To solve these problems, Wang et al. [22] took advantage
of UL, HiFi, and Hi-C data to generate a very high-quality ref-
erence genome of A. thaliana Col-0, named as Col-XJTU,

which is almost complete with only two gaps remaining. Com-
pared to the state-of-the-art reference genome (TAIR10.1),
Col-XJTU fills 36 gaps, introduces 14.6-Mb new sequences,
and improves the total size of A. thaliana genome to

133,725,193 bp. The new assembly contains three complete
centromeres and eight complete telomeres with uniform read
coverage and sizes consistent with physical map-based estima-

tion and reported lengths. In terms of correctness, Col-XJTU
improves the quality values (QVs) of all five chromosomes
from QV45–52 to QV62–68. And the synteny plot shows that

Col-XJTU genome is highly concordant with TAIR10.1. In
terms of contiguity, the contig N50 is increased from
11.19 Mb in TAIR10.1 to 22.25 Mb in Col-XJTU. After
assembling Col-XJTU, Wang et al. masked repeat elements

and annotated the newly-introduced sequences. Among the
165 newly-annotated protein-coding genes, 130 are located in
NORs and 35 are from centromeres and telomeres. More inter-

estingly, they find that 96% of the newly-annotated genes are
actively transcribed across different tissues, and some highly
expressed leaf-specific new genes code for protein domains

such as ATP synthase subunit C and NADH dehydrogenase,
suggesting that they might be involved in photosynthesis.

Upon the near-T2T assembly of A. thaliana, Wang et al.

studied the architecture, composition, and epigenetic regula-
tion of centromeres. The A. thaliana genome contains a group
of long centromeres ranging from 3.6 Mb to 9 Mb, which pro-
vides a chance for systematic studies of plant centromeres in a
broader sense. Wang et al. discover that A. thaliana cen-
tromeres are composed of monomers with each around
178 bp in length (CEN180), which is different from human

centromeres containing higher order repeat (HOR) units of
more than 2000 bp. In addition to CEN180 repeats, GC-rich
5S rDNA sequences with hypermethylation patterns are also

found in centromere regions. The majority of centromere
satellite sequences show high (> 90%) inter- and intra-
chromosomal identities, which is also different from human

centromeres whose inter-chromosomal sequence identities are
significantly lower than intra-chromosomal ones. In addition
to the findings on sequence composition, they have also
observed that the centromere-specific histone H3-like protein

(CENH3) is significantly enriched in the interior of the
centromere but depleted at the long terminal repeat (LTR)
regions, and the CENH3-binding signal exhibits stronger

preference for some repeat sequence clusters over the others.
Moreover, five centromeres all show much higher DNA
methylation than the pericentromeric regions.

In terms of methodology, Wang et al. used a novel pipeline
including UL read-based assembly and HiFi read-based polish
to build this near-T2T reference genome of A. thaliana, rather

than following the technical route in human T2T assembly,
which includes HiFi read-based contig assembly and UL
read-based scaffolding-like process. Theoretically, the contig
assemblies with HiFi reads and UL reads both have advan-

tages in avoiding sequence collapses and generating complete
and correct contigs. The high accuracy of HiFi reads is better
for differentiating the repetitive units with high similarity,

while the long UL reads are easier to span shorter tandem
repeats and dispersed duplication units. Although the human
T2T project succeeds in generating very high-quality assembly

manually, it is still not clear whether its technical route is suit-
able for automated T2T assembly. Also, it is not clear whether
the existing contig assemblers designed for normal noisy long

reads are able to take fully advantage of UL reads. Therefore,
until now, there is no widely-recognized ‘‘best” pipeline for
T2T assembly, and more algorithmic innovation and computa-
tional experiments need to be done in this new area.

To conclude, Wang et al. built the first near-T2T reference
genome of A. thaliana, which remarkably improves the com-
pleteness and correctness of the state-of-the-art genome. This

high-quality reference genome provides a good opportunity
for plant biologists to systematically study the architecture
and composition of plant centromeres, telomeres, rDNA

arrays, and other highly repetitive sequences, and to perform
the comparative analyses with those in animals. In addition,
the new UL read-based assembly pipeline proposed and imple-
mented by Wang et al. offers a choice for generating T2T ref-

erence genome in a more automated way.
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