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Polyploidy is a conserved mechanism in cell development and stress responses. Multiple
stresses of treatment, including radiation and chemotherapy drugs, can induce the
polyploidization of tumor cells. Through endoreplication or cell fusion, diploid tumor
cells convert into giant tumor cells with single large nuclei or multiple small nucleuses.
Some of the stress-induced colossal cells, which were previously thought to be senescent
and have no ability to proliferate, can escape the fate of death by a special way. They can
remain alive at least before producing progeny cells through asymmetric cell division, a
depolyploidization way named neosis. Those large and danger cells are recognized as
polyploid giant cancer cells (PGCCs). Such cells are under suspicion of being highly
related to tumor recurrence and metastasis after treatment and can bring new targets for
cancer therapy. However, differences in formation mechanisms between PGCCs and
well-accepted polyploid cancer cells are largely unknown. In this review, the methods
used in different studies to induce polyploid cells are summarized, and several
mechanisms of polyploidization are demonstrated. Besides, we discuss some
characteristics related to the poor prognosis caused by PGCCs in order to provide
readers with a more comprehensive understanding of these huge cells.
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INTRODUCTION

Even though it is generally recognized that both prokaryotic and eukaryotic organisms are mostly
diploid, organisms with more than two complete genomes have been widely observed. This kind of
phenomenon, polyploid or whole genome duplication (WGD), is common for the ecosystem and is
believed to have profound implications for evolution, especially in plant cells (1). In mammalian
cells, blood megakaryocytes, hepatocytes, placental trophoblasts, and cardiomyocytes have all been
proven to have polyploidization (2). As a classic mechanism throughout biological evolution,
polyploidy plays an important role in normal development and differentiation, and in responding to
adverse stimuli and injuries (2).
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Not only in normal cells under physiological conditions,
polyploid cells have also been found in tumor cells, which are
considered to promote tumorigenesis and associated with
adverse survival (3, 4). Many recent researches have indicated
that stress, including X-ray or chemo-drugs, can induce
polyploidization of malignant cells by causing mitotic cell cycle
arrest and entering the endoreplication cycle, a more conducive
process to adjust to the harsh living environment (5). These
stresses can originate from the external environment, such as
radiation, chemical drugs, and other treatments causing a fatal
consequence of DNA double-strand break. It can also come from
the terrible tumor microenvironment, such as inflammation,
hypoxia, lack of nutrients, and overcrowding. When most of
the stress-induced polyploid cells go to death, some of these cells
have been observed to own ability of proliferation, accurately
isolating the chromosomes required by diploid tumor cells from
the chaotic genome and producing progeny cells through
asymmetric cytokinesis , an unusual mechanism of
depolyploidization (6). Since this kind of polyploid tumor cells
were observed, they have been described by a variety of terms,
with polyploid giant cancer cell (PGCC) being the most accepted
(7). To summarize the opinions regarding to PGCCs in studies of
recent years, what makes PGCCs differ from ordinary polyploid
cells are stemness, dedifferentiation, the ability of repopulation,
and particularly existing in posttreatment cancer. Meanwhile,
other perspectives have suggested that the description of poly-
aneuploid cancer cells is more accurate because chromosomes
losing occurs frequently (8, 9).

In order to better present this emerging area of polyploid
cancer research for readers, we summarized and discussed possible
modes of tumor cell polyploidization under stress, different types
of stress measures that lead to the polyploidization of tumor cells,
and evidence of several different characteristics of PGCCs. Based
on reviewing those knowledges, we hope to emphasis these special
and small group of polyploid cells, and present a more
comprehensive understanding of them.
SEVERAL MECHANISMS OF
POLYPLOIDIZATION

In fact, as a means of response to stimuli, polyploidy, which has
been noticed for a long time, presents wide applicability across
species and cell types. Cells often need to differentiate to achieve
permanent changes in their basic properties, satisfying a certain
aspect of functional gain in this way (5, 10). Cells can defend
lethal blows that can cause DNA double-strand break through
increased cell volume and accumulated genetic material while
enhance the transcription of metabolism and stress resistant
genes (10, 11). This theory describes how polyploid cancer cells
respond in cytotoxicity situations. For the sake of surviving in the
rough-and-tumble context, the ways of tumor cells forming
polyploid are diversified, and they occur to different degrees
under the same background. The specific forms mainly include
endoreplication (the first three modes) and cell–cell fusion (6,
12–15). First, forming polyploid cancer cells with a huge nucleus
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through endocycle is named mononucleated giant cells
(MoNGC). Second, blocking another site of the mitotic cycle,
the endoreplication mode to generate mononucleated giant cells
is called endomitosis. Third, karyokinesis in mitotic cycle is
accomplished normally when cytokinetic is blocked, which is
described as acytokinetic mitosis or cytokinetic failure. These
two kinds of situations are always regarded as the same, bringing
about multinucleated giant cells (MuNGC). Fourth, fusion
occurs between cells, which can be visualized as phagocytosis,
entosis, or just evenly fusion. Those strategies are introduced in
detail below (Figure 1).

Endocycle: A Shortcut
The typical mitotic cycle consists of four consecutive periods,
G1-S-G2-M. As a result, the chromatin in a diploid cell is
replicated and averagely distributed, forming two diploid
progeny cells after cytokinesis. Only when S phase-cyclin
dependent kinase (S-CDK) and metaphase-cyclin-dependent
kinase (M-CDK) are activated together, the total CDK formed
by the two reaching a certain threshold, can the mitosis process
be activated (16, 17). Especially in P53/Rb-deficient cells, by
downregulating the level of M-CDK, which is responsible for
driving G2/M phase process and the maintenance of S phase
[composed of cyclin-dependent kinase-1 (CDK-1), cyclin A
(cyc-A), and cyclin B (cyc-B)], the purpose of prolonging the
G2 phase and preventing the cell cycle from entering the M phase
can be achieved (15–18). At the same time, with the periodic
inactivation of S-CDK (consist of CDK-2, Cyc-A, and Cyc-E),
the G and S phases are driven alternately in pulses to allow tumor
cells to enter endocycle, forming polyploid cells (15–18). That is
to say, low level of the total CDK activation can maintain the
endocycle (17). Thus, the endocycle can be understood as a
breakaway from the ordinary cycle of mitosis, and a shortcut is
established to form a small cycle inside the normal one. This
small cycle connects the G2 phase with the G1 phase to form a
simple cycle that only includes G and S phases and circulates
back and forth between these two phases (5, 6, 16, 17). With
neither dynamic changes of chromosomes nor division of
nuclear membrane or cytoplasm, an enormous and polyploid
nuclei containing large amounts of DNA finally comes into being
(5, 6, 16, 17). In normal tissues, a classic case is the endocycle
during wound healing in Drosophila. The injured Drosophila
abdominal cells enter the S phase 24 h after injury, but there is no
increase in the number of cells in the wound finally (19). Such
mechanisms support organ growth and tissue homeostasis (15).
As mentioned above, Tagal and colleagues believe that the
possible mechanism for broad-spectrum or selective Aurora
kinase inhibitors to promote the development of polyploid
cancer cells in non-small cell lung cancer is endocycle. After
withdrawal of AURKi, polyploid cancer cells have the ability to
reverse to regular mitotic cycle (20).

Endomitosis and Cytokinetic Failure:
Depending on M Phase
Unlike endocycle, endomitosis has actually entered the mitotic
stage and passed the G2/M checkpoint but has not completely
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finished the separation of sister chromatids and cytokinesis till
the end (5). The final shape of the nuclei depends on the degree
of completion of M phase, and we have known three situations.
First, if the M phase of tumor cells is interrupted hurriedly before
the anaphase stage and jump out of the mitotic cycle, a single
giant nucleus cell can still be formed after multiple rounds of
replication. Then, if the cell cycle passes the anaphase stage,
without the complete nuclear division, the leafy nucleus cells can
be made. Last, if mitosis is completed but cytokinesis is not
performed, a polyploid containing multiple small nuclei is
eventually caused, which is called acellular mitosis (or
cytokinesis failure) (5, 14, 21, 22). In essence, the failure of
cytokinesis can be regarded as a special kind of endomitosis, and
they often discussed as the same phenomenon (21). Natural
polyploid, megakaryocytes, in the blood system can provide an
interesting idea. Its terminal maturation process involves
multiple rounds of endomitosis and cytoplasmic restructuring
to allow platelet formation (23). Continuous photographing of
Frontiers in Oncology | www.frontiersin.org 3
the fluorescence-labeled megakaryocytes under a microscope
revealed that the megakaryocyte spindle successfully assembled
and distributed the chromatid to the two daughter cells, which
means that the dividing cells successfully passed the anaphase
stage but reversed at the last moment of complete division (at
this time, only some of the intercellular bridges formed by the
spindles connecting to each other), and then, the two parts fused
into polyploid cell, including the nucleus (24). Inhibition of
cytokinesis activator, GTPase RhoA or its downstream pathway,
RhoA/ROCK, activity can lead to decreasing aggregation of actin
and myosin, resulting in the dysfunction of contractile loops
required by mammalian cytokinesis and failure of cytokinesis
(24–26). Meanwhile, Ganet et al. found that the active RhoA of
tetraploid cells is lower than that of normal diploid cells (27).
Apart from those, Aurora and polo-like kinases, whose
dysregulation can lead to chromosomal mis-segregation and
cytokinesis failure, are involved in the spindle assembly
checkpoint (SAC) (21).
FIGURE 1 | The several strategies of polyploidization under stress and the regeneration process of PGCCs. Most of the tumor cells are killed by radiation,
chemotherapy drugs, hypoxia drugs, or other kinds of stress, while the rest of cells express resistance to those kinds of stress. Some of surviving cells form
mononucleated or multinucleated cells through endoreplication (endocycle, endomitosis, or cytokinetic failure) or cell–cell fusion. Repopulating via neosis and
differentiating to normal tissues like cells, PGCCs can show stemness in vivo (A), and they are capable of generating distant metastases through the EMT (B).
(Created with BioRender.com).
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Cell–Cell Fusion: More Direct Way
Aside from the abnormality of cell mitosis that brings about the
generation of polyploid cancer cells, cell fusion between
independent diploids is also a way to produce them, which has
nothing to do with division. It is also the simplest and most direct
idea to access to the way how polyploid cells are produced (28).
In fact, cell fusion occurs in many normal tissues, such as
Drosophila myoblasts (29), placental trophoblasts (30),
hepatocytes (31), and fertilized eggs (32). The megakaryocytes
described above also go through cell fusion after reversal mitosis.
When different groups investigated the production mechanism
of polyploid cancer cells, they all chose to label two kinds of
tumor cells with different fluorescence and then cocultured both,
observing mixed fluorescence to distinguish the fusion cells from
the non-fusion cells (33, 34). For cells, the result of fusion is
WGD and the accumulation of random mutations, which lay the
foundation for the generation of aneuploid progeny in future
multipolar divisions (28, 32, 34, 35). Aneuploid cells mean
unequal distribution of genetic material, chromosomal
instability (CIN), and more frequent DNA damage and
mutation, undoubtedly aggravating the risk of malignant
transformation, and spreading the abilities of drug resistance,
metastasis, and stemness among malignant cells (34–36). It has
also been recorded that merge cells produced by the fusion of
tumor cells and normal cells [especially bone marrow-derived
macrophages (37)] are more malignant because it is very possible
for malignant cells to obtain transcription characteristics from
normal cells, accompanied by chromosomal aberrations during
fusion (such as translocations and inversions), so that any kinds
of malignant polyploid cells created by this process that leads to
tumor heterogeneity are not surprising (38, 39). An interesting
clinical case can provide clues to the spontaneous cell fusion of
tumor cells and normal cells in the body: a mother suffered from
primary renal cell carcinoma 2 years after receiving bone marrow
transplantation (BMT) from her son, and the Y chromosome was
detected in kidney cancer cells, while her son remained healthy
in the coming several decades (excluding donor source) (40).
Although the author did not clarify vividly whether the cells
produced by the fusion were more malignant, there are other
studies to prove it. For example, the fusion cells of colorectal
cancer cells with bone-marrow-derived blood macrophages can
obtain extravasation, migration, immune evasion, and other
capabilities, thereby enhancing the chance of metastasis (41).
Melanoma cells can spontaneously fuse with macrophages or
fibroblasts, making this process a rapid response mechanism to
deal with environmental changes or even gain the ability of
immune evasion (42). Breast cancer cells can activate epithelial–
mesenchymal transformation (EMT) and Wnt/b-catenin
signaling pathway by binding with macrophages to transform
into invasive breast cancer cells (43). There are also studies about
breast cancer that prove that the fusion of mesenchymal stem
cells and breast cancer cells also enhance the migration ability of
breast cancer cells (44).

Under severe stress, a large quantity of diploid tumor cells
died, and the remaining cells formed polyploid cancer cells
through the above-mentioned mechanisms. Studies and
Frontiers in Oncology | www.frontiersin.org 4
observations have shown that tetraploid cancer cells may
produce aneuploidy through ploidy reduction and chromosomes
loss, which reflect cytogenetically instability of cells with excessive
chromosome numbers (45–48). The latest research has also shown
that polyploid hepatocytes cause chromosomal instability during
the process of ploidy reduction and also lead to an increase in
the loss of tumor suppressor factors, thereby enhancing
carcinogenicity (49). Tetraploid cancer cells in many researches
are spontaneously produce in the process of tumor development,
but we are more concerned about the polyploid cancer cells
induced by treatment stress, whose number of genomes is far
beyond the tetraploid. According to our experiences and a series of
in vitro and in vivo observations, a small group of the stress-
induced polyploid cells, which are so-called PGCCs,
depolyploidize through a unique mechanism, neosis. Generally
speaking, polyploid cancer cells can split into a limited number of
progeny cells to reduce ploidy spontaneously, and gradually return
to diploid, entering the mitotic cycle (4, 35, 45). Although
appearing at the same time and same stress background as
general polyploid cancer cells, PGCCs undergo karyokinesis via
nuclear budding followed by asymmetrical division, directly
producing many progeny cells only by PGCCs themselves in a
short period (50). This powerful multiplication ability
distinguishes PGCCs from normal polypoid cancer cells because
one PGCC can quickly produce a large number of diploid or
aneuploid progeny cells through this budding-like asymmetric cell
division, causing tumor cell repopulation (50, 51). Thus, we would
like to define PGCC by neosis, the special proliferation model.

PGCCs formed by endocycle and endomitosis have been
observed in our in vitro system, while other researchers have
observed that cell fusion may also play a part in the formation of
these huge cells (33). Nevertheless, differences in formation
mechanisms between PGCC and well-accepted polyploid cancer
cell are largely unknown. As a new field of polyploid cancer
research that is gradually gaining attention, different groups have
tried to describe PGCCs from their own perspectives, which are
associated with clinical practice. The stemness of PGCCs is often
a classical direction, for this can be used to explain tumor
recurrence in clinical patients (52–54). Some researchers
focused on drug resistance of PGCCs (55), while other groups
tried to find the molecular targets of PGCCs (56). These efforts
can provide a research basis for the medication of tumor patients.
Our group mainly paid attention to the tumor repopulation
ability of PGCCs after stress (57). We believe that this model
can simulate a pattern of tumor patients from first antitumor
treatment to tumor recurrence.
STRESSES LEADING TO
POLYPLOIDIZATION

The stress caused by treatment in clinical practice is the main
source of external stimuli for tumor cells. Many in vitro evidence
have shown that chemotherapy drugs, radiation, hypooxidative
agents (CoCl2), mitotic inhibitors, and hyperthermia can all
trigger endoreplication or cell fusion, leading to the production
August 2021 | Volume 11 | Article 724781
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of polyploid tumor cells (Table 1). According to our experiences,
slight stress, as small as ordinary cell passaging operation, could
occasionally give rise to the formation of polyploid tumor cells.
The hypoxia, nutritional deficiencies, temperature, and pH
changes caused by these stresses continue to act on the
proliferation and metabolism tumor cells, eventually leading to
the initiation of this classic stress-responding mechanism.

In our previous studies, it was proved that the irradiation dose
of 10 Gy could induce polyploidy in MDA-MB-231 and HeLa
cells. As the dose increased from 6 to 14 Gy, the proportion of
polyploid cells rose from 6.09% to 34.79%, while some polyploid
cells participated in the regeneration of diploid cells (57). This
proportional change indicated that as the stimulation level
continued to intensify, the number of polyploid cells in the
population increased. In other words, it is the intensity of
stimulation that directly determine the population size of these
giant nucleus cell. At the same time, the polyploidization of tumor
cells induced by radiation is not unique to any specific cell line. In
addition to cervical cancer and breast cancer cells, many others,
such as lung cancer, colon cancer, melanoma, prostate cancer,
glioblastoma, and lymphoblastoma, have been demonstrated in
vitro to produce polyploid cells after irradiation, revealing the
universality of this mechanism under the effect of X-rays. In the
follow-up studies, we focused on those polyploid cells induced by
irradiation and found that a fraction of these cells, which were
usually considered to be senescence or mitotic catastrophe, did
not simply die. Instead, they expressed extraordinary
proliferation ability through an unclear, non-meiosis, or mitotic
method to de-polyploid (57). This process was first given by
Rajaraman and his colleagues a professional term—neosis (50).
We believe that it is neosis that represents the most important
feature among many characters of PGCCs, for it mediates the
repopulation of minimal residual disease after antitumor therapy.
In fact, as early as 1956, Puck has discovered that a single Hela cell
can be induced to polyploidization after radiation treatment and
form new clones by producing progeny cells that are
morphologically indistinguishable from untreated cells (88).
Many subsequent studies following Puck, in which a part of
radiation-induced polyploid cells undergo genetic disorder and
depolyploidization to produce diploid or aneuploid cells, have
been repeatedly verified (78). White-Gilbertson and his colleagues
found that the expression of acid ceramidase (ASAH1) is elevated
in PGCC induced by radiation from both prostate cancer and
lung cancer (56). In their other research, although ASAH1
inhibitor tamoxifen could not block the formation of PGCC
under the action of therapeutic stress, it prevented the process
of neosis (79).

Using radiation to treat tumor cells in vitro to induce the
formation of polyploid cells has been one of the mature modes
that are often utilized to simulate the response of postradiotherapy
tumor patients in experimental research. Furthermore, treating
tumor cells with chemotherapeutic drugs simulates another
irreplaceable method of clinical tumor therapy. Compared with
the working principle of radiation, the pharmacological effects of
different chemotherapeutics are quite disparate, so that they are
more favored by researchers, including Gilbertson, who also used
Frontiers in Oncology | www.frontiersin.org 5
docetaxel as another operation to induce polyploid cells in parallel
with the radiation in his research (56). Among all kinds of cancers
in human being, colon cancer, breast cancer, prostate cancer, and
ovarian cancer are the most attractive ones in the studies of
response to chemotherapy drugs. Niu and other researchers
applied gradient concentrations of paclitaxel to treat different
types of ovarian cancer cells and found that within the range of
0–500 nM, as the number of dead cells soared, PGCCs increased
the most at the top concentration (few cells survived in higher
concentration) (12). Lin et al. employed docetaxel to induce
polyploid cells in their research, which further clarified the
relationship between stress intensity and the production
tendency of polyploid cells (73). In the concentration range
below 2 nM, few PGCCs were induced, while the yield of
PGCCs in the range of 2–4 nM showed a rapid increase trend,
and PGCC was even the only survival cell type in the
concentration range above 4 nM (73). This phenomenon
indicates that within a certain range, as the stimulation of
chemotherapeutic drug continues to rise, the number of PGCCs
grows in proportion to the stimulation strength. Meanwhile, Niu
and other researchers observed multiple progeny cells being
separated from PGCCs through asymmetric division by live-cell
fluorescence time-lapse recording technology (12). Moreover, it
has been documented that Docetaxel induces prostate cancer cells
to produce polyploid cells, and DNA can be passed into progeny
cells through the small branches of multinucleated polyploid (55).
By verifying the discrepant expression level of cleaved caspase-3
after drug treatment between multinucleated polyploid cells
with their progeny and control PC-3 cells, researchers proved
that the former two have less apoptotic ratio and better drug
resistance (55).

Several recent studies have focused on Aurora kinases
(AURK). A variety of broad-spectrum or specific Aurora
kinases inhibitors (AURKi), including inhibitors targeting on
three highly conserved serine/threonine kinases, Aurora A–C,
respectively, have been confirmed to induce polyploid cells by
regulating mitosis or cell division arrest (80–83). Since the
expression of Aurora kinases, especially Aurora A and B, on
centrosomes and chromosomal centromeres is essential for
mitosis (89, 90), it has received widespread attention that
AURK inhibitors have the potential to become a therapeutic
target to bring about tumor cell senescence and death. Despite
this, a fresh experimentation illustrated that there are always drug-
resistant polyploid cells surviving, whether using wide-spectrum
inhibitors or applying selective AURKi together or apart, which
has a stronger surviving property in the combat with antimitosis
drug, like paclitaxel and docetaxel (20). The tough living situation
forces tumor cells to achieve the cycle of parental diploid–
polyploid–diplontic progeny through depolyploidization.
Interestingly, the offspring of diploids acquired a new phenotype
of drug resistance while maintaining the same proliferation ability
(raised expression of antiapoptotic protein BCL-2 and survivin
(55). The heritability of the new phenotype has not been
continuously verified. If it can be stably inherited to later
generation through mitosis, the cell line has evolved under the
push of antimitosis operations.
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TABLE 1 | Several kinds of stress that can induce polyploidization of tumor cells.

Stimulus
types

Cancer types Cell types Treatment n Evidence of polyploidy Ref.

Chemotherapy Colon cancer HT29, HCT116,
SW48, Caco-2

Trifluridine + Tipiracil ≥2n DNA content analyze (58)

HCT116 Taxol, Vincristine – DNA content analyze (59)
LoVo, HCT116 Capecitabine, Oxaliplatin, Irinotecan – Morphological observation of cells, pathological

sections of patients
(60)

HCT116 Doxorubicin ≥4n DNA content analyze, immunofluorescence,
morphological observation of cells

(61)

HCT116 Doxorubicin 4, 8,
16,
32

DNA content analyze, immunofluorescence,
morphological observation of cell

(62)

HCT116, SW480 Doxorubicin (DOXO), 5-fluorouracil (5-FU),
Oxaliplatin (OXA), Irinotecan (IRINO)

– Cell cycle analysis, immunofluorescence and
morphological observation of cell

(63)

HCT116 Cytochalasin D, Nocodazole, Docetaxel 4, 8,
16

DNA content analyze (64)

Ovarian cancer Hey, SKOV3,
OVCAR433

Paclitaxel ≥4n DNA content analyze, immunofluorescence,
morphological observation of cell

(12)

Hey Triptolide (TPL) – Morphological observation of cells (65)
Hey, SKOV3,
MDA-HGSC-1

Paclitaxel – Immunofluorescence, morphological observation of
cell

(66)

Breast cancer MDA-MB-436 Doxorubicin, Paclitaxel – Immunofluorescence, morphological observation of
cell

(67)

BT-549 Triptolide (TPL) – Morphological observation of cells (65)
MDA-MB-231 Nocodazole 4, 8 DNA content analyze, morphological observation of

cells
(68)

MDA-MB-231 Doxorubicin 4, 8 Immunofluorescence, morphological observation of
cell

(69)

MDA-MB-231,
MCF-7

Doxorubicin – Immunofluorescence, morphological observation of
cell

(70)

MDA-MB-231 Doxorubicin 4–128 DNA content analyze, immunofluorescence,
morphological observation of cell

(71)

Prostate cancer PC-3 Docetaxel ≥4n DNA content analyze, immunofluorescence,
morphological observation of cell

(55)

PC-3 Docetaxel – Morphological observation of cells (72)
PPC1 Docetaxel – Morphological observation of cells, flow cytometry (56)

Prostate cancer PC-3 Docetaxel – Immunofluorescence, morphological observation of
cell

(73)

Du-145 Docetaxel Immunofluorescence, morphological observation of
cell, flow cytometry

(74)

Lung cancer H1299 Chemptothecin, Doxorubicin, Cisplatin 4, 8,
16

DNA content analyze (75)

A549 Cisplatin – Morphological observation of cells, flow cytometry (56)
Glioblastoma LN-18 Doxorubicin 4, 8,

16,
32

DNA content analyze, immunofluorescence,
morphological observation of cell

(62)

U87, A172,
U251, U138

Temozolomide (TMZ) Vinblastine (VBL),
Mebendazole (MBZ)

– Cell cycle analysis (76)

Lymphoblastoma WIL2-NS Paclitaxel (PTX) 4, 8 Immunofluorescence, morphological observation of
cell

(69)

Liver cancer HGC-27 Cisplatin + Paclitaxel (C+P), Cisplatin+
Paclitaxel+ Docetaxel (C + P + D)

≥4n DNA content analyze, immunofluorescence (77)

Hep-G2 Cytochalasin D, Nocodazole, Docetaxel 4, 8,
16

DNA content analyze (64)

Chronic myeloid
leukemia

K-562 Cytochalasin D, Nocodazole, Docetaxel 4, 8,
16

DNA content analyze (64)

Radiotherapy Cervical cancer Hela 10 Gy 4–64 Immunofluorescence, morphological observation of
cell

(69,
78)

Colon cancer LoVo, HCT116 9 Gy – Morphological observation of cells, pathological
sections of patients

(60)

Prostate cancer PPC1 8 Gy – Morphological observation of cells, flow cytometry (56,
79)

Melanoma MEL624-28 8 Gy – Morphological observation of cells, cell cycle analysis (79)
Glioblastoma U118 12 Gy – Morphological observation of cells, cell cycle analysis (79)

(Continued)
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Apart from the attack measures that directly generate
cytotoxicity, the stress response induced by changes in the
tumor microenvironment that leads to the emerging of PGCCs
has also been affirmed. A widely accepted method is proposed by
Liu, Zhang, and their colleagues, who added CoCl2 to the culture
medium to simulate the hypoxic environment, thereby activating
the intracellular hypoxic pathway. The feasibility of this
approach has been tested in many cell lines of ovarian cancer
(33, 85), breast cancer (33, 84), and colon cancer (86). There is
also laboratory evidence that intermittent blow at 42°C can cause
centrosomes and spindles dysfunction in colon cancer cells
HCT116 with stable karyotype (87). Besides, real physical
strain is also a bad stimulus for cells. The established
microgravity device has simulated the strong stress of the cells
under the tissue fluid inside the tumor and proved the
production of PGCCs induced by physical pressure (91).
CERTAIN CHARACTERISTICS OF
GIANT CELLS

PGCCs Exhibit CSC-Like Feature
PGCC has the ability to recover from a single polyploid cell to a
colony, while cancer stem cells (CSCs) are considered to be the
culprit that mediate tumor repopulation after treatment and lead
to disease relapse. Those two are quite similar, so whether
Frontiers in Oncology | www.frontiersin.org 7
PGCCs expressing stem cell-like properties has also attracted
the attention of many researchers. In “the dualistic origin” theory
he created, Liu has ingeniously compared and unified the PGCC
proliferation cycle (giant cell cycle) with the embryonic
development cycle (6, 92). This theory not only provides a
physiological basis for the development of PGCC but also
reveals how mature somatic cells differentiate and re-express
stemness under the action of stress (6, 92). The current research
evidence of PGCC with stem cell characteristics can be roughly
divided into three aspects. First, it has surprisingly strong
proliferation ability. Second, the big cells can be induced to
differentiate into some normal tissues. Finally, PGCCs have
been shown to express stem cell markers. By sorting single
multinucleated tumor cells and injecting them under the skin
of nude mice, Weihua and colleagues successfully constructed a
single PGCC-level in vivo tumor model (93). This working
method makes their study a classic evidence of PGCC’s
powerful tumorigenesis ability. Apart from this, PGCC also has
the potential for multidirectional differentiation and plasticity in
differentiation types. In Zhang’s laboratory, they repeated the
precise experiment to verify the high tumorigenicity of PGCCs,
and another important achievement of theirs also showed that
the use of special medium can induce PGCC to differentiate to
several types of mesenchymal tissues, such as adipose, cartilage,
and bone (33). This finding was also confirmed by in vivomodes.
His two other studies have displayed that PGCCs also worked
out erythrocyte-like cells and embryonic hemoglobin with strong
TABLE 1 | Continued

Stimulus
types

Cancer types Cell types Treatment n Evidence of polyploidy Ref.

Breast cancer MDA-MB-231 6, 10, 14 Gy – Immunofluorescence, morphological observation of
cell, cell cycle analysis

(57)

Lung cancer A549 8, 10 Gy – Morphological observation of cells, flow cytometry (56)
Lymphoblastoma WIL2-NS 10 Gy 4, 8 Immunofluorescence, morphological observation of

cell
(69)

Aurora
kinases
inhibitors

Colon cancer HCT-116 VX-680, AZD1152-HQPA, MLN8237 4, 8,
16

DNA content analyze, immunofluorescence,
morphological observation of cell

(80)

Acute myeloid
leukemia

HEL, GDM-1,
MOLM-13

AMG-900 4, 8,
16

DNA content analyze, immunofluorescence,
morphological observation of cell, cell cycle analysis

(81)

Liposarcoma SW-872, 93T449 AMG 900, AZD1152-HQPA, MK-5108 4, 8,
16

DNA content analyze, immunofluorescence,
morphological observation of cell

(82)

Oral squamous
cell carcinoma

CAL27 Tan IIA – Immunofluorescence, morphological observation of
cell, cell cycle analysis

(83)

Lung cancer NCI-H1693 MLN8237, VX-689, AZD1152,
GSK1070916

– Immunofluorescence, morphological observation of
cell

(20)

Hypoxia Breast cancer MCF-7, MDA-
MB-231

CoCl2 – Morphological observation of cells, pathological
sections of patients, cell cycle analysis

(84)

MDA-MB-231 Immunofluorescence, morphological observation of
cell, cell cycle analysis

(33)

Ovarian cancer Hey Morphological observation of cells, pathological
sections of patients

(85)

Hey, SKOV3 Immunofluorescence, morphological observation of
cell, cell cycle analysis

(33)

Colon cancer HCT-116, Caco-
2

Immunofluorescence, morphological observation of
cell, cell cycle analysis

(86)

Hyperthermia Colon cancer HCT-116 42°C 4, 8 Immunofluorescence, morphological observation of
cell, cell cycle analysis

(87)
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oxygen binding ability (94, 95). This makes a positive impact on
improving the hypoxic environment inside the tumor tissue. A
series of stem-cell-specific markers are also ideal indicators for
detecting the stemness of PGCCs. Recognized as CSC markers,
CD44 and CD133 have been listed by many laboratories in
exploring PGCC’s stem-cell-like properties (33, 54). The high
expression of OCT4, SOX2, and Nanog in polyploid cells also
reveal their multidifferentiation potential and self-renewal ability
similar to embryonic stem cells, and this expression pattern can
be passed on to the diploid progeny cells they produce (96, 97). In
later studies, Niu et al. proved that the expression of these three
markers in PGCCs is time and space dependent (66). An
investigation carried out by David et al. focused on pregnant
cells, which were very similar to the PGCC discussed here. It is
interesting that although these cells expressed stem-like
phenotype physiologically, they seldom expressed CSC-related
antigenmarkers (98). Meanwhile, in their progeny cells, especially
the first generation of progeny cells, high levels of CSC markers,
such as CD44, CD133, OCT4, and Nanog, were detected (98).
Based on the above research clues, whether the proliferation
mode of neosis presented by PGCC is the same as that of CSC
still remains to be studied. There is no doubt, however, that the
progeny diploid cells produced by PGCCs, which are very likely
to participate in tumor recurrence after treatment, express many
stem markers and are extremely malignant.

Progeny Cells Dominate Tumor Metastasis
In the experiment of Weihua with a single PGCC to establish an
in vivo subcutaneous tumor model, except tumor formation in
situ inoculation, they observed the formation of metastases in the
lungs of some nude mice, too (93). This phenomenon released a
clear signal about the metastatic ability of PGCCs with their
progeny cells. Zhang’s team has done a set of studies on the
metastatic ability of this cluster. Comparing the invasion and
migration ability of PGCCs with daughter cells in breast cancer
cell and the control one, it was found that the invasion and
migration ability of the formal group was much more powerful,
accompanied by metastasis-related markers, N-cadherin and
vimentin, significantly going up (84). By inhibiting the
expression of S100A4 in another one, the downstream
cathepsin and cytoskeletal protein functions were disturbed,
thereby weakening the invasion and metastasis ability of
PGCCs and its progeny cells (99). However, whether PGCCs
themselves having metastasized or the progeny cells produced by
neosis being more aggressive have not yet been carefully
discussed. We believe that the accumulation of DNA in stress-
induced polyploid cells is a response mechanism, and its progeny
cells are something like rescue capsules of PGCCs after
chromosomal disorder, which may lead to a more aggressive
and stress-adaptable phenotype. In a study after multiple
subcultures of PGCC, it was shown that after passaging to the
10th generation (P10), the invasion and metastasis ability was
obviously stronger than that of the primary generation and even
stronger than that of untreated control cells (65). Although this
experiment did not directly isolate the offspring, the proportion
of progeny cells gradually grown up as the number of passages
Frontiers in Oncology | www.frontiersin.org 8
climbed, which can also indirectly illustrate the important role of
progeny cells in metastasis. Another phenotype closely related to
metastasis involved in the above studies is EMT. Multiple studies
have involved evidence that PGCCs and progeny cells upregulate
the expression of some EMT-related markers, including the
raising of ZEB1 in prostate cancer PGCCs (73); the expression
of Twist, Slug, and Snail building up in colon cancer PGCCs (95);
and the enhancement of N-cadherin, vimentin, and cathepsin in
PGCCs of a few cancer cell lines (84, 95, 99). Listing evidence of
PGCCs’ stemness, we mentioned that they could be induced to
differentiate into a variety of mesenchymal tissues (33). Apart
from participating in embryo differentiation and wound healing
as an indispensable physiological process, EMT can also make
epithelial cancer cells lose their polarity, confer them
mesenchymal properties, and allow them to transform or stay
between two extreme states arbitrarily (100, 101). Hence, EMT
andMET are two dynamic mutual changes rather than two states
of fragmentation (102). The EMT process can cause cancer cells
to metastasize to a distant place and then restore the epithelial
state through the MET process to form tumor (103). In short, the
EMT mechanism cannot only make PGCCs show the relevant
characteristics of tumor stem cells but also play a role in the
metastasis of tumor cells, thereby linking stemness and
metastasis in PGCC.

PGCCs Behave Numerous
Senescent Phenotypes
Previously, it was believed that polyploid cells were the result of
mitotic catastrophe and lost the ability of cell proliferation. As a
matter of fact, the two key characteristics of senescent cells are cell
cycle arrest and degradation of proliferation ability (104). This
makes the discussion of PGCC always be accompanied by its
relationship with the senescence phenotype, just as a couple of
recent reviews systematically introduced the complex connections
and differences between polyploidy and senescence (105–107). A
handful of common features between polyploidy and senescence
were summarized, including induction of DNA damage,
activation of P53/Rb, escaping from cell death, growing
incidence of autophagy, common associated genes, and recovery
of stemness gene (107). Senescence was generally regarded as a
powerful antitumor mechanism in the past (108, 109). If the two
do have a lot in common, this is confusing when many views hold
the point that polyploid cells are involved in tumor recurrence (9,
13). Sikora and colleagues discussed therapy-induced senescence
(TIS) and therapy-induced polyploidy (TIP), unifying their roles
in tumor DNA damage response mechanisms and clarifying that
senescence and polyploidy are two necessary conditions for neosis
to play a role in the repopulation of PGCCs, especially the later
one (105). In other words, senescent cells that have failed to
undergo polyploidization may not be able to escape the fate of
senescence and death in the end, neither returning to the mitotic
cycle (105). This view can explain the recent research on the
restoration of proliferative activity of senescent cells induced
by antitumor stress (110). The cells that escape the fate become
more adaptable to stress, more heterogeneous, and more
aggressive (111).
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Several Meiotic Genes Are Activated
As we all know, there are two processes of reduction in ploidy in
the normal division of mammals: the separation of sister
chromatids into two daughter cells in the late mitosis period,
resulting in the transformation from tetraploid to diploid, and
two consecutive ploidy reductions in the process of meiosis, from
tetraploid to haploid. It is documented that structures similar to
meiotic synaptonemal complexes were observed in polyploid
cells 7–9 days after treating Hela cells with 10 Gy rays (112). It
was also detected that the expression of meiosis-specific genes
SYCP, REC8, and DMC1 went up in cervical, breast, and colon
cancer cells after irradiation (112). Another study on meiotic
adhesive REC8 showed that REC8 changed its location from the
centromere to the centrosome and astral fiber after irradiation,
and colocalized with the microtubule-associated protein to
induce chromosomes segregation and genome reduction in
polyploid cells (113). A recent research holds the view that
under the action of meiotic nuclease SPO11 and its downstream
Mos-kinase, meiotic and telomere-related mechanisms may play a
role in the neosis of PGCCs (71). Interestingly, some of the
aforementioned meiosis-specific genes in radiation-induced
polyploid cells were first time to be found in malignant tumor
cells (114). In the proliferation mode of neosis, there is a process
by which polyploid actively reduces and eliminates excess
chromatin. It is not surprising that this process involves the
initiation of meiosis-specific genes. More importantly, whether
these genes are likely to become therapeutic targets and how
PGCCs can accurately screen and repair the specific number of
genes required for offspring diploids from a group of chaos are the
focus of attention in the future.
Frontiers in Oncology | www.frontiersin.org 9
CONCLUSION

The stresses that can induce tumor cells to form polyploid are
diverse and cover the current radiotherapy and chemotherapy
commonly utilized in clinical tumor treatment. These stimuli
cause the death of a large quantity of tumor cells and promote
the formation of PGCCs in the meantime. These polyploid cells
neither lose the ability to proliferate nor wait for death. The unique
asymmetric division mode—neosis—mediates the process of tumor
repopulation (Figure 2). Moreover, the strong adaptability, stem cell
characteristics, metastasis, and senescence escaping expressed by
PGCCs all reveal that they are closely related to posttreatment
relapse. These malignant cells must be included in the scope of the
key target in future tumor therapy plan.

As a newly emerging field, there are still many questions that
need to be resolved. Although many morphological and
pathological descriptions of PGCCs have been carried out, and
some theories related to the life cycle of these cells have been
proposed, there are still many pivotal problems that need to be
followed and solved. First of all, are there any differences in the
mechanisms of polyploidization between PGCCs and well-
accepted polyploid cancer cells? If it does, then what drives the
two express different phenotypes under the same stress. If not,
researches should look for a new angle to establish the fate
spectrum of polyploid cells, such as molecular markers. Second,
as described in the first question, there is still a lack of mature
molecular markers as screening and therapeutic targets.
Furthermore, most of the work on PGCCs was done on
immortal cell lines in vitro. Although there are some
pathological evidence about PGCCs in vivo, it is still necessary
FIGURE 2 | Primitive model of tumor repopulation via neosis of PGCCs. When tumor cells proliferate to a certain scale for the first time, they encounter treatment
stress or other kinds of survival pressure. Most of the tumor cells are killed, while a small part of them survive and form PGCCs, containing the extensive potential to
re-enter the proliferation cycle through neosis. (Created with BioRender.com).
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to show production and proliferation of PGCCs in vivo more
intuitively. Finally, we believe that the specific ploidy-reducing
mechanism of PGCCs is of vital importance, for its role in the
repopulation of minimal residual disease of tumor should not be
overlooked. At present, scientists should continue to focus on
exploring the special proliferation mode of PGCCs and the
molecular marks related to it, so as to pick out molecular
targets that can be transformed into clinical application.
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