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Abstract: Since periodontitis and type 2 diabetes mellitus are complex diseases, a thorough under-
standing of their pathogenesis requires knowing the relationship of these pathologies with other
disorders and environmental factors. In this study, the representability of the subgingival periodontal
microbiome of 46 subjects was studied by 16S rRNA gene sequencing and shotgun sequencing of
pooled samples. We examined 15 patients with chronic periodontitis (CP), 15 patients with chronic
periodontitis associated with type 2 diabetes mellitus (CPT2DM), and 16 healthy subjects (Control).
The severity of generalized chronic periodontitis in both periodontitis groups of patients (CP and
CPT2DM) was moderate (stage II). The male to female ratios were approximately equal in each group
(22 males and 24 females); the average age of the subjects was 53.9 ± 7.3 and 54.3 ± 7.2 years, respec-
tively. The presence of overweight patients (Body Mass Index (BMI) 30–34.9 kg/m2) and patients
with class 1–2 obesity (BMI 35–45.9 kg/m2) was significantly higher in the CPT2DM group than in
patients having only chronic periodontitis or in the Control group. However, there was no statistically
significant difference in all clinical indices between the CP and CPT2DM groups. An analysis of the
metagenomic data revealed that the alpha diversity in the CPT2DM group was increased compared
to that in the CP and Control groups. The microbiome biomarkers associated with experimental
groups were evaluated. In both groups of patients with periodontitis, the relative abundance of
Porphyromonadaceae was increased compared to that in the Control group. The CPT2DM group was
characterized by a lower relative abundance of Streptococcaceae/Pasteurellaceae and a higher abun-
dance of Leptotrichiaceae compared to those in the CP and Control groups. Furthermore, the CP and
CPT2DM groups differed in terms of the relative abundance of Veillonellaceae (which was decreased
in the CPT2DM group compared to CP) and Neisseriaceae (which was increased in the CPT2DM group
compared to CP). In addition, differences in bacterial content were identified by a combination of
shotgun sequencing of pooled samples and genome-resolved metagenomics. The results indicate that
there are subgingival microbiome-specific features in patients with chronic periodontitis associated
with type 2 diabetes mellitus.

Keywords: oral microbiome; type 2 diabetes mellitus; periodontitis; 16S rRNA gene sequenc-
ing; metagenomics
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1. Introduction

Development of the high-throughput sequencing technologies has resulted in a sig-
nificant breakthrough in human microbiome research. Next-generation sequencing [1]
and LC-MS/MS analysis [2,3] have become unique tools in studying the taxonomic and
functional characteristics of the human microbiome, as well as the pathological processes
associated with it. However, like any breakthrough technology, the resulting data have
raised more and more questions yet to be answered [4]. The human oral cavity is one of the
most exciting microbial habitats. Over 700 microbial species inhabiting the oral cavity and
forming unique communities have been found [5–7]. The composition of such communities
is relatively stable for the healthy oral cavity [8] and plays an important role in maintaining
a dynamic ecological balance with the host [9,10]. The most inhabited part of the oral cavity
is the periodontal sulcus, which contains about 400–500 microbial species [9,11]. Changes
in the diversity and biological functions of the periodontal sulcus microbiome lead to
an altered state, which can be associated with the onset and progression of periodontal
diseases [12], as well as other local or systemic pathological conditions [13,14].

One of the most frequent associations of periodontal diseases with systemic pathology is
the combination of chronic periodontitis (CP) with type 2 diabetes mellitus (T2DM) [15–17] In
this case, chronic periodontitis usually progresses rapidly and has a complicated course [18,19];
excessive and synergistic activation of a number of cytokines is one of the reasons for that [20].
Changes in the composition of oral microbiota are among the key manifestations of the
association between these diseases [21,22]. Thus, the potential influence of the oral microbiota
on the development of T2DM was studied using the periodontal pathogen Porphyromonas
gingivalis. Induction of experimental periodontitis in mice by oral administration of P. gingivalis
has a significant effect on the expression level of the Irs1 and Sirt1 genes in the host cells,
which suppresses the sensitivity of adipocytes and other cells to insulin [23]. The pathogenetic
role of P. gingivalis in periodontitis complicated by type 2 diabetes mellitus (CPT2DM) can
also be fulfilled by direct stimulation of adipocytes by lipopolysaccharides (LPS), leading to
the production of adipocytokines and proinflammatory cytokines provoking oxidative stress.
It was also reported that P. gingivalis LPS induce secretion of angiopoietin-like protein 2 in
epithelial cells of the periodontium, which affects angiogenesis and exhibits proinflammatory
properties [24]. These changes can contribute to the development of systemic inflammation
and are associated with lipid peroxidation, a part of the diabetes mellitus pathogenesis [25].
Therefore, the oral cavity microbiome (including the periodontal pathogenic bacteria) may be
involved in the pathogenesis of diabetes mellitus, which makes it a reasonable study object.

Comparative analysis of the subgingival microbiome in patients with CPT2DM is
described in the present study. We used 16S rRNA gene sequencing and compositional
data analysis (CoDa) to characterize the subgingival periodontal microbiome. Additionally,
dental plaque samples were pooled and characterized using shotgun sequencing and
genome-resolved metagenomics approaches.

2. Material and Methods
2.1. Subject Population and Study Design

The study involved 46 subjects consecutively selected from the population and subdi-
vided into three groups (Table 1). The index group consisted of 15 patients with chronic
periodontitis associated with type 2 diabetes mellitus (CPT2DM group); the reference
group consisted of 15 patients with chronic periodontitis without somatic comorbidities
(CP group), and the control group consisted of 16 subjects with signs of neither chronic
periodontitis nor type 2 diabetes mellitus (Control group). Controls were healthy subjects
with no history of type 2 diabetes mellitus or smoking. All nondiabetic patients were
required to have HbA1c level ≤6.0%. All the subjects were followed up at the clinics of the
Department of Propaedeutic Dentistry of the A.I. Evdokimov Moscow State University of
Medicine and Dentistry. The study was approved by the University Ethics Commission
and was conducted in full compliance with the Declaration of Helsinki, the International
Conference on Harmonization’s Good Clinical Practice, and appropriate local legislation.
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T2DM subjects were treated at the Department of Endocrinology and Diabetology of the
same university. Patients had not received treatment for chronic periodontitis over the past
6 months. The schematic visualization of the experimental design is presented in Figure 1.

Table 1. Demographic and clinical parameters of chronic periodontitis patients with and without
type 2 diabetes mellitus and control donors.

Parameters
Study Group (Subjects) One-Way

ANOVA

CPT2DM
(n = 15)

CP
(n = 15)

Control
(n = 16) F p

Sex
Male 7 7 8

0.080 0.786
Female 8 8 8

Age Male 57.8 ± 6.3 55.7 ± 9.6 48.2 ± 5.7
2.739 0.142

Female 57.9 ± 6.4 56.2 ± 8.6 48.9 ± 6.7

BMI *
25.0–29.9 kg/m2 4 * 12 10

5.942 0.019 *30.0–34.9 kg/m2 5 * 3 5

35.0–45.9 kg/m2 6 * 0 1
* BMI—Body Mass Index; CP: chronic periodontitis; CPT2DM: chronic periodontitis with type 2 diabetes mellitus;
significantly differing population distribution according to BMI was observed in CPT2DM patients compared to
control subjects and patients with CP only (* p < 0.05).
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Figure 1. Schematic visualization of the experimental design. CP: chronic periodontitis. CPT2DM:
chronic periodontitis with type 2 diabetes mellitus.

2.2. Diagnostic and Inclusion Criteria

Control donors were added to the study only after consultation with a dentist and
an endocrinologist. Patients were diagnosed with chronic periodontitis according to the
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clinical and radiological data in compliance with the 2018 classification of periodontal
diseases [26].

The exclusion criteria were as follows: pregnancy, lactation, use of antibiotic, anti-
inflammatory, or immunosuppressive therapies during the previous six months, regular use
of mouth rinses containing antimicrobials, use of orthodontic appliances, presence of other
systemic conditions that could affect the progression of periodontitis (e.g., immunological
disorders or osteoporosis).

The study groups contained approximately equal numbers of non-smoking males
and females aged 41–65 years. Periodontitis patients had stage II (moderate) periodontitis,
with a generalized lesion, probing pocket depths of 3–4 mm, loss of bone tissue around
the teeth no more than 1/3 of the root length, and virtually no tooth loss associated with
periodontitis. Patients with type 2 diabetes mellitus were in remission.

The analysis of the dental status included determining the following indices adopted
in dental studies: PHP (Patient Hygiene Performance); OHI-S (Simplified Oral Hygiene
Index); CAL (Clinical Attachment Level); MMI (Miller’s mobility index); PBI (Papillary
Bleeding Index); and TL (Tooth loss). Patients were diagnosed with type 2 diabetes
mellitus in accordance with the World Health Organization’s (WHO) diagnostic criteria
1999/2006/2011 [27] with allowance for the clinical, anamnestic, and laboratory evaluations.
In all T2DM patients, disease duration was 3 to 7 years; the disease course was moderately
compensated; blood glucose level was below 7.8 mmol/L, and glycated hemoglobin level
was <8%. All subjects in the CPT2DM group received basic antidiabetic therapy: 7 subjects
received insulin therapy, and 8 subjects received oral glucose-lowering drugs.

2.3. Collection and Sequencing of Plaque Samples

The contents of the periodontal pocket in patients with chronic periodontitis (CP),
chronic periodontitis associated with type 2 diabetes mellitus (CPT2DM) and the contents
of the gingival sulcus in control subjects were the study material. The samples were
collected from the patients in the morning on an empty stomach (between 9:00 and 11:00
a.m.) before they used a toothbrush and other hygiene products. The biological material
was sampled from four spots of the periodontal pockets/sulcus at the level of the second
molars using sterile paper endodontic posts, which were placed together into a test tube
containing 0.2 mL of sterile physiological saline solution and shaken. Material was collected
at six sites per tooth (mesio-, mid-, and disto-buccal area; mesio-, mid-, and disto-lingual
area) for all teeth.

The samples were delivered to the laboratory and subsequently stored at −20 ◦C.
Total DNA was extracted from the samples using a QIAamp DNA Investigator Kit (Qiagen,
Düsseldorf, Germany) in accordance with the manufacturer’s protocol. Genomic DNA
content was determined on a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA) in
accordance with the manufacturer’s instructions. The enriched microbial DNA (50–100 ng)
was fragmented using a Covaris S220 system (Covaris, Woburn, MA, USA). The final
fragment size was determined using an Agilent 2100 bioanalyzer (Agilent Technologies,
Santa-Clara, CA, USA) in accordance with the manufacturer’s instructions. Briefly, the
extracted DNA was amplified using standard 16S rRNA gene primers being complementary
to the V3–V4 region and containing 5′-illumina adapter sequences. Sequencing was carried
out on a HiSeq 2500 platform (Illumina) in accordance with the manufacturer’s instructions.

DNA samples for shotgun sequencing were pooled and prepared by ligating the
genomic DNA of the samples within each study group taken at equimolar amounts.
The amount of the mixed DNA pool was determined on a Qubit 2.0 fluorometer (Invitrogen,
Carlsbad, CA, USA) in accordance with the manufacturer’s instructions. A NEBnext
Microbiome DNA enrichment kit was used for enriching the microbial genomic DNA
in the mixed pools in microbial genomic DNA in accordance with the manufacturer’s
instructions. The libraries of paired terminal fragments were prepared in accordance with
the manufacturer’s guidelines using a NEBNext Ultra II DNA Library Prep Kit (New
England Biolabs, Ipswich, MA, USA). The libraries were indexed using NEBNext multiplex
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Oligos for Illumina kits (96 Index Primers) (New England Biolabs, Ipswich, MA, USA).
The distribution over library size and quality was assessed using a high-sensitivity DNA
microarray (Agilent Technologies, Santa-Clara, CA, USA). Subsequent quantification of
the libraries was performed using a high-sensitivity Quant-iT DNA Assay Kit (Thermo
Scientific). Sequencing was conducted on a HiSeq 2500 platform (Illumina) in accordance
with the manufacturer’s instructions using the following reagent kits: HiSeq Rapid PE
Cluster Kit v2, HiSeq Rapid SBS Kit v2 (500 cycles), HiSeq Rapid PE FlowCell v2, and a 2%
Phix spike in controls.

2.4. Bioinformatic and Statistical Analysis

The 16S rRNA gene sequencing data were processed using the DADA2 pipeline [28]
according to the published protocol [29]. The resulting phyloseq [30] object contained
an amplicon sequence variant (ASV) table, a taxonomy table, and a phylogenetic tree.
The ASVs were pooled at the family level. In addition, the top eight families in terms of
relative abundance were selected for statistical analysis. The CoDa (compositional data anal-
ysis) approaches, such as Aitchison distance [31,32] and CoDa dendrogram, were used for
data visualization and exploration analysis. The CoDa dendrogram is a dendrogram-like
graph that shows: (a) the way of grouping parts of the compositional vector; (b) the explana-
tory role of each sub-composition generated in the partition process; and (c) decomposition
of the total variance into balance components associated with each binary partition [33,34].
Before constructing the CoDa dendrogram, Bayesian estimation of (non-zero) proportions
was performed to remove rare taxa and substitute zeros [35]. The Songbird approach [36]
implemented in the QIIME2 framework [37] was used to discover biomarkers significantly
discriminating the experimental groups. Wilcoxon signed rank test was used for additional
statistical comparison. The GNU/R statistical environment was used for data analysis [38].

The metaWRAP pipeline was used for the construction of metagenome-assembled
genomes (MAGs) [39] (containing MEGAHIT [40], MetaBAT2 [41], MaxBin2 [42], BWA [43]),
with the following parameters of the resulting bins: completeness > 35%, contamination
< 15%. Multiple alignment and phylogenetic tree plotting for 43 marker amino acid se-
quences of MAGs and Human Oral Microbiome Database (HOMD) genomes [44] was
performed by CheckM means [45]. The CAT/BAT tool was used for additional taxonomic
annotation of MAGs [46]. Next, the closest HOMD genomes to MAGs were found to follow
the coverage of the obtained MAGs in all the pooled metagenomic samples.

Statistical analysis of clinical data was performed using the SPSS version 21 software
package.

3. Results
3.1. Description of the Demographic and Clinical Parameters of the Experimental Cohort

The demographic characteristics of the analyzed groups (Table 1) showed no sig-
nificant intergroup differences in sex and age. However, based on the body mass index
parameter, the percentage of overweight patients (Body Mass Index (BMI) 30–34.9 kg/m2)
and patients with class 1–2 obesity (BMI 35–45.9 kg/m2) was significantly higher in the
CPT2DM group than in the CP group or in the Control group. Table 2 summarizes the
oral health assessed using various dental indices and glycosylated hemoglobin levels.
The PHP indices showing the oral hygiene status revealed no differences between the
CP and CPT2DM groups but were significantly higher in patients with chronic periodon-
titis compared to the control group. The CAL indices, which characterize the state of
periodontal pockets, were significantly higher in both chronic periodontitis groups (CP
and CPT2DM), while there were no changes in other dental status parameters regardless
of the association with type 2 diabetes mellitus. The glycosylated hemoglobin (HbA1c)
level was expected to be higher in CPT2DM patients, while the blood glucose level was
approximately the same in different groups.
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Table 2. Comparison of study groups using dental status indices and the glycosylated hemoglobin level.

Variable

Study Group,
Median (Min; Max)

Wilcoxon Rank Sum Test p-Value
CPT2DM
(n = 15)

CP
(n = 15)

Control
(n = 16)

Dental status
indices

PHP 0.7
(0; 2.1)

1.3
(0.6; 2.1)

0.2
(0; 0.7)

p(CP2DM-CP) = 0.234
p(CPT2DM-Control) = 0.085

p(CP-Control) < 0.010 *

OHI-S 1.4
(0.4; 4.5)

1.4
(0.4; 3.3)

1.8
(0.5; 3.1)

p(CP2DM-CP) = 0.718
p(CPT2DM-Control) = 0.627

p(CP-Control) = 0.958

CAL 3.9
(3.0; 4.5)

3.8
(3.4; 4.3)

0.8
(0; 1.1)

p(CP2DM-CP) = 0.697
p(CPT2DM-Control) < 0.001 *

p(CP-Control) < 0.001 *

MMI 0.8
(0; 2.0)

0.5
(0; 2.0)

0
(0; 1.0)

p(CP2DM-CP) = 0.409
p(CPT2DM-Control) = 0.056

p(CP-Control) = 0.122

TL 0
(0; 0)

0.05
(0; 1.0)

0
(0; 0)

p(CP2DM-CP) = 0.697
p(CPT2DM-Control) = 0.998

p(CP-Control) = 0.874

PBI 0.34
(0; 0.90)

0.30
(0.10; 0.90)

0.38
(0; 0.84)

p(CP2DM-CP) = 0.697
p(CPT2DM-Control) = 0.584

p(CP-Control) = 0.874

Diabetes criteria

Glucose
(mmol/L)

5.7
(5.0; 7.8)

5.6
(5.1; 6.1)

5.4
(4.4; 6.6)

p(CP2DM-CP) = 0.748
p(CPT2DM-Control) = 0.665

p(CP-Control) = 0.589

Glycosylated
hemoglobin

(HbA1c)

7.5
(6.5; 8.0)

4.5
(3.0; 6.0)

3.5
(3.0; 5.0)

p(CP2DM-CP) < 0.001 *
p(CPT2DM-Control) < 0.001 *

p(CP-Control) = 0.067

PHP: patient hygiene performance. OHI-S: simplified oral hygiene index. CAL: clinical attachment level. MMI: Miller’s mobility index. TL:
tooth loss. PBI: papillary bleeding index; The distributions of investigated parameters analyzed by Wilcoxon rank sum test. * p < 0.05.

Overall, no significant differences between CP and CPT2DM groups were observed
for most studied dental indices. Differences between the chronic periodontitis groups
identified in subsequent analyses was associated with the presence of type 2 diabetes
and not with some other clinical parameters. This allows one to identify significant
characteristics of the subgingival microbiota associated with periodontitis and type 2
diabetes.

3.2. Characteristic of the Subgingival Periodontal Microbiota Based on 16S rRNA Gene
Sequencing of the Collected Samples

The identification of microbiome biodiversity in each clinical group involved two
phases. During the first phase, 16S rRNA gene fragments were sequenced to evaluate the
abundance of various bacterial families in plaque samples. Data analysis was performed
using the DADA2 [28] and phyloseq [30] packages for GNU/R. After quality filtering, the
16S rRNA gene sequencing data contained an average of 50,060 ± 15,902 paired reads
per sample. The summary of sequencing statistics is shown in Supplementary Table S1.
Statistical intergroup differences in community richness (alpha diversity) were identified
using the Chao1, Shannon and Simpson indices. These indices take count of the identified
species and their abundance in the microbial community (see Figure 2). An increase in
alpha diversity was revealed in the CPT2DM group compared to the Control group using
the Shannon index (Wilcoxon rank-sum test with FDR (false discovery rate) correction
for multiple testing p < 0.05), while the Simpson index showed an increase in statistical
significance in the CPT2DM group compared to both the Control and CD groups (Wilcoxon



Pathogens 2021, 10, 504 7 of 16

rank-sum test with FDR correction for multiple testing p < 0.05). However, no significant
intergroup differences in the Chao1 index were revealed.
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An analysis of the 16S rRNA gene sequencing data revealed 26 bacterial families
(Supplementary Table S2) in the samples in all clinical groups. The observed distribution
of bacterial families is shown in Figure 3A. The eight most abundant bacterial families
were selected for further data analysis. The NMDS (non-metric multidimensional scaling)
bidimensional visualization is presented in Figure 3B. The taxonomic data revealed no
clustering by groups. The balance dendrogram (CoDa dendrogram) was used to construct
the model of taxonomic differences between the experimental groups. This approach
allowed us to identify specific balances (the ratio between taxonomic abundances) involved
in the distinction between the metagenome groups [33,34]. This model describes the
intensity of taxonomic reshapes when the metagenome profile is moving from the “healthy
state” to the periodontal “disease state” (see Figure 3C).

According to the CoDa dendrogram, the main balance (denoted as “Balance 1” in
Figure 2B) of the CPT2DM group was associated with an increased relative abundance of
four bacterial families, such as Leptotrichiaceae, Prevotellaceae, Fusobacteriaceae, and Porphy-
romonadaceae, while the Control group was characterized by increasing relative abundances
of Streptococcaceae, Veillonellaceae, Neisseriaceae, and Pasteurellaceae. The CP group occupied
a boundary position between the CPT2DM and Control groups.

The Songbird approach was used for statistical validation of the balance dendrogram
(Figure 4). The primary output from Songbird is a file containing differentials describ-
ing the log-fold change in features with respect to a certain field(s) in sample metadata.
The most important aspect of these differentials is rankings, which are obtained by sorting
a column of differentials from lowest to highest. These rankings show the information
on the relative associations of features with a given covariate [36]. In both groups of
periodontitis, the relative abundance of Porphyromonadaceae was increased compared to
the Control group. The CPT2DM group was characterized by a decreased relative abun-
dance of Streptococcaceae/Pasteurellaceae and an increased Leptotrichiaceae compared to the
CP and Control groups. Furthermore, the CP and CPT2DM groups differed in terms of
relative abundance of Veillonellaceae (decreased in the CPT2DM group compared to CP)
and Neisseriaceae (increased in the CPT2DM group compared to CP).
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3.3. Genome-Resolved Metagenomic Analysis of the Shotgun Sequencing Data of the Pooled
Samples

At the next stage, the DNA samples within each group were pooled and sequenced
using shotgun technology. The summary sequencing statistics are presented in Supple-
mentary Table S1. The bacterial genomes were restored from the metagenomic data using
genome-resolved metagenomic approaches based on the metagenomic assembly and clus-
tering of contigs through the metagenomic binning procedure (see Section 2). As a result,
26 MAGs (metagenome-assembled genomes) were assembled for all the metagenomic
samples with selected quality parameters (completeness > 35%, contamination < 15%). Six
MAGs were obtained for the Control group; 9 and 11 MAGs, for the CP and CPT2DM
groups, respectively. The binning statistics are shown in Supplementary Table S3.

The analysis of MAGs involved two steps. First, taxonomic annotation of MAG se-
quences was obtained using the CAT/BAT tool (see Supplementary Table S3). A unified
multiple alignment and a phylogenetic tree (also using the CheckM tool) were constructed
using MAGs sequences and expanded Human Oral Microbiome Database (eHOMD) bac-
terial genomes [44] to verify the taxonomic annotation. The nearest neighbor MAGs were
determined and further used for constructing a combined phylogenetic tree (Figure 5).
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colors (red for the Control group, blue and green for CP and CPT2DM, respectively). The colored areas also denote the
bacterial phyla. MAG: metagenome-assembled genome. eHOMD: expanded Human Oral Microbiome Database.

According to this analysis, Haemophilus spp., Veilonella spp., and Neisseria spp. bacteria
are common in all the analyzed groups. The sample from the Control group is charac-
terized by the presence of unique MAGs close to such bacteria as Streptococcus sanguinis,
Fusobacterium nucleatum, and Prevotella pleuritis. Bacteria close to Lautopia mirabilis, Prevotella
loescheii, and Prevotella nigrescens were present in the CP MAG group. Bacteria close to
Alloprevotella sp. HMT 473, Corynebacterium matruchotii, Prevotella intermedia, Porphyromonas
pasteri, and Saccharibacteria (TM7) [G-1] HMT-952 were present in the CPT2DM MAG group
only. Meanwhile, MAGs close to Porphyromonas gingivalis and Bacteroidales [G-2] HMT-274,
as well as Treponema spp. (while maintaining species differences), are common for the CP
and CPT2DM groups. Therefore, the taxonomic representation in control subjects differs
from that in both groups of patients with periodontitis. Bacteroidetes and Spirochaetes spp.
MAGs were found in both groups of periodontitis patients, whereas unique MAGs can
also be distinguished between these groups.

4. Discussion

Chronic periodontitis (CP) and type 2 diabetes mellitus (T2DM) are widespread
multifactorial diseases, which are evidently interrelated [47]. T2DM is one of the main risk
factors for the development of periodontitis, while periodontitis severity can affect glycemic
control and complications in patients with diabetes (impaired tissue repair capacity being
among the reasons for that) [47,48]. Therefore, treatment of periodontitis is considered to be
among the beneficial approaches of diabetes therapy [49–51]. The consortia of oral bacteria
form fairly stable communities [52]. Even in healthy people, the microbial composition of
different parts of the oral cavity has its individual characteristics [8].

The disturbances in the gut microbiota have been found to be interrelated with an
increased incidence of type 2 diabetes mellitus. Thus, a reduced ratio of bacterial types
Bacteroidetes/Furmicutes and a significant reduction in the content of some functionally
important bacteria (e.g., Bifidobacterium) in the gut of patients with type 2 diabetes
mellitus have been revealed [53]. The development of type 2 diabetes mellitus in humans
was reported to be associated with a lower abundance of butyrate-producing bacterial
species and increased abundance of Lactobacilla [54,55]. An increased number of some
endotoxin-producing Gram-negative bacteria was noted [54,56,57], which alters the energy
metabolism of the host and enhances inflammation response [54,58,59]. Disturbances in
energy homeostasis lead to hyperglycemia and hyperlipidemia, which can trigger obesity
and, ultimately, insulin resistance [60]. It should also be considered that host genetics affect
the profile of the gut microbiome, thus ensuring the resilience of this ecosystem [61].

Much less is known about the relationship between the oral microbiome and type 2
diabetes mellitus, although one of the leading mechanisms of the influence of periodontal
pathogens on the development and course of diabetes mellitus is associated with the
inclusion of these bacteria in the gut microflora [23]. For example, experimental injection
of P. gingivalis into the oral cavity led to gut colonization with this periodontopathogen
that affects glucose metabolism [62,63] by increasing expression of the G6pc gene, which
positively regulates gluconeogenesis and increases glucose level [64].

Nonetheless, it is still not exactly clear which oral microorganisms are susceptible to
developing diabetes and how exactly diabetes affects them. Griffen et al. [65] described 25
taxa, including six bacterial genera (Neisseria, Streptococcus, Haemophilus, and Pseudomonas
being among them) whose relative abundance in the oral microbiota differed for patients
with T2DM and the control groups. According to previously published [21] and [66], the
changes in oral microbiota in patients with T2DM and periodontitis depend both on the
glycemic status and stage of the periodontal disease. However, it is still enigmatic which of
these factors had the main impact. Wolcott et al. [67] inferred that the observed changes
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in the subgingival microbiome associated with T2DM and periodontitis are potentially
caused by metabolic and immune dysregulation of the host.

In this study, we identified differences in the composition of the subgingival microbiota
between groups of control subjects, patients with chronic periodontitis (CP group) and
patients with chronic periodontitis associated with type 2 diabetes (CPT2DM group),
which can be regarded as potential microbial biomarkers of these pathogenic conditions.
The demographic characteristics of the analyzed groups show no significant intergroup
differences except for BMI. The percentage of overweight patients (BMI 30–34.9 kg/m2)
and patients with class 1–2 obesity (BMI 35–45.9 kg/m2) was significantly higher in the
CPT2DM group than in the CP group or the Control group. This is a significant limitation
of the conclusions drawn in our study since the oral microbiome may change in obese
people regardless of their glycemic status [68]. No statistically significant difference in
the main dental indices was revealed between the CP and CPT2DM groups. However,
the glycosylated hemoglobin (HbA1c) level was expectedly higher in the CPT2DM group,
while the blood glucose level was approximately the same in different groups.

Alpha diversity was increased in the CPT2DM group compared to the Control and
CP groups, while the CP and Control groups did not differ in terms of this parameter.
Increased bacterial richness in the oral microbiome is significantly associated with poor oral
health, including the presence of decayed teeth, periodontitis, and poor oral hygiene [69].
Earlier, no increased richness of the subgingival community was found in patients with
periodontitis [65,70]. The presence of bleeding was not associated with different alpha
diversities in patients with periodontitis. However, bleeding sites showed a higher total
bacterial load [70].

The differences in microbial content between the tested groups were also discov-
ered. First, an ecological model based on the principles of the compositional data analysis
(CoDa) describing the shifts from the “healthy state” to the CPT2DM state was obtained.
The findings allowed us to distinguish two different “microbiota states” associated with
the Control and CPT2DM groups. The “healthy state” included bacterial families, such
as Streptococcaceae, Veillonellaceae, Neisseriaceae, and Pasteurellaceae, while Leptotrichiaceae,
Prevotellaceae, Fusobacteriaceae, and Porphyromonadaceae formed the “disease state.” Inter-
estingly, the CP group occupies a boundary position between the CPT2DM and Control
groups. The “disease state” is formed by bacterial families including a wide range of
bacteria overrepresented in periodontitis compared to healthy controls [71–76], while
the “healthy state” is characterized by the formation of the oral microbiota commonly
present in healthy subjects [71,73–76] Second, statistically significant biomarkers distin-
guishing experimental groups were identified. Both periodontitis groups were associated
with an increased relative abundance of Porphyromonadaceae compared to healthy controls.
However, the CPT2DM group was characterized by a reduced relative abundance of Strep-
tococcaceae/Pasteurellaceae and increased relative abundance of Leptotrichiaceae compared to
those in the CP and Control groups. Furthermore, the CP and CPT2DM groups differed in
terms of relative abundance of Veillonellaceae (decreased in the CPT2DM group compared to
CP) and Neisseriaceae (increased in the CPT2DM group compared to CP). These findings are
partially consistent with the aforementioned ecological model. It was reported previously
that the content of pathogenic species was higher in patients with T2DM, both complicated
and uncomplicated by periodontitis, compared with the nondiabetic controls [22].

Additionally, the genome-resolved metagenomic methods were used to analyze
pooled metagenomic samples. These computational techniques allowed us to reconstruct
the bacterial genomes from the metagenomic data (metagenome-assembled genomes,
MAGs). We showed that Haemophilus spp., Veilonella spp., and Neisseria spp. MAGs were
common in all groups. The main part of Bacteroidetes and all the identified Spirochaetes
MAGs were found in both groups of periodontitis patients, whereas unique MAGs were
also present in these groups. Our findings are consistent with the results of previous
studies reporting 16S rRNA gene sequencing of subgingival bacterial communities [65].
The bacteria close to P. gingivalis and Bacteroidales [G-2] bacteria HMT-274, as well as
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Treponema medium (while maintaining species differences), were common for both peri-
odontitis groups. P. gingivalis are strongly associated with periodontal disease. It should
be emphasized that differences in the revealed Treponema species between the CP and
CPT2DM groups may be caused by the nature of coaggregation, clinical manifestations of
periodontitis, or specific characteristics of the environment.

The differences in the content of Prevotella spp. are particularly interesting. Bacteria
close to P. intermedia were detected only in the pooled metagenomic sample of the CPT2DM
group, while P. nigrescens and P. loescheii were detected only in the CP group. The association
of these bacteria with disease severity was previously noted. P. intermedia is associated with
more severe forms of periodontitis, while P. nigrescens is associated with mild to moderate
disease [77]. Another distinctive feature of the CPT2DM group was the presence of unique
MAGs, namely, Actinobacteria (Corynebacterium matruchotii) and Candidatus Saccharibacteria
(TM7) [G-1] HMT-952. Corynebacterium matruchotii was implicated in the nucleation of
oral microbial consortia leading to biofilm formation [78]. The role played by TM7x
bacteria in the oral microbiome has yet to be elucidated. It is worth noting that the pooled
metagenomes are not sufficiently representative to determine any significant differences
in the experimental groups. Nevertheless, the results are consistent and complement the
findings of the 16S rRNA gene sequencing analysis.

5. Conclusions

The taxonomic composition of the subgingival microbiome clearly differentiates be-
tween the “healthy state” and the “disease state”, as well as during a possible transition
to chronic inflammation associated with T2DM. Importantly, this process is accompanied
by increased microbiome biodiversity. The identified biomarkers of the analyzed clinical
patterns may be further utilized for developing test systems to be used in routine clinical
practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10050504/s1, Table S1. Sequencing quality control data. Table S2. Taxonomic
composition of 16S rRNA gene sequencing samples at the family level (reads counts). Table S3.
Binning statistic and bins taxonomic annotation.
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