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Abstract: The electrocardiogram (ECG) has significant clinical importance for analyzing most cardio-
vascular diseases. ECGs beat morphologies, beat durations, and amplitudes vary from subject to
subject and diseases to diseases. Therefore, ECG morphology-based modeling has long-standing
research interests. This work aims to develop a simplified ECG model based on a minimum number
of parameters that could correctly represent ECG morphology in different cardiac dysrhythmias. A
simple mathematical model based on the sum of two Gaussian functions is proposed. However, fit-
ting more than one Gaussian function in a deterministic way has accuracy and localization problems.
To solve these fitting problems, two hybrid optimization methods have been developed to select the
optimal ECG model parameters. The first method is the combination of an approximation and global
search technique (ApproxiGlo), and the second method is the combination of an approximation
and multi-start search technique (ApproxiMul). The proposed model and optimization methods
have been applied to real ECGs in different cardiac dysrhythmias, and the effectiveness of the model
performance was measured in time, frequency, and the time-frequency domain. The model fit
different types of ECG beats representing different cardiac dysrhythmias with high correlation coeffi-
cients (>0.98). Compared to the nonlinear fitting method, ApproxiGlo and ApproxiMul are 3.32 and
7.88 times better in terms of root mean square error (RMSE), respectively. Regarding optimization,
the ApproxiMul performs better than the ApproxiGlo method in many metrics. Different uses of
this model are possible, such as a syntactic ECG generator using a graphical user interface has been
developed and tested. In addition, the model can be used as a lossy compression with a variable
compression rate. A compression ratio of 20:1 can be achieved with 1 kHz sampling frequency and
75 beats per minute. These optimization methods can be used in different engineering fields where
the sum of Gaussians is used.

Keywords: ECG modeling; ECG generator; Gaussian function; optimization; data compression

1. Introduction

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality
around the globe. About 80% of CVD deaths take place globally in low- and middle-
income countries. About 92.1 million U.S. adults are currently suffering from CVDs. A
total of 17.3 million people died globally in 2013 due to CVDs [1]. By 2030, the projected
percentage of having some form of CVDs is 43.9%. Therefore, to save millions of people,
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CVD diagnosis and prediction are significantly important. The electrocardiogram (ECG)
is a low cost and non-invasive test and has the ability to detect various CVDs such as
myocardial infarction (heart attack) and arrhythmias. This is why ECG is commonly used
as diagnostics and prognostic tools for CVDs. Modeling different cardiac dysrhythmias
through ECGs could help to understand the cardiac conditions. It can also help to create
better features that could be used to distinguish cardiac dysrhythmias from the machine
learning perspective. Motivated by these, this paper presents simplified mathematical
modeling for generating different patterns for cardiac dysrhythmias.

Different modeling techniques have been developed over the decades for the modeling
of ECGs. The homomorphic analysis and modeling of typical ECG signals have been
conducted by the pole-zero model [2]. Another pole-zero model utilized the poles and
zeros to form clusters, and the clusters can be related to the constituent waves of the ECG [3].
Another study optimized the rational functions and their poles for ECG signal using particle
swarm optimization [4]. The pole-zero system’s problem is that it cannot find a satisfactory
solution because it involves finding an optimum point on a (potentially) multimodal error
surface [5]. The Chip Away Decomposition (ChAD) algorithm, an iterative method for
Gaussian parameter determination, is used to decompose and represent the ECG model.
However, the model does not perform well in the presence of noise [6]. Besides, it is
assumed that there is no meaningful baseline wander within a cardiac cycle, which is not
always valid in a real situation, and it has to start from a baseline point [6]. A modified
version of the Van der Pole (VdP) equation has been used for natural cardiac pacemaker
by utilizing a modified version of the FitzHugh–Nagumo model [7,8]. A dynamical 3-D
state-space canonical model involving heart rate variability and low-frequency oscillations
associated with Mayer waves has been proposed by McSharry et al. [9].

Other modeling techniques, such as the Fractional-order modeling technique, have
been used to develop a generalized ECG signal generation template. Variations of ECG
waveforms under normal and abnormal heart conditions have been described by two
different model classes using coupled VdP oscillators [10]. The ECG codebook model
(ECGCM) has been applied to extract useful features for automatic detection of Myocardial
Infarction. ECGCM reduces ECG dimension and contains more meaningful semantic data
for Myocardial Infarction detection [11]. The Generalized Orthogonal Forward Regression
(GOFR) technique was applied for automatic ECG wave extraction and morphology track-
ing. GOFR with a specific function (Gaussian Mesa function (GMF) or Bi-Gaussian function
(BGF)) provides an informative model to track the morphology of the waves [12]. ECG
signals were reconstructed using exponentially damped sinusoids (EDS) parameter and
the linear prediction coefficients using the inverse transform [13]. A dynamical model was
used to process and segment the ECG signal into its components (P, Q, R, S, T). A signal
decomposition model-based Bayesian filtering method has been introduced by Roonizi
et al. [14]. ECG components have been utilized as hidden state variables and estimated
simultaneously as a time series through an extended Kalman smoother (EKS) [14]. A
genetic Fuzzy classifier system model increases ECG classification accuracy regarding
more precise arrhythmia detection [15]. A new segmented method for modeling the ECG
signal with Hermitian basis functions yielded half in compression compared to the non-
segmented method [16]. Using only the QRS complex of Hermite features for pattern
recognition [17,18], and compression [19,20] have also been proposed [16]. Other modeling
techniques such as polynomial approximation [21] and parametric modeling using discrete
cosine transform [22] have also been developed for modeling and compression.

The above models are complex to produce useful ECG signals. However, in the
discussed literature, ECG components using Gaussian could be a promising solution.
Encouraged by this, in this paper, a simplified mathematical model with optimization is
developed for producing various kinds of ECG rhythms. The major contributions and key
topics covered by this research are as follow:
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• A simplified mathematical model based on the sum of two Gaussians has been pro-
posed, which does not require baseline adjustment [23], and it is straightforward
compared to the current models.

• Most fitting or optimizing techniques are designed to calculate only one Gaussian func-
tion, which is not ideal for the proposed method. Therefore, to solve these problems
along with the model, two-hybrid optimization methods have been proposed.

• The proposed model’s performance is evaluated using time domain, frequency do-
main, and time-frequency domain analysis.

• Among various applications, one of the most promising ones is the ECG generator for
education and research purpose. A graphical user interface (GUI) has been developed
to show the proposed system’s potential use. Besides, noisy ECG generation and data
compression have also been presented.

This paper is organized as follows. Firstly, this study’s background problem is formu-
lated with the proposed ECG model through hybrid optimization methods in Section 2. In
Section 3, data collection and processing for the performance evaluation of the test model
and hybrid optimization are discussed. The results and comparison with real data are
presented in Section 4. In Section 5, two applications have been discussed. The discussion
and conclusion are presented in Sections 6 and 7, respectively.

2. Background Problems and Proposed Model

The overall flow diagram of the study is shown in Figure 1. First, the proposed ECG
model and hybrid optimization methods are presented with their background problems.
After that, the proposed model is fitted with real ECG using hybrid optimization meth-
ods. Finally, the performance measurements and applications of the proposed model are
discussed in details.

Figure 1. Proposed flow diagram of the study.

An ideal ECG is a combination of P, Q, R, S, and T waves; thus, the proposed sim-
plified mathematical model is generated by constructing and assembling these waves.
ECG modeling has two problems: (1) designing a simplified mathematical model with a
minimum number of model parameters representing a full ECG signal, and (2) finding
optimal model parameters representing different cardiac dysrhythmias. The proposed
model along with the limitation of the current model (Section 2.1) and the proposed hybrid
optimization technique (Section 2.2), are discussed below.

2.1. Proposed Model

ECG components, i.e., P, Q, R, S, and T waves, have an approximately symmetric
“bell curve” shape that quickly falls toward both sites. This ‘’bell curve” shape is one
of the reasons for the widely used Gaussian wave [24]. Moreover, a small number of
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parameters can be represented by a Gaussian function and has also been used in other
biomedical signal modeling, e.g., photoplethysmogram (PPG) [25]. Awal et al. [24] use
non-uniform number Gaussian functions to represent ECG components. One Gaussian
function is used for P wave, while the sum of two Gaussians is used to describe Q wave.
This non-uniformity of the number of Gaussians in the model creates an extra classification
problem where different ECG signal components need to be classified before modeling.

A uniform equation for all ECG components i ∈ (P, Q, R, S, T) is proposed, and the
equation of generating ECG wave can be written as:

ECGmodel =
j=2

∑
i∈P,Q,R,S,T; j=1

Ai,j e
−[

(t−ti,j)
2

σ2
i,j

]

+ ci (1)

where Ai is the height of the curve’s peak, ti controls center position of the peak, σi controls
the width of the ECG, and j = 1, 2 represents the number of Gaussians. Optimal Ai, ti
and σi need to be selected, which is an optimization problem, and it is discussed in the
next section. Note that ci is an additional parameter that can be used to control baseline
and noise modeling.

2.2. Optimization Problem Formulation and Proposed Optimization Method

The performance of the mathematical model is vastly dependent on the choice of
parameters. Generally, it is done by fitting the mathematical model to real-world ECG
signals. Given a uniformly spaced discrete-time data points {t = 1, 2, . . . , N} associated
with ECG ∈ P, Q, R, S, T data values, where N is the total number of discrete-time points or
samples in each ECG beat, and the sum of two Gaussians stated in Equation (1) is needed
to fit the real ECG data to minimize the root mean square error (RMSE). Mathematically, it
can be written as:

RMSE =

√√√√ 1
N

N

∑
t=1

(ECGModel(t)− ECGreal(t) )
2 < ε (2)

where ECGModel(t) is the proposed model having seven controlling parameters:
{A1, t1, σ1, A2, t2, σ2, Ci} for each ECG component, i.e., P, Q, R, S, T. ECGModel(t) needs
to fit ECGreal(t) so that minimizes RMSE given in Equation (2). The proposed model is the
sum of two Gaussians. Goshtasby and O’Neill showed that Gaussian parameters (Ai, ti, σi)
can quickly and accurately be determined when a model or function contains only one
Gaussian from its zero-crossings [26] or in a deterministic way, for example, using Crauna’s,
Guo’s, and Roonizi’s methods [27–29]. However, it is difficult to accurately determine the
position and standard deviation of all Gaussians from its zero-crossing when a function
contains two or more Gaussians [26]. Our proposed model consists of the sum of two
Gaussians; therefore, a better optimization method is required to tune parameters.

Two hybrid optimization methods (ApproxiGlo and ApproxiMul) have been proposed.
Both methods are comprised of two steps (see Figure 2): (1) Determination of initial
parameters and corresponding lower and upper bounds, i.e., approximation method; (2)
Determination of final optimal Gaussian parameters by a global optimization solver from
the approximate parameters and corresponding limits calculated in step 1. In this paper,
two global optimization solvers are explored: (a) Multi-start and (b) Global search. In
summary, ApproxiGlo comprises the Approximation method and Global search, whereas
ApproxiMul comprises the Approximation method and Multi-start; see Figure 2.
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Figure 2. Proposed hybrid optimization technique. (a) Step 1: Approximation of the Gaussian parameters. In this step, the
effect of adding multiple Gaussians is not taken into account. Step 2: These estimated parameters are regarded as initial
parameters in the (b) Multi-start and (c) Global search optimization solver to determine the optimal Gaussian parameters.

Step 1: An approximation method for selecting initial model parameters is used.
These initial parameters are used as input parameters for the global optimization solvers in
Step 2. A flow diagram for the approximation method is shown in Figure 2a, and a brief
description is given below:

â Step 1.1 After Segmenting ECG, beat into P, Q, R, S, T components. i.e., ECG ∈
P, Q, R, S, T, minimum and maximum values of σ1 are calculated based on the number
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of samples. Assume the total time duration of an ECG component xR and the number
of samples in this time duration is Ns, the σ1min and σ1max can be approximated by the
following equations:

σ1min =
xR/Ns

5

σ1max = xR
3

}
(3)

â Step 1.2 Increment the values of σ1 from σ1min to σ1max at an interval of 0.3 and run
through all the different values. Then, construct a Gaussian filter with the Gaussian
as follows:

G f ilt = e
−[ S2

σ1(i)
]

(4)

where S is a vector calculated from

S = −
(⌈

Ns

2

⌉
+ 1
)

: 1 :
⌊⌈

Ns

2

⌉⌋
(5)

here, d.e denotes the ceiling function used to convert the floating number into an inte-
ger. This arrangement helps to integer increment and reduce the number of iterations.

Convolve ECG with the Gaussian filter and find the maximum response using the
matched filtering approach. After that, find the positions t1 and amplitudes A1 of the
Gaussians for the corresponding σ1 and determine the square error.

â Step 1.3 Store the corresponding RMSE and corresponding parameters.
â Step 1.4 Repeat step 1.2 and step 1.3 for all values of σ1.
â Step 1.5 Select the parameters (A1, σ1, t1) for which RMSE is the lowest.
â Step 1.6 Finally, replicate the parameter of the second Gaussian using the calculated

Gaussian parameters, i.e., A2 = A1, σ2 = σ1, t2 = t1.

As the second Gaussian parameter is approximated from the first Gaussian, this step
is considered the Approximation method.

Step 2: To increase the accuracy of the Approximation method, a global optimization
solver is chosen. Among various global optimization solvers such as multi-start, global
search, genetic algorithm, simulated annealing, particle swarm, etc., multi-start and global
search are simple, fast, and easy to use. Hence, these are adapted to obtain the optimal
Gaussian parameters. Multi-start and global search have a nearly similar approach to
finding the multiple-minima or global minima, and both algorithms start a local solver
from multiple start points. The multi-start optimizer uses uniformly distributed start points
within bounds or user-supplied start points, whereas the global search uses a scatter-search
mechanism for generating start points.

A real ECG P wave is fitted by the model parameters calculated from this approx-
imation method and represented in Figure 2. From Equation (3), it can be seen that the
parameters σ1 and σ2 are approximated, hence called the Approximation method. Figure 2
(output of (a)) illustrates the model fitting using the approximate techniques, and Figure 2
(output of c) and (output of d)) represents the model fitting results of the proposed hybrid
optimization techniques on a real ECG component, P wave.

3. Databases and Pre-Processing

Denoising is required as the real data is prone to noise, and data formatting is necessary
to fit the model. The collected data are pre-processed, and then ECG components are
extracted for modeling. A brief description is given below about these data collection and
pre-processing.

3.1. Data Collection

Real ECG was used for fitting the model and testing it for accuracy. To ensure the
diversity of data sources and provide the model with different cardiac dysrhythmias,
ECG data was collected from (i) Biomedical Signal Processing Lab, Khulna University of
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Engineering and Technology (KUET), Khulna, Bangladesh, and (ii) two publicly available
online databases. The first one was collected from a volunteer, and others were obtained
from accessible online databases. Combining these three ECG data collection methods
ensures the diversity of data sources and different cardiac dysrhythmias.

3.1.1. Experimental Data Collection

Experimental ECG data was collected from a 26-year-old volunteer with no known car-
diovascular disorder (normal subject). The volunteer was informed about the experiment
and asked to relax to guarantee lower motion artifact and EMG signal on the data. BIOPAC
data acquisition unit (MP36) [30] with BIOPAC electrode lead set (SS2L) and disposable
vinyl electrodes (EL503) were used for data collection setting; details can be found in [31].

3.1.2. Data Collection from Online

The collected data from KUET was a completely healthy subject, i.e., ECG was normal.
Therefore, it is not possible to model different cardiac dysthymias from only a normal ECG.
Thus, ECG from MIT-BIH Arrhythmia Database was also used, recorded by the Beth Israel
Hospital Arrhythmia Laboratory between 1975 and 1979, and 60% of the total data are
from patients who exhibited different cardiovascular diseases. This database contains both
normal and abnormal beats, and both of them were used to justify how well the proposed
methods work on different cardiac dysrhythmias and commonly used for ECG modeling
and classification with their original sampling frequency [32]. For this work, 100 series
from MIT-BIH Arrhythmia Database were used. These have 23 datasets with 360 Hz
sampling frequency, and each of them is slightly over 30 minutes. These files are also
annotated for different cardiac dysrhythmias with age, sex, and medication [33]. A publicly
available database, University College Dublin Sleep Apnea (UCDSA) database, is also
added. This polysomnographic data contains ECG and other physiological signals such
as electroencephalogram (EEG), Electrooculogram (EOG), etc. We used only ECGs with a
sampling frequency of 128 Hz from ten subjects (Record Number: ucddb002, ucddb003,
ucddb005, ucddb007, ucddb009, ucddb010, ucddb011, ucddb013, ucddb014, ucddb015).
Note that the sampling rate of each dataset was kept to its original sampling frequency. We
have not done any up-sampling and down-sampling. Our intention is to show how well
our proposed model and optimization methods work under different sampling frequencies.
This indicates that the model is independent of sampling frequency and generalization
ability to replicate different cardiac dysrhythmias under diverse sampling frequency.

3.2. Denoising

It is inevitable that the wanted signal is prone to mixing with various noises such
as white noise, pink noise, baseline wander, muscle noise and motion artifact, and other
noises, which in varying degrees cause misjudgment and omission of conventional ECG
identification. In this study, the noise was reduced by the Discrete Wavelet Transform
(DWT) based filtering. The Coiflet mother wavelet [34] of order 6 with 8 levels of decom-
position using adaptive shrinkage rule [31], together with a single level rescaling and soft
thresholding strategy, was used for denoising.

3.3. ECG Components Extraction

The proposed model is based on a single ECG beat, so the single beat ECG isolation is
essential; this was done using beat time calculated from QRS complex peaks. First, visually
a starting point (Sp) of the database was chosen, assuming that it was the beginning of
that particular ECG beat because the database could start in the middle of an ECG beat.
Next, the peak of the QRS complex was located (Tp1, Tp2, . . . . . . TpN) and the ECG beat
was isolated by:

ECGBeat = ECGDatabase
[
u
(
t− TpN−1 + Sp

)
− u

(
t− TpN + Sp

)]
(6)
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where u(t) is a unit step function, and t is the time. This concept is almost similar to [28],
except they use it for P-wave detection. Instead of having any starting point defined
visually, they started with zero crossings, as shown in Figure 3. Using the zero-crossing
technique, the automatic starting point is prone to misdetection of P-wave accurate starting
for several reasons such as baseline wander and power-line interference, and other noises.
A practical scenario presented in Figure 3 reveals that there could be several false zero-
crossing before starting the P-wave. Therefore, due to accuracy concerns, a visual stating
point was chosen instead of the automatic starting point.
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4. Results

The optimization performance of ApproxiGlo and ApproxiMul is presented first.
Then, the results of different cardiac dysrhythmias modeling are evaluated and compared
with contemporary state-of-the-art methods.

A healthy subject’s ECG recorded by the BIOPAC data acquisition system is used to
evaluate the optimization method’s performance and the proposed model. It also uses an ECG
waveform selected from the MIT-BIH database [35]. The model parameters are calculated by
fitting the model using hybrid methods. For example, the ECG P wave presented in Figure 2
shows how the proposed model with the optimization method fits with the real ECG P wave.
The same technique is used for all ECG components (see Figure 4).
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To demonstrate the proposed model’s efficiency, a wide variety of ECG beat is used,
such as normal, atrial premature beat, paced beat, and premature ventricular contraction
ECG beat collected from MIT-BIH database; see Figure 5. It is found that the proposed
model can fit adequately not only the normal ECG beat but also can fit different cardiac
dysrhythmias. Besides, a 1-min ECG collected from UCDSA is presented in Figure 6 to
show the performance of our proposed method in a long and multi-beat situation. The
inner Figure 6 shows the zoomed version.
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Figure 6. Model fitting on a 1-min ECG collected from UCDSA.
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4.1. Performance in Time Domain

The proposed model is evaluated by visual inspection and assessed in the time domain,
frequency domain, and time-frequency domain. The proposed two-hybrid optimization
methods tune the model parameters, and ECG beats are finally created by using optimized
model parameters to evaluate the average model performance in different domains. The
relationship between the model parameters and the physiologically and morphologically
different ECG waveforms are evaluated using the goodness of fitting in time-domain
by using Mean Square Error (MSE), Normalized MSE (NMSE), Root MSE (RMSE), and
Normalized Root MSE (NRMSE). The required equation of MSE, NMSE, RMSE, NRMSE,
and Correlation coefficient (CORR) has been given in Appendix A.1. The minimum value
of MSE, NMSE, RMSE, and CORR’s maximum value indicates that the model can mimic
the real-world different ECG waveform with physiological accuracy. Table 1 represents
the average goodness of fitting value when the model fits Normal ECGs collected from
MIT-BIH Arrhythmia database and UCDSA database using ApproxiGlo and ApproxiMul.
It also compares with the nonlinear fitting method presented in [24]. Both ApproxiGlo and
ApproxiMul provide improved results compared to the nonlinear fitting method.

Table 1. Comparison between the proposed ApproxiGlo and ApproxiMul and the nonlinear fitting method described in [24]
for normal ECGs.

Average Goodness
of Fitting

Nonlinear Fitting Method
(MIT-BIH Arrhythmia

Database) [24]

Proposed Hybrid Method (MIT-BIH
Arrhythmia Database)

Proposed Hybrid Method (UCDSA
Database)

ApproxiGlo ApproxiMul ApproxiGlo ApproxiMul

MSE 0.00779 0.00071 0.0001 0.0007 0.0003
NMSE 0.172477 0.01724 0.0031 6.4025 × 10−6 2.1465 × 10−6

RMSE 0.0882615 0.02657 0.0112 0.0267 0.0164
NRMSE 0.029748 0.1313 0.0555 0.0089 0.0054
CORR 0.9205 0.99016 0.9983 0.9969 0.9988

Besides, normal ECG beats, collected from MIT-BIH Arrhythmia database and UCDSA
database, atrial premature beat, paced beat, and premature ventricular contraction beats are
also used to fit the proposed model. It can be seen that the optimization using ApproxiMul
has a lower error compared to ApproxiGlo (Tables 2 and 3) Though the difference between
ApproxiGlo and ApproxiMul is not significant, in the case of Premature Ventricular Con-
traction ApproxiGlo has fewer errors. Both methods have a high correlation coefficient of
greater than 0.9.

Table 2. Comparison between ApproxiGlo and ApproxiMul for normal and atrial premature beat.

Normal(N) Atrial Premature Beat (A)

Average goodness of
fitting ApproxiGlo ApproxiMul Average goodness of

fitting ApproxiGlo ApproxiMul

MSE 0.00071 0.0001 MSE 6.29 × 10−5 3.33 × 10−5

NMSE 0.01724 0.0031 NMSE 0.00175483 0.00092763
RMSE 0.02657 0.0112 RMSE 0.00793334 0.005768

NRMSE 0.1313 0.0555 NRMSE 0.04189072 0.03045697
CORR 0.99016 0.9983 CORR 0.9991193 0.99953455

Table 3. Comparison between ApproxiGlo and ApproxiMul for paced beat and premature ventricular contraction beat.

Paced Beat (PB) Premature Ventricular Contraction (V)

Average goodness of
fitting ApproxiGlo ApproxiMul Average goodness of

fitting ApproxiGlo ApproxiMul

MSE 0.0141746 0.0011756 MSE 0.00028384 0.00075337
NMSE 0.0096177 0.0007977 NMSE 0.00173033 0.00459269
RMSE 0.1190572 0.0342873 RMSE 0.01684748 0.02744755

NRMSE 0.0980699 0.0282432 NRMSE 0.04159728 0.0677694
CORR 0.9951467 0.9995984 CORR 0.99912836 0.9976848
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4.2. Performance in Frequency Domain

The significant frequency component of ECG lies between 0 Hz and 50 Hz [6,36]. It is
found that both the model and real ECG signals offer almost the same frequency response
in the frequency domain (Figure 7). It can be seen that the normal ECG has a higher
amplitude with a lower dominant frequency band of 0 Hz to 10 Hz, which is opposite to
the atrial premature beat where the dominant frequency band lies between 0Hz to 80Hz.
On the other hand, paced beat shows a higher amplitude with a lower dominant frequency
content. The premature ventricular contraction beat shows a moderate amplitude with
the dominant frequency between 0 Hz and 30 Hz. In contrast, other frequency-domain
measurements, such as PSD, can provide more information. Figure 8 shows that below
50 Hz normal and atrial premature beats have an almost same frequency response in
both methods and real ECGs. However, in the case of ApproxiGlo, one severe downward
peak occurred at the 14.06 Hz and 46.41 Hz in the PSD plot for pace beat and premature
ventricular contraction beat, which is unwanted. This phenomenon does not happen with
ApproxiMul, which indicates better synchronization than ApproxiGlo. It enables the ECG
model to stay within its allocated spectrum or band of frequency and avoid interfering
with other frequency components. If proper timing is not maintained, the amplitude and
width of P, Q, R, S, and T in ECG will be changed and lead to misdiagnosis. Moreover,
generally different cardiac dysrhythmias like tachycardia and bradycardia are nothing but
the various periods or frequency which must be maintained to ensure the perfect modeling.
As the model can match the modeled ECG frequency with the real ECG, whatever its
frequency components, it means a better model for both normal and abnormal ECG.
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Figure 8. PSD of different types of ECG beats representing physiological or pathophysiological conditions.

4.3. Performance in Time-Frequency Domain

For time-frequency measurement, scalogram difference (ScD) is chosen to see the
time-varying spectral difference between real and model ECG. To illustrate, in the case
of normal ECG modeling using ApproxiGlo (Figure 9a), the Q, R, S exhibit higher ScD in
the range between 2.5× 10−4 and 5× 10−4 over a more extended scale interval of 60 to
120 scales. This value of ScD is lower in the case of P and T waves. This happens due to the
fact that the QRS complex has a higher amplitude and frequency contents than P and T
waves [37]. The ScD is lower using ApproxiMul (Figure 9b) than the ApproxiGlo method
in normal ECG modeling. In the same way, atrial premature beat and other different
physiological or pathophysiological conditions can be interpreted. Overall, ApproxiGlo
has more energy difference in the time-frequency domain than the ApproxiMul except for
the premature ventricular contraction. The worst occurred in the paced beat when it was
compared with the ApproxiMul. However, in the case of premature ventricular contraction
shown in Figure 9d, the ScD’s energy is higher using ApproxiMul than ApproxiGlo, which
is also expected from the system’s time and frequency analysis.
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5. Applications of the Proposed Model

There are several applications for the proposed model. The two most obvious applica-
tions are: (i) the ECG generator for simulation purposes and (ii) ECG compression.

5.1. Synthetic ECG Generator

A graphical user interface (GUI) in Matlab has been developed to show the proposed
system’s potential use (Figure 10). Using the sum of two Gaussians model parameters,
ECG signals are created with user desired requirements such as different types of ECG
signals with different sampling frequency, noise type and strength, and user-defined beat
rate (BPM).

Figure 10. Graphical user interface for the ECG generator.

(1) Type of ECG: The GUI has four different ECG types: normal, atrial premature beat,
paced beat, and premature ventricular contraction. The ECG coefficients are calculated
from the collected data using BIOPAC [30] and the MIT-BIH database [33]. The coefficients’
value for one single ECG beat is shown in the appendix used to generate ECG.

(2) Time Duration: If the user wants to generate the ECG with a fixed time, it is
possible using this text box. It accepts positive integer values in seconds. By default, the
system always generates ECG for 10 seconds.

(3) Add noise: Checking and unchecking enables and disables the noise adding
options. Only allowing this option to Signal-to-Noise Ratio (SNR, 4 in Figure 10) and types
of noise (5 in Figure 10) is useful in the system. Without enabling this option, the user’s
values and options for the SNR and types of noise do not affect the generated ECG.

(4) SNR (dB): To give users more flexibility, the SNR of the generated ECG can be
controlled by putting values in the text box. The GUI considers the value in dB and
calculates the noise power using Equation (7).

Noise Power =
Py

10
SNR

10
(7)
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here, Py denotes the signal power. For a N-point ECG signal y(n), the signal power
is measued as the energy per sample, and mathematically it can be expressed as Py =
1
N ∑N−1

n=0 |y(n)|
2.

(5) Type of noise: As noise cancellation in ECG is a popular research topic among
researchers. The noise adding option is added to the GUI. ECG generation is the reversed
process of the calculation of the model parameter so ci in Equation (1) can be used as a
noise parameter, d(t).

ECGNoisy =
j=2

∑
i∈P,Q,R,S,T; j=1

Ai,j e
−[

(t−ti,j)
2

σ2
i,j

]

+ d(t) (8)

Using this parameter as a noise parameter, the model can support both synthetic noise
(simulated) and real noise. This noise parameter can help to generate a more realistic ECG
with different noise types of noise. Six types of noise are chosen to show the effectiveness
of this approach. They are White Noise (WN), and Colored Noise (CN) generated from a
mathematical model, and Real Muscle Artifacts (MA), Real Electrode Movements (EM),
Real Baseline Wander (BW), Mixture of BW, EM, MA (MX) are from MIT-BIH noise stress
test database [38]. Figure 11 shows normal ECG generated using model parameters with
different noises; the system uses the same process as [31].
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Figure 11. Normal ECG with different types of noise using the model parameters.

(6) Wavelet Analysis: The wavelet analysis is also be performed by using this GUI.
(7) Sampling frequency: There are four different sampling frequencies which the user

in this GUI can choose are 256 Hz, 360 Hz, 512 Hz, and 1000 Hz. Though the model’s
sources are fixed frequency (BIOPAC is 1 kHz and MIT-BIH is 360 Hz), the frequency
variation is done by resampling, which applies an antialiasing FIR lowpass filter in the
desired frequency. By doing so, it is understandable that the model is independent of
source sampling frequency.

(8) Plot: The plot button is for showing the generated ECGs.
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(9) Save Result: Save result is also a button for saving the generated ECG in mat
format so that later the user can use it as s/he wants to use it.

(10) FFT & PSD: This checkbox enables and disables the FFT and Power spectral
density (PSD). By seeing these two, the user can understand the frequency domain property
of the model generated ECG.

(11) BPM: This text box can do beat per minute or BPM of the generated ECG by default;
the system always generates 72 BPM ECG signal. As bradycardia and tachycardia are
nothing but less or high BPM by changing the beat rate, it is possible to create bradycardia
and tachycardia like Figure 12.
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Figure 12. ECG simulation by model for 10 s. For bradycardia with BPM (beat per minute) 50, sinus rhythm with BPM 72,
tachycardia with BPM 120.

5.2. ECG Compression

The ECG data is converted into model parameters by modeling the ECG, and later, the
ECG beat can be recreated from these model parameters. Therefore, this transform can be
treated as lossy compressing [39]. On the other hand, it can remove the noise without any
extra work. The compression ratio (CR) is a ratio of both signals’ length. For discussion, a
single minute ECG signal is used because, in ECG, bpm (beats per minute) is usually used to
represent heartbeat. If a subject has HR bpm and the signal has Nsample sample per second
(Hz) then the CR ratio can be written as:

CR =
Original Size

Size A f ter Modelling
=

Nsample × 60× Bp

dHRe × (NG × NS + NSS)× Bp
=

Nsample × 60
dHRe × NS × (NG + 1)

(9)

In the case of the original one-minute ECG, Nsample is multiplied by 60, which gives
numbers needed to represent the one-minute signal. Each of these numbers representing
ECG samples is multiplied with Bp which denotes the precision bits size. On the other
hand, modeled ECG signal representation does not depend on sample numbers; instead, it
relies on the number of model parameters and heart rate. For successfully recovering ECG
beat proposed model needs seven Gaussian parameters (NG = 7) for each segment (P, Q,
R, S, T) multiplied by the number of segments (NS = 5) plus a number of size segment
(NSS = NS). The result of that should be multiplied by the number of beats (HR) and
Bp. As the model parameters and sample ECG both are float point, in this case, the same
precision bits

(
Bp
)

is assumed.
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For the compression, in a practical scenario, the ECG beat could be a fraction (70.80),
and the segment, in that case, the number of segments, is to round to the next segment of
the last ECG beat. The worst-case scenario has to round to next beat dHRe. Here, instead
of regular HR worst-case scenario heart rate dHRe is used. It is considered that sampling
frequency is known; both have an equal header in the file. Different studies presented
in Table 4 show that different ECG sampling frequencies are shown to produce a correct
diagnosis. Mahdiani et al. showed a 50 Hz sampling rate is enough for visual inspection
and calculating time-domain heart rate variability parameters with R-peak deformity [40].
A similar finding of 250 samples per second, causing no significant differences with the
reduction in peak amplitudes, is also found [41]. On the other hand, Abboud et al. [23]
showed for spectral analysis high sampling rate (1 kHz) is necessary, and in this work,
the collected normal ECG is at 1 kHz. The range of heart rate variability can be from
bradycardia (for example, HR = 50), and tachycardia (for example, HR = 120), then CR
ranges from 30 to 12.5. A similar type of compression done by a different model has more
than 7:1 compression ratio in 128 Hz sampling frequency [39]. Clifford et al. [39] have
a better compression ratio than the proposed methods. However, the dynamic model is
much more complex as well as symmetric asymmetric turning points are needed to be
identified. The typical BPM is considered 75 and compares the proposed model with other
methods in Table 4.

Table 4. Comparison of ECG compression methods.

Method Frequency (Hz) BPM CR

Turning Point (TP) [42] 200 75 2:1
Peak-Picking (spline) with Entropy coding [43] 500 75 10:1

DPCM-Linear Prediction Interpolation and
Entropy Coding [44] 500 75 7.8:1

DWT using variable length code [45] 360 75 22.19:1
DWT using direct binary representation [45] 360 75 23:1

Polynomial transform (PT) [21] 500 75 12.6 (N = 100)
A dynamical model [39] 128 60 >7:1

Proposed method

1 k 75 20:1
200 75 4:1
500 75 10:1
360 75 7.2:1
128 60 3.2:1
128 75 2.56:1

6. Discussions

In this paper, a simplified model for generating different patterns for cardiac dysrhyth-
mias is proposed. Two hybrid optimization methods also optimize model parameters. The
model can produce different beats such as normal, atrial premature beat, paced beat, and
premature ventricular contraction. It is logical to discuss the proposed model’s salient
features and the limitation and future works of the current model. One of the salient fea-
tures is the ability to model asymmetric ECG components. For example, the ECG T-wave
is asymmetric, and the P wave is slightly asymmetric. The proposed model can replicate
such asymmetricity as the model uses the sum of two Gaussians. Due to symmetricity, a
single Gaussian is not able to reproduce asymmetricity. Moreover, abnormal ECG P-wave
such as P mitrale (P mitrale is a sign of left atrial enlargement, usually due to mitral stenosis), P
Pulmonale (P Pulmonale is a sign of right atrial enlargement, usually due to pulmonary hyper-
tension (e.g., chronic respiratory disease)), multifocal atrial rhythms cannot be produced by a
single Gaussian wave but can be produced by our model.

Most of the methods are complex, and results are shown qualitatively by graphical
presentations [9,39,46]. A comparison is presented in Table 5 with additional information
and the unique characteristics of each study. Suppaplola et al. used M number of Gaussian
where M is determined by zero-crossing and based on NRMSE [6]. Hence, the model is
stochastic in nature and increases the model parameters as M is not fixed [6]. The same
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issues arise in Parvaneh’s study [47]. The number of Gaussian was extended up to 133 for
better accuracy [47]. It has no baseline wonder parameters.

On the other hand, Clifford et al. used the 3D state-space model and with base-
line wander parameters. They have used 5 to 7 Gaussians to model the whole ECG
signal [9,39,46,48]. Clifford et al. [39] used 6 Gaussian functions to model one beat ECG
signal using a Nonlinear least-squares solver. On the other hand Clifford et al. [46] n + 2m
number of Gaussian functions where, n = Symmetric turning point, m = asymmetric turn-
ing point. They represented each ECG component with single Gaussians except for T wave.
Due to asymmetric turning point, two Gaussians have been employed to model only ECG
T wave. However, not only T wave, other ECG components such as P wave is slightly
asymmetric [49]. Roonizi and Ebadollah [28] develop a faster non-iterative method to fit
Gaussian Function Riding on the Polynomial Background. Dubois et al. [12] used mainly
Gaussian Messa Function (GMF); however, for T-wave bi-Gaussian function (BGF) function
was used for better performance. Badilini et al. [50] use 6 Gaussian Messa Function (GMF)
to represent ECG. The fitting was done by Generalized Orthogonal Forward Regression
(GOFR). GMF has more parameters than the single Gaussian function, where a single
Gaussian function has three settings GMF has five.

Table 5. Comparison of different ECG methods using a Gaussian function.

Reference/Studies Number of Gaussians Additional Information Type of Algorithm to Fit
the Model Outcomes

Suppappola et al. [6] Between 6 and 14 (for
normal ECG)

Chip away decomposition
(CHAD) algorithm.
Variable number of

Gaussians. Prone to noise.

Three optimization
methods used: Nelder
Mead simplex method,
Newton-Raphson and

steepest descent method.

NMSE ≤ 10%

Clifford et al. [39] 6

A 3-D model.
Complicated model.

Asymmetry of T-wave is
not considered. Can be

stuck in local minima due
to the use of local

optimizer i.e. lsqnonlin.

Nonlinear least-squares
solver using lsqnonlin

function.
Presented visually

McSharry et al. [9] 5
3-D model. Complicated

model. Asymmetry of
T-wave is not considered.

Experimental search Presented visually

Clifford [46]

Adaptive determination
for p = n + 2m

(n = Symmetric turning
point, m = asymmetric

turning point)

A dynamical model.
Asymmetry of T-wave is
considered. Can be stuck

in local minima due to the
use of local optimizer, i.e.,

lsqnonlin.

Nonlinear least-squares
solver using lsqnonlin

function
Presented visually

Parvaneh and Pashna [47] Manually or
Automatically (up to 133)

Gaussian function.
Variable number of

Gaussians.
Complexity increases as
the number of Gaussians

increases.

Zero-crossing and
minimum bank method

The best area under
absolute of local

error = 233.2

Badilini et al. [50] 6

Gaussian Messa Function
(GMF) (consists of 5

parameters). GMF has
more parameters than the
single Gaussian function.

Generalized orthogonal
forward regression

(GOFR)
(CORR = 0.96) QT

Dubois et al. [51] 6

GMF and nonlinear
probability estimators.

GMF has more parameters
than the single Gaussian

function.

GOFR Used for classification
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Table 5. Cont.

Reference/Studies Number of Gaussians Additional Information Type of Algorithm to Fit
the Model Outcomes

Roonizi and Ebadollah
[28] 5

Gaussian Function
Riding on the Polynomial

Background. Complex
realization.

Non-iterative
approximation method PRD < 0.4

Dubois et al. [12] 6 (GMF)
For T wave (BiGaussian)

GMF and BiGaussian.
Non-uniform Gaussian
waves for different ECG

components.

Generalized Orthogonal
Forward Regression

(GOFR)
QT (CORR = 0.92)

Elda et al. [32]

Three different
polynomials (linear,

quadratic, cubic
polynomials)

Adaptive Multi-harmonic
ECG Modeling and

Interacting multiple model
(IMM) with sequential
Markov chain Monte

Carlo (SMCMC) methods.
Complex to realize.

Sequential Bayesian-based
methods to effectively
model and adaptively

select parameters
ECG modeling techniques

using the interacting
multiple model (IMM).

ECG-P Wave
RMSE = 2.71×10−2 for

SMCMC and
2.29 ×10−2 for IMM

Proposed 7

Sum of two Gaussian
functions. Simple to
realize, adaptive to

baseline wander, and does
not stuck in local minima.
However, the number of

parameters is higher than
single Gaussian and

Bi-Gaussians.

Hybrid optimization
techniques namely
ApproxiGlo and

ApproxiMul.

For ApproxiGlo
CORR = 0.99016
RMSE = 0.02657
For ApproxiMul
CORR = 0.9983
RMSE =0.0112

The same type of work is also done by Dubois et al. [51]. Some other works, such
as Elda et al. [32] use polynomial functions to model ECG rather than Gaussian function.
However, the number of Gaussian used by the proposed model is higher than some
published work. In comparison with the literature, the proposed model can solve ECG
components’ asymmetric problem using the sum of two Gaussians. It is also uniform
for all ECG components, so there is no need to separately classify or identify different
ECG components. The developed hybrid optimization performs better than the most
used nonlinear methods. A summary is presented in Table 5. Besides, we compare our
two optimization methods with other state-of-the-art Gaussian fitting methods such as
Crauna’s method [27], Guo’s method [52], and the Fast, Accurate, and Separable (FAS)
method [29]. Different performance metrics are calculated, and results are shown in Table 6.
Note that we have added run-time as a measure of computational load. We have run
the program 100 times on normal ECG to accomplish the task, and the average results
are presented. The run-time is calculated on a core i9 processor having 64GB RAM. It
can be seen from Table 6 that our proposed ApproxiMul provided the best performance
in all metrics except in the run time. The FAS method showed the lowest run-time but
delivered the worst performance in MSE, NMSE, RMSE and, CORR. Therefore, giving
more importance to accuracy and precision than run-time, our proposed ApproxiMul
method provided the highest results. By looking closer the ApproxiMul process, it can be
seen that ApproxiMul comprises the Approximation method and multi-start method. The
approximation method is faster and more time is consumed in the multi-start optimization
as it is a global optimization algorithm used to find out the global minimum point.

Our proposed method is simple, easy to implement, and has localization capability,
meaning that it can simulate both long-duration ECG signal on a beat-by-beat basis and
even ECG component by component basis. This feature can be helpful to detect and
diagnose some diseases such as sleep apnea. However, there are some limitations to this
study. The flaws of the proposed recommendations are discussed below:

• In this study, ECG ∈ P, Q, R, S, T components are extracted manually. However, this
problem can be solved by the method presented in [53–55].

• Another limitation of this study is the number of ECG beats used. Few ECG beats
were taken into account for model fitting and optimization. However, this work aims
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to find out an optimization method for ECG model fitting and the possible use of this
optimized model in simulating different cardiac dysrhythmias, for example, atrial
premature beat, paced beat, etc.

• The automatic classification of different types of ECG beats can be possible to im-
plement by our proposed method. In that case, model parameters can be treated as
features. These features can be trained by fuzzy-hybrid neural networks [56], sup-
port vector machine (SVM) [57,58], light gradient boosting machine [59], and Bayes
maximum-likelihood (ML) classifier [32]. In addition to that, prominent features can
also be selected by some feature selection algorithms such as the mRMR method and
the Jaya algorithm [60–62] to increase the classification accuracy.

• A dictionary can be built based on our model and represent and classify cardiac
dysthymias (which is called matching pursuit) [63].

• The proposed model can be used in model-based signal denoising [39].

Table 6. Average results of different optimization methods used to fit normal ECG *.

Average
Performance
Parameters

Crauna’s Method
[27] Guo’s Method [52] FAS Method [29] ApproxiGlo Method ApproxiMul

Method

MSE 0.04314 0.05660 0.09497 0.00074 7.56 ×10−5

NMSE 6.71 ×10−5 8.81 ×10−5 0.00015 1.17 ×10−6 1.19 ×10−7

RMSE 0.20767 0.23791 0.30817 0.02726 0.00869
NRMSE 0.13454 0.15414 0.19965 0.01766 0.00563
CORR 0.76189 0.73095 0.58196 0.99082 0.99907

Runtime (in Sec.) 0.51107 0.00383 0.0034 4.51996 7.54061

* Note: The best performances are indicated in boldface numbers.

7. Conclusions

This paper proposes a simplified mathematical model for generating an ECG signal in
different cardiac dysrhythmias. In addition to that, two hybrid methods are proposed and
compared with the non-linear fitting and other optimization algorithms. The experimental
results show that the proposed model can replicate the essential features of human ECG.
The model and optimization methods are tested on three different datasets having different
sampling frequencies and show outperforming results in every dataset. This indicates
that the model is independent of sampling frequency and has the generalization ability to
replicate different cardiac dysrhythmias. The model fits the normal ECG with an average
MSE of 0.0023 and atrial fibrillation with an average MSE of 0.0291, which indicates the
effectiveness of this simplified model. Moreover, many morphological changes, such as
atrial premature beat, paced beat, and premature ventricular contraction, can be fitted by
selecting proper model parameters. With the baseline drift factor in the model, this model
can fit the real ECG effectively. A Matlab-based- GUI is developed to show the potential
use of the proposed model. This model can also achieve a data compression ratio as high as
20:1 in 1 kHz sampling frequency and outperformed other studies in high sampling rate. A
small number of ECG beat types were taken into account for model fitting and optimization.
This work aims to find out an optimization method for ECG model fitting and the possibility
of using this optimized model to simulate various cardiac dysrhythmias other than the
fitted cardiac dysrhythmias, for example, ventricular hypertrophy, ventricular fusion beat,
etc. The proposed model can be used as a supplementary medical education tool, testing,
and simulating intracardiac signals. In this work, the physiological problem related to
changes in beat-by-beat overtime is not discussed. Some diagnostic problems, e.g., sleep
apnea, can be visible in long-duration ECG, such as in 1 minute or 5-minute duration by
detecting bradycardia and tachycardia events. However, the model can replicate such
long-duration phenomena by simulating each ECG beat and fit each time-varying ECG
beats over time. Besides, the long-duration ECG comprised of the normal and abnormal
beat can also be simulated by the model using beat by beat basis. Even the changes in ECG
components could be simulated due to the localized nature of the model.
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Interestingly, the optimization of Gaussians can not only be used in ECG signals but
can also widely be used to represent many natural phenomena and industrial processes.
For example, Gaussians can model an approximation of the airy disk in image processing,
microscopic applications, fluorescence dispersion in flow cytometric DNA histograms,
and laser heat source in laser transmission welding. Therefore, the proposed model and
optimization method can also be used in those applications.
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Appendix A

Appendix A.1. Performance Evaluation Metrics

The purpose of this study was to develop a simplified mathematical model for gener-
ating an ECG waveform. The proposed model’s result optimized by hybrid optimization
algorithm will be measured in the time domain, frequency domain, and time-frequency
domain. These are briefly discussed below.

Appendix A.1.1. Time-Domain Metrics

If x(n) be the recorded or collected ECG signal and xm(n) be the ECG signal generated
by the mathematical model; then Mean Square Error (MSE) is defined as Equation (A1).

MSE =
1
N

N−1

∑
n=0

[x(n)− xm(n)]
2 (A1)

The normalized form of MSE is:

NMSE =

N−1
∑

n=0
[x(n)− xm(n)]

2

N−1
∑

n=0
[x(n)]2

(A2)

Another measurement is Root Mean Square Error, which is:

RMSE =

√√√√ 1
N

N−1

∑
n=0

[x(n)− xm(n)]
2 (A3)



Sensors 2021, 21, 1638 22 of 26

The Normalized version of RMSE is:

NRMSE =

√√√√√√√√
N−1
∑

n=0
[x(n)− xm(n)]

2

N−1
∑

n=0
[x(n)]2

(A4)

Appendix A.1.2. Frequency-Domain Metrics

A transformation of the model and signal in the frequency domain through a Fourier
Transform (FT) is done to evaluate the performance. As Fourier transform of a Gaussian
function is also a Gaussian function, and the Fourier transform of a Gaussian function can
be expressed as:

Aie−bi(t−ti)
2

FT︷︸︸︷⇔ Ai

√
π

bi
e
− (π f )2

bi︸ ︷︷ ︸
Magnitude

e−j2π f ti︸ ︷︷ ︸
Phase

(A5)

where,

bi =
1

2B2
i

i ∈ P, Q, R, S, T (A6)

As can be observed from Equation (A6), there is an inverse relationship width bi
between time domain and frequency domain, because frequency domain Gaussian function
X̂(ω) is not shifted. Note that, here FT of a single Gaussian function is presented. The sum

of two Gaussians like Equation (1) is also a sum of two Gaussians in the frequency domain
as FT is a linear operator. Mathematically,

F [A1 f1(x) + A2 f2(x)] = A1 F1(X) + A2 F2(X) (A7)

where F1(X) and F2(X) are the FT of first and second Gaussian functions f1(x) and f2(x)
and A1 and A2 are the amplitude of the Gaussians, respectively. We also used power
spectral density (PSD).

Appendix A.1.3. Time-Frequency Domain Measure

A qualitative distortion measure named scalogram difference (ScD) is used to calculate
the performance in the time-frequency domain. ScD is computed using continuous wavelet
transform and defines the percentage of energy difference for each coefficient of the real
and model signal. The CWT is chosen to calculate ScD due to its good time and frequency
localization, which helps localize and visualize the time-varying spectral changes in the
ECG signal. CWT does not suffer from cross-terms interference and presents a signal
in the time-frequency plane more flexibly than Short-time Fourier Transform (STFT) or
Spectrogram by applying a variable window [64]. This ScD is a two-dimensional matrix,
i.e., time-scale matrix and therefore, it is a handy tool for evaluating a model performance
in the time-scale domain. One can easily visualize and locate the magnitude of change
between real and model ECG. The lower value represents the higher quality of a fitting [24].
If CWTorg be the wavelet coefficient of the original or real signal at scale a and CWTmodel
be the wavelet coefficient of the reconstructed signal of that scale, then ScD at scale a can
be defined as:

ScDa(i) =

∣∣∣CWT2
org(i)− CWT2

model(i)
∣∣∣

∑na
i=1

∣∣∣CWT2
org(i)− CWT2

model(i)
∣∣∣ × 100% (A8)

where, na is the total number of coefficients at scale a.
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Appendix A.2. Coefficient to Fit the with Models

The coefficient used for the GUI is shown in Tables A1–A4. Note that the model
requires only the first seven, i.e., X(1) to X(7) parameters.

Table A1. Coefficient to fit the with BIOPAC Recorded ECG (normal ECG).

Coefficient
Global Multi Start

P Q R S T P Q R S T

X(1) −35.820 17.820 0.691 40.690 −0.224 −0.313 −4.680 1.057 −0.500 0.345
X(2) 80.355 31.446 15.401 19.430 248.020 282.660 87.180 30.640 11.120 177.252
X(3) 65.943 20.005 14.110 12.140 46.880 43.672 19.990 14.110 18.060 92.944
X(4) 35.734 −7.800 1.057 −1.100 0.345 0.373 4.726 0.690 0.228 −0.223
X(5) 80.360 31.445 30.644 19.380 177.260 264.160 88.000 15.400 1.000 248.027
X(6) 65.782 19.957 14.110 12.190 92.949 50.571 20.580 14.110 5.676 46.880
X(7) 0.106 −0.070 −0.273 0.018 −0.001 0.011 −0.040 −0.270 0.017 −0.001

Size(samples) 300.000 88.000 48.000 77.000 429.000 300.000 88.000 48.000 77.000 429.000

Table A2. Coefficient to fit the model with atrial premature beat (A).

Coefficient
Global Multi Start

P Q R S T P Q R S T

X(1) 0.016 −2.044 0.729 −0.074 0.026 0.033 −0.074 0.729 −0.072 −0.083
X(2) 17.222 5.545 4.304 2.470 129.154 13.498 17.292 4.310 4.403 84.398
X(3) 3.542 5.132 3.610 1.587 45.606 7.044 3.311 3.610 0.521 14.599
X(4) 0.017 2.089 1.514 −0.074 −0.072 0.022 −0.022 1.512 −0.162 −0.034
X(5) 11.850 5.549 8.766 2.470 85.103 31.278 5.117 8.768 2.321 6.509
X(6) 3.428 5.284 3.126 1.587 12.684 10.343 1.442 3.124 1.244 44.711
X(7) −0.046 −0.105 −0.343 −0.054 −0.043 −0.059 −0.043 −0.342 −0.053 −0.018

Size(samples) 44.000 20.000 13.000 14.000 153.000 44.000 20.000 13.000 14.000 153.000

Table A3. Coefficient to fit the model with paced beat (PB).

Coefficient
Global Multi Start

P Q R S T P Q R S T

X(1) −25.17 −1.417 1.831 −0.031 13.230 0.419 −2.782 2.037 −0.081 0.140
X(2) 14.950 27.038 41.721 13.774 18.728 16.873 33.428 45.414 9.594 8.616
X(3) 3.134 14.110 27.310 7.210 16.199 4.196 12.516 27.310 7.210 16.170
X(4) 25.684 −1.417 −0.358 −0.031 −13.10 0.891 −2.222 0.549 −0.067 0.077
X(5) 14.910 27.038 1.000 13.774 18.762 12.133 17.133 14.904 19.700 30.850
X(6) 3.215 14.110 1.782 7.210 16.119 2.199 14.110 13.717 7.210 16.210
X(7) −0.118 −0.354 0.203 0.046 −0.057 −0.117 0.528 −0.051 0.084 −0.065

Size(samples) 22.000 48.000 92.000 25.000 55.000 22.000 48.000 92.000 25.000 55.000

Table A4. Coefficient to fit the model with premature ventricular contraction.

Coefficient
Global Multi Start

P Q R S T P Q R S T

X(1) −0.296 −0.054 1.335 −0.555 −0.147 0.160 −0.054 1.335 0.481 −0.067
X(2) 5.788 13.840 20.368 20.059 1.004 62.969 13.840 20.368 1.000 1.000
X(3) 14.440 4.518 4.852 24.310 29.709 10.323 4.518 4.852 2.114 4.760
X(4) −0.126 −0.021 1.244 −0.507 0.161 0.329 −0.021 1.244 0.270 0.066
X(5) 22.613 19.132 14.064 60.740 15.084 41.613 19.133 14.065 82.000 29.099
X(6) 8.348 1.539 7.810 24.310 29.709 16.954 1.538 7.810 11.569 29.710
X(7) 0.037 −0.023 −0.099 0.142 −0.034 −0.252 −0.023 −0.099 −0.401 −0.038

Size(samples) 63.000 22.000 27.000 82.000 100.000 63.000 22.000 27.000 82.000 100.000
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