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Abstract

Cyclic nucleotides (cAMP and cGMP) regulate multiple intracellular processes and are thus of a great general interest for
molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB) domains, we
compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels) using a new bioinformatics method: local
spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1) the phosphate binding cassette
(PBC), which binds the cAMP ribose-phosphate, 2) the ‘‘hinge,’’ a flexible helix, which contacts the PBC, 3) the b2,3 loop, which
provides precise positioning of an invariant arginine from the PBC, and 4) a conserved structural element consisting of an N-
terminal helix, an eight residue loop and the A-helix (N3A-motif). The PBC and the hinge were included in the previously
reported allosteric model, whereas the definition of the b2,3 loop and the N3A-motif as conserved elements is novel. The N3A-
motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains.
Catabolite gene activator protein (CAP) represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and
its long range allosteric interactions are substantially different from the cis-regulated CNB domains.
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Introduction

Cyclic adenosine monophosphate (cAMP) is an important second

messenger, which regulates a large variety of cellular processes,

including metabolism, cell shape transformation, gene transcription,

photoreception and chemosensation [1–5]. All cAMP-binding

proteins in both pro- and eukaryotes share a small module – the

cyclic nucleotide binding domain (CNB domain), which is typically

fused to another domain. The CNB domain contains a contiguous b-

subdomain and a non-contiguous a-subdomain (Figure 1). The

former is a relatively rigid eight-stranded b-sandwich, which

accommodates the cyclic nucleotide molecule. The flexible helical

a-subdomain can accept substantially different configurations, which

translates the allosteric signal [6]. Recent structure studies of cAMP-

dependent protein kinase (PKA) demonstrated, that CNB domains

toggle between two stable conformations: bound to cAMP (so called

B-form [7]), or to catalytic subunit of PKA (H-form) [8,9]. The

intermediate, non bound form (apo-form) is characterized by high

backbone flexibility [10–12] and is apparently represented by a

dynamic ensemble of multiple configurations.

The b-subdomain contains a highly conserved element, the

Phosphate Binding Cassette (PBC), which is 14-residues long and

contains a short flexible a-helix (B’-helix). Ribose-phosphate of

cAMP, protected by the b-sandwich from the outside solution,

forms six strong hydrogen bonds to the PBC. Due to these

interactions, the B’-helix moves towards the cAMP molecule and

adopts a compact conformation (Figure 1). Such movement causes

a substantial rearrangement of the a-subdomain both in its N- and

C-terminal parts. The latter contains the so called ‘‘hinge’’ [13],

which consists of two consecutive a-helices (B and C). These

helices are remarkably flexible and due to a strong connection to

the B’-helix perform a swing-like motion: moving towards cAMP

in the B-form (Figure 1A). The N-terminal part of the a-

subdomain, which typically consists of two (short) helices and was

called the ‘‘N-terminal helical bundle’’ [14], moves in an opposite

way; in the B-form it moves away from the PBC, facilitating the

hinge closure. In the H-form the N-terminal helices move towards

the cAMP and make a contact to the B’-helix, filling the void space

that results from the hinge opening (Figure 1B).

The other part of the cAMP molecule, the adenine ring, acts as

a hydrophobic moiety, which stacks against a ‘‘capping residue’’ in

all known CNB domain structures [15] (Figure 1A). Mutation

studies have established the importance of this contact for

stabilization of the B-form and cooperative cAMP-induced

activation of the PKA holoenzyme [8].

A recent review summarizes this information into a general

model for the CNB domain allosteric mechanism for PKA, Rap

guanine nucleotide-exchange factor (Epac) and hyperpolarization-

activated cyclic-nucleotide-modulated channel (HCN) [14]. Al-

though this model is in a good correspondence with much

experimental data, two important issues remained unclear. First,

as the authors mentioned, the N-terminal helical bundle is

replaced by a single helix in the catabolite gene activator protein

(CAP). This raises a question about the role of the helical bundle

and its functional and structural conservation. Is it a universal part

of the CNB domain or it is a part of protein-protein interface
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between the CNB domain and the host protein? The second

problem is related to the loop located between b2 and b3 strands.

A series of publications demonstrated, that it is an important

element of allosteric mechanism in the PKA RIa:A-domain [16–

18], but it was not included in the model described by Rehmann et

al [14] and was not considered to be a universal element.

To elucidate the cAMP induced allosteric mechanism that is

conserved in different CNB domains, we used a recently developed

method for protein structure comparison: Local Spatial Patterns

(LSP) alignment that is capable of detecting similar patterns made

up by amino acid residues in space. It is fast and does not require

preliminary sequence or structural alignment of the compared

proteins. Earlier we used it for comparison of protein surfaces of

several CNB domains in the B-form and detected a conserved set

of hydrophobic residues protecting the cAMP ribose-phosphate

[15]. Here we considered both water accessible and buried

residues of both B- and H-forms of four different CNB domains:

PKA, HCN, Epac and bacterial cyclic nucleotide modulated

potassium channel (MloK1) [19]. The recently reported structures

of two PKA holoenzymes [8,20] have allowed us for the first time

to analyze both conformational states of multiple CNB domains.

Our analysis has shown that there are four elements conserved

in all known CNB domains, with the exception of the CAP: the

PBC, the hinge, the b2,3-loop and the ‘‘N3A-motif’’. The latter

consists of the A-helix, a preceding eight residue loop and a short

N-terminal helix. The loop contains a set of 310-turns, and is

termed ‘‘the 310-loop’’. Based on these results, we propose a

general model for the allosteric mechanism in CNB domains,

which we called cis-regulated domains. In CAP the N3A-motif is

reduced to a single A-helix. The difference between CAP and

other CNB domains is discussed.

Results

LSP Alignment Defines cAMP-Induced Conformational
Changes in CNB Domains

The LSP alignment is a new method to compare protein

molecules. It is based on a graph-theoretical representation of

protein structure, and the result of this alignment is a pair of

isomorphic graphs. Vertices of the graphs correspond to the

residues which form similar spatial patterns in both proteins. Each

vertex/residue is connected to the rest of the graph by several edges.

They indicate the residue neighbors whose positions and orientation

in space are conserved with respect to this residue. As we have shown

earlier [15,21], functionally important residues of protein kinases

have numerous connections on the similarity graphs. In the previous

works we considered only surface exposed residues. Here we analyze

all residues. This allows us to recognize conserved motifs that are

buried in the protein core. We define a term ‘‘involvement score’’

(IS) of a particular residue, which is equal to the number of edges for

the corresponding vertex on the graph provided by the LSP

alignment procedure. It reflects the extent of participation of this

residue in formation of invariant spatial patterns and corresponds to

AA and AI scores used in the previous work [21], where we

compared active and inactive protein kinases.

Earlier we used the LSP alignment for comparison of different

proteins having similar functions. In this work we present an

alternative way of using the LSP alignment program. Our purpose

was to quantify cAMP-induced structural rearrangements in

different CNB domains. This was made by aligning two different

conformations of the same protein. As the IS reflects only local

structural similarities (in our case within 10 Å range between Ca-

Author Summary

Cyclic nucleotides are small regulatory molecules which
transmit signal from receptors positioned on a living cell
membrane into the cell interior and regulate multiple
biological processes ranging from bacteria to humans.
Such regulation occurs through binding of the cyclic
nucleotides to the corresponding proteins. All such
proteins contain a relatively small domain responsible for
the cyclic nucleotide binding. The most important task is to
understand how cyclic nucleotide binding (CNB) domains
translate the signal into a biological response. In this work,
we studied changes in different CNB domains induced by
the cyclic nucleotides using a new method for comparison
of protein structures: local spatial patterns alignment. This
novel method compares protein molecules and detects
conserved spatial patterns comprised of similar amino acid
residues. Moreover, it ranks the detected residues with
respect to their functional or structural importance. Our
results show that there are at least two different families of
CNB domains. The first family has four structural elements
which perform the signal translation. Two of these
elements were known previously and two are novel. The
second family can translate the signal using only three
elements, but they have to work in pairs to provide
interaction between the functional elements.

Figure 1. Current understanding of the major cAMP–CNB
domain interactions represented by the PKA regulatory
subunit type Ia: A-domain. (A) Correlated movement of the PBC
and the Hinge. cAMP-bound conformation (B-form) is colored yellow;
holoenzyme conformation (H-form) is colored cyan. The cAMP and the
capping residue positions are shown. (B) N-terminal part of the a-
subdomain performs reverse motion (with respect to the Hinge),
contacting the PBC in the H-form.
doi:10.1371/journal.pcbi.1000056.g001

Allostery of Cyclic Nucleotide Binding Domains
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Figure 2. Study of the cAMP-induced conformational changes in PKA:RIa by LSP-alignment. High involvement scores correspond to
relatively rigid parts of the molecule. Low values of the score characterize elements, which are the most sensitive to the presence of cAMP. Secondary
structure is shown by red rectangles (a-helix), magenta rectangles (310-helix), and yellow arrows (b-strands). Four allosteric ‘‘hot spots’’ for each
domain are shown by arrows.
doi:10.1371/journal.pcbi.1000056.g002

Figure 3. The conserved N3A-motif in the N-terminal part of the a-subdomain. (A) Stereo picture of N3A-motifs from 9 different CNB
domains: A and B domains of PKA types RIa, RIIa, and RIIb; Epac2; ionic channel HCN; and potassium channel MloK1. (B) Sequence alignment of the 9
N3A-motifs. a-helical regions are shaded magenta. Residues with negative chirality are shaded yellow. Hydrophobic residues or residues with large
aliphatic segments are shown in bold. Colored circles correspond to the coloring on the stereo picture. (C) Hydrophobic interactions between
residues of the N3A-motif provide integrity of the structural element. N3A-motif of PKA:RIa A-domain is colored tan. Interacting residues are colored
yellow. Connelly surfaces around their aliphatic parts are shown. (D) Residues on the tip of the 310-loop are involved in protein-protein interactions in
the PKA holoenzyme. The PBC is colored cyan. C-subunit is colored grey.
doi:10.1371/journal.pcbi.1000056.g003

Allostery of Cyclic Nucleotide Binding Domains
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atoms) any large scale rearrangements in the protein do not

change the score significantly. Therefore, residues which form

rigid structures inside the protein and maintain their relative

positions will have a high level of IS. In contrast, those residues

located in points of protein flexibility will have low IS, reflecting

the loss of similarity between the two protein structures. One can

speculate that the residues with the lowest IS can play an

important role in the allosteric mechanism, as such elements like

‘‘hinges’’ or ‘‘switches’’ have to accept two distinctive ‘‘on’’ and

‘‘off’’ conformations.

Recognition of a Conserved Novel Allosteric ‘‘N3A-Motif’’
Figure 2 presents the results of LSP alignment of PKA (RIa) H-

and B-forms. As expected, residues from the rigid b-sandwich had

the highest IS values, reflecting the rigidity of the b subdomain. In

contrast, four regions showed a significant decrease in IS: 1) B’-

helix of the PBC; 2) the hinge region; 3) the b2,3-loop and 4) N-

terminal part of the a-subdomain. These results are in good

correspondence with the NMR studies of the RIa A-domain [16].

Our analyses show that both A- and B-domains have similar IS

profiles, although the drop in the b2,3-loop in B-domain was less

Figure 4. Accumulated involvement scores obtained by LSP alignment different CNB domains. B- form of RIa:A was compared to B-
forms of RIa:B, RIIb:A, RIIb:B, HCN, and MloK1 (red bars); and H-forms of RIa:B, RIIa:A, RIIa:B, Epac, and MloK1 (blue bars). Colored circles indicate the
‘‘three-shell’’ model[16] residues: 1st shell, red; 2nd shell, yellow; and 3rd shell, green. Dark grey circles indicate the residues, which were found to be
conserved previously [15].
doi:10.1371/journal.pcbi.1000056.g004

Figure 5. Sequence alignment of b2,3-loops for different CNB domains. Contacts formed by the residues are shown either on the upper left
side (side chain) or lower right side (main chain). Contacts to the R209 are indicated by capital R: green, hydrophobic; red, polar. Also contacts to the
PBC, B-helix, b4,5-loop, and b7-strand are indicated. Question mark signifies that the b4,5-loop is not resolved in the HCN structure. Dashed arrows
show important hydrogen bonds: above the residue letters, between side chains; under the letters, between their main chains. The last row presents
main chain chirality sign for the residues.
doi:10.1371/journal.pcbi.1000056.g005

Allostery of Cyclic Nucleotide Binding Domains
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prominent. Similar results were obtained for the A-domain of PKA

(RIIb) and the potassium channel MloK1 (Figure S1). The decrease

of IS in the b2,3-loop in the potassium channel CNB domain was

not as striking as in A-domains of PKA (both RIa and RIIb), but

similar to the B-domain of RIa. This is in a good agreement with

the earlier observation that B-domains of PKA are more similar to

the rest of CNB domains, than the A-domains [15].

The N-terminal helical structure which earlier was called an

‘‘N-terminal helical bundle’’ has not been considered as a

conserved element [14]. It is not a part of the current CNB

domain nomenclature for two reasons: first – it is not present in

CAP, and second – in the different CNB domains it forms slightly

different secondary structures. For example in the B-form of RIa,

RIIb, MloK1 and Epac2 it contains a short 310-helix. In the H-

form of RIa:A it contains a set of 3-turns, which do not form the

classical 310-helix and is considered to be a loop, while the B-

domain retains its 310-helix configuration. In H-form of PKA

RIIa:A and RIIb:A this element qualifies as an a-helix, but in the

B-form of RIIb:A and RIIb:B it is a 310-helix. However, a close

look at the middle part of the bundle shows that the geometry of its

backbone in different CNB domains (both H- and B-forms), is

rather conserved (Figure 3A). Moreover, this element, which we

will define as a ‘‘310-loop’’, has a distinctive pattern of phi/psi

angles: Figure 3B shows a sequence alignment of different N-

terminal helical bundles. One can see that A-helix of the presented

CNB domains is preceded by an eight residue long loop. Its first

conserved feature is that both ends of the loop contain residues

with negative chirality (a characteristic of b-strands): one at the N-

terminus and two at the C-terminus. There is also a large

conserved hydrophobic residue (phenylalanine or leucine) in the

middle of the loop (F136 Figure 3C), which plays a central role in

the hydrophobic cluster formed by the A-helix and the preceding

a-helix, which did not have an established name. As in the PKA-

RIa A-domain, it was called ‘‘aXn-helix’’ [16] or ‘‘X:N-helix’’ [6],

here we call it ‘‘N-helix’’, and the combination of the N-helix, the

310-loop and A-helix structure – the N3A-motif. The characteristic

feature of this motif is the presence of multiple X–X pairs in its

sequence (where X represents a hydrophobic residue or a residue

with large hydrophobic segment such as arginine or asparagine)

(Figure 3B). Such residues are closely positioned on one side of the

helix and provide a secure connection between the N3A-motif

elements (Figure 3C), a feature similar to the tetratricopeptide

repeat [22] or the leucine-zipper [23] motifs.

Analysis of the recently discovered holoenzyme structures of PKA

shows that the 310-loop residues positioned between the X–X pairs

are usually involved in important interactions. For example, in

RIa:A-domain V134, L135 and H138 stack against a large hydropho-

bic cluster formed by the C-subunit and the PBC (Figure 3D). In the

RIa:B-domain S252 forms five hydrogen bonds to the PBC, the C-

terminal helical structure of the domain and the b-sandwich.

The suggested conservation of the N3A-motif in different CNB

domains raises a question about the definition of A and B domains

in PKA-R. Until now, the beginning of the B domain was

associated with the first residue in it’s a-helix (e.g. W260 in RIa or

V280 in RIIb). Here we suggest a new boundary between the A

and B domains, which will reflect the conservation of the N3A-

motif. It is known that the RIa-(94-244) construct retains its

functionality and is capable of both binding to cAMP and

regulating PKA [24]. In addition, the C-helix of cAMP-bound

RIa has a kink between Y244 and E245. An identical kink exists in

the cAMP-bound RIIb (between Y265 and E266). It seems logical to

suggest that this kink indicates the border between the A and B

domains, therefore defining E245 as the beginning of N3A-motif

for the B-domain of RIa. Such a definition supports the

observation made earlier by Huang and Taylor that RIa ‘‘residues

245–260 at the end of cAMP binding domain A are structurally

more a part of domain B than domain A’’ [24].

LSP Alignment of Different CNB Domains Emphasizes the
Allosteric Role of the b2,3-Loop

After the new definition of CNB domains, we used the LSP

alignment to detect residues involved in formation of conserved

spatial patterns as we did previously for PKA-C [21]. The A-

domain of the RIa holoenzyme was taken as a reference structure.

It was compared to five cAMP-bound CNB domains: RIa:B,

RIIb:A, RIIb:B, HCN and MloK1. To detect the regions, which

respond to the cAMP presence, we also compared our reference

structure to five cAMP-free CNB domains: six domains of PKA-R

taken from the corresponding holoenzyme complexes: RIa:B,

RIIa:A, RIIa:B; and two apo-structures: Epac and MloK1.

Involvement scores were accumulated and presented in Figure 4.

Figure 6. Highly conserved b2–3-loop secures the PBC-arginine
side chain position. (A) Major polar interactions of the b2–3-loop
(RIa:A case). R209 is colored tan. Other residues involved in the
interactions are colored yellow. (B) Nonpolar polar interactions
surrounding the PBC-arginine. Hydrophobic residues are colored blue,
and their Connelly surfaces are shown. CH-p interaction between the
conserved G169 and R209 is indicated by an arrow.
doi:10.1371/journal.pcbi.1000056.g006

Allostery of Cyclic Nucleotide Binding Domains
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The highest involvement scores were detected in the PBC and

neighboring b6 and b7 strands. This area also had the largest

cAMP-induced changes of IS, reflecting the leading role of the

PBC in the allosteric mechanism. Reduced scores in the middle of

PBC agree with the sequence variability profiles obtained earlier

for PKA-R [25].

The second major region with highly scored residues was in the

strands b2, b3 and the loop between them. The result was rather

unexpected as, until recently, this area was not considered as an

important part of CNB domains. The scores, in general, did not

depend on the presence of cAMP, which indicates overall

conservation of the loop geometry. This suggests, that the b2,3-

loop is an important element not only in PKA-R, as it was pointed

by Das et. al [16,26] , but in all CNB domains. Figure 5 shows a

comparison between b2,3-loops of different CNB domains. As was

detected by the DSSP program [27], all loops have the same

pattern of their main chain chirality, indicating a high level of their

geometry conservation. The most distinctive common feature for

all of them is a 3-turn between residues #2 (D164) and #5 (D167)

(Figure 6A). It contains an invariant glycine residue #4 (G166)

which makes a conserved hydrogen bond to the PBC-arginine

carbonyl. The reason for strict conservation of the glycine is

evident as its dihedral angles are ruled out for any other type of

residue (w = 89.4u and y= 226.8u for RIa:A). Another conserved

hydrogen bond is formed between the PBC-arginine amide and

carbonyl of the residue #5. The third polar contact, which can be

found in all CNB structures, is formed between the PBC-arginine

guanidinium group and the carbonyl of residue #9 (N171). The

hydrogen bond between the arginine and the side chain of residue

#8 (D170), which was found to be important for RIa:A, is not

conserved: it can be seen only in the A domains of RIa and RIIb.

This residue, however, often binds to the side chain of residue #9

and provides communication between the b2,3-loop and the

‘‘hinge’’ as its carbonyl is always bound to the amide group of the

first residue in the B-helix. Besides polar interactions with the

PBC-arginine, residue #1 (I163) makes a conserved hydrophobic

contact to the arginine side chain. This residue is a member of a

conserved hydrophobic core formed by the highly scored residues:

V162, I163, Y173, F198 and V213 (Figure 6B). The important detail is

that another member of that cluster: Y173 (one of the three highest

scores obtained) – makes a conserved hydrogen bond to the

residue #9 (N171), thus closing the circle around the PBC arginine.

Glycine is the predominant residue in position #7, except for

the B domains of RIIa and RIIb, where it is substituted by alanine.

Any increase of the side chain would lead to a steric clash with

highly conserved alanine residues from the PBC (A202), which in its

turn also has a hydrophobic contact to the PBC-arginine in the

cyclic nucleotide bound configurations.

The hinge, which is a well known element of the allosteric

mechanism, demonstrated medium levels of IS and a strong

dependence on the presence of cAMP. The preceding b8-strand

received almost the same level of scores. It contains a set of

conserved hydrophobic residues, which face the N3A-motif and

provide a secure connection of this element to the b-sandwich.

The NMR-study of RIa showed that two residues from the b8-

strand (W222 and I224) had a substantial chemical shift, in response

to cAMP binding and are a part of the allosteric mechanism. Our

results support this conclusion and demonstrate conservation of

the hydrophobic interface through different CNB domains.

Another highly scored residue positioned between B-helix and

b8-strand (M151) is also a part of this interface.

As we showed earlier the N3A-motifs of different CNB domains

have very similar geometry, and conserved sequence motifs.

However, this region, except for the C-terminus of A-helix,

demonstrated low levels of IS. This indicates that the residues,

conserved in the sequence, do not form a rigid spatial motif. This

conclusion is supported by the fact that the N-helix and 310-loop in

RIa:A-domain have an elevated level of hydrogen-deuterium

exchange [10,16]. Apparently, the N3A-motif is a rather flexible

element, which can adopt slightly different conformations

accommodating the PBC and the hinge movements.

In all comparisons the loop between b4 and b5-strands received

zero level of IS (Figure 4). It is consistent with the fact that this part of

the CNB domain is the least conserved in terms of sequence and

structure [28]. Our data show that in many CNB domains the

N-terminus of the b4–5-loop involved in the conserved anchoring of

the b2–3-loop via its #3 residue (Q165) (Figures 5 and 6A). The b4–5-

loop spatially comes close to the C-terminus of the CNB domain

and in the RIa:B-domain may provide a docking site for another

protein.

Figure 7. CNB domains of CAP are trans-regulated. Interface between two monomers of CAP is shown (PDB ID, 1CGP). b-subdomains are
shown as black and white contours. The PBC and the Hinge of each monomer are shown as cartoons and colored cyan (first monomer) and yellow
(second monomer). Residues which form the hydrophobic interface between PBCs and hinges are shown as sticks with Connelly surfaces.
doi:10.1371/journal.pcbi.1000056.g007

Allostery of Cyclic Nucleotide Binding Domains
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CNB Domains in CAP Are trans-Regulated
We deliberately excluded the CAP CNB domain from the

current analysis as it does not contain the classic N3A-motif. There

are several distinctive features that distinguish the CAP CNB

domain from those discussed above. The major difference is that

in functionally active CAP the two identical CNB domains form a

homodimer with the interface being formed mainly by their C-

helices. Regulatory subunits of PKA also contain two CNB

domains, but their mutual interaction is rather limited: e.g. A-helix

of B-domain contacts cAMP and the hinge from the A-domain. In

contrast, in CAP the interaction between the two monomers is the

most important allosteric contact between the PBC and the hinge.

Figure 7 shows that the major binding partner for each PBC is not

the hinge from its own CNB domain but the hinge from the

opposite monomer. Such interactions separate the CAP CNB

domain from the other CNB domains studied in this work, which

we propose to call cis-regulated CNB domains while defining CAP

CNB domain as a trans-regulated CNB domain.

Discussion

The CNB domain, highly conserved throughout biology, is

comprised of a set of motifs that both define the docking site for

cAMP as well as an allosteric switch that allows it to assume a

dramatically different structure when binding to another protein

element. Using our new computational method we have analyzed

both the allosteric mechanism and the structural motifs conserved

in different CNB domains. LSP-alignment proved to be an

effective tool for detection of the allosteric ‘‘hot spots’’ – residues

with the most significant rearrangement of their side chains. The

comparison of H- and B-forms of PKA-RIa pointed to four major

elements of the allosteric mechanism: the PBC, the hinge, the b2,3-

loop and the N-terminal helical structure. Based on our analysis

the latter is now recognized as a new conserved element of cis-

regulated CNB domains – the N3A-motif. It is not present in at

least one trans-regulated CNB domain – CAP; however, it can be

found in another transcriptional regulator, Crp/Fnr family from

Porphyromonas gingivalis [29] (PDB ID: 2GAU). The possible

role of the N3A-motif in trans-regulated CNB domains needs to be

elucidated, but the fact that the allosteric interface between a and

b-subdomains is significantly different (Figure 7) indicates a

possible difference in allosteric mechanisms.

The detection of four allosteric hot spots in PKA is consistent

with NMR studies of the RIb:A-domain [16]. Our analysis shows

that the N3A-motif contains two types of residues: hydrophobic

X–X repeats, which provide structural stability to the element as

well as its interactions within the CNB domain (Figure 3B and 3C).

The other set of residues is positioned on the tip of the 310-loop

and is often involved in functionally important protein-protein

interactions (Figure 3D).

The results of different cis-regulated CNB domains LSP-

alignment were in good correspondence with our earlier analysis

of CNB domain surface: all eleven residues that were found to be

conserved [15], received very high IS values. Our results also

support the proposed the ‘‘three shells’’ model of allostery [16]:

high levels of IS were detected in the sites of all three shells

localization: b2, b3 and b8 strands (Figure 4).

The most unexpected result was a very high scoring in the b2,3-

loop region, which was not included previously in the general

model of CNB domain allostery [14]. This brings up a question of

the general role of the b2,3-loop in different CNB domains. As we

showed, its residues always participate in multiple, highly

conserved, polar and hydrophobic interactions with the PBC

arginine (R209 Figure 6). The guanidinium group of this residue

makes a very important hydrogen bond to the equatorial oxygen

of the cAMP ribose phosphate. Perturbation of the bond, with an

arginine-to-lysine mutation [30], or with substitution of the oxygen

by sulfur [31], significantly disrupts the cAMP-related allostery. A

close look at the b2,3-loop interactions with the PBC arginine,

Figure 8. General allosteric mechanism for different CNB
domains (RIa:A case). (A) Major interactions between cAMP, the
PBC (red) and the b2,3-loop (black) in cAMP-bound state. Red circles
represent residues forming polar bonds (red arrows); yellow circles
show residues making hydrophobic contacts (green arrows). The most
important bond between cAMP and R209 is shown by a double red
arrow. Residues and structure elements changing their positions upon
cAMP binding are shaded grey. (B) cAMP-free configuration. R209

becomes much less restricted. (C) General diagram of major interactions
in the CNB domain. The PBC controls cAMP, the 310-loop controls R209,
and their interaction provides correct orientation of the hinge region
and the N3A motif, which form a protein-protein interface.
doi:10.1371/journal.pcbi.1000056.g008

Allostery of Cyclic Nucleotide Binding Domains

PLoS Computational Biology | www.ploscompbiol.org 7 April 2008 | Volume 4 | Issue 4 | e1000056



shows that it ‘‘surrounds’’ the residue, immobilizing its bulky side

chain. The position and total geometry of the loop is remarkably

conserved in all CNB domains. The central element of the loop is

a universally conserved 3-turn between the positions #2 (D164)

and #5 (D167). Spatial orientation of the turn is secured by

another conserved interaction of residue #3 (Q165) with the b4,5-

loop. The apparent reason for such rigidity is a correct positioning

of the PBC arginine main chain, which is locked by two hydrogen

bonds to residues #4 (G166) and #5 (D167). The tip of the arginine

side chain is always bound to the #9 residue main chain (N171). A-

domains of PKA regulatory subunits RIb and RIIb have an

additional hydrogen bond to the side chain of residue #8 (D170).

This interaction, however, is not conserved in other CNB

domains. Alternatively, a polar bond between the eighth residue

main chain and N-terminus of the B-helix was found in all studied

structures. Thus, the possible role of the residue is to communicate

between the PBC arginine and the hinge. The direct binding of

residue #8 to the arginine, which is present in the PKA-R A-

domains can substantially reinforce such communication.

These finding lead us to a suggestion that immobilization of the

PBC arginine side chain has to be an important feature of the

allosteric mechanism. Definitely, without a stable guanidinium

group, one hardly can expect a stable bond with the ribose

phosphate moiety of cAMP. Here we propose a general model

describing the cyclic nucleotide related allostery (Figure 8). The

model is built around interactions between the cyclic nucleotide

phosphate and the PBC-arginine guanidinium group (red arrow in

Figure 8C). The main suggestion of the model is that the

guanidinium group is very mobile and can not form a stable bond

unless it is restricted by numerous interactions of the arginine with

the PBC and b2,3-loop. This model is supported by the observation

that the PBC-arginine side chain is not totally buried in the CNB

domain, but partially exposed to the outer solution. According to

the DSSP calculation [27], its water accessible area in the cAMP-

free structures vary between 16 Å2 in the potassium channel to

30 Å2 in RIa:A.

According to the proposed model stable cyclic nucleotide

binding can be achieved only by interaction between all the major

elements of the CNB domain: the PBC, the PBC-arginine, b2,3-

loop, the hinge and the N3A-motif. Almost all elements interact

with each other, leading to a rather complex allosteric mechanism.

The primary function of the b2,3-loop is to position all parts of the

arginine including the backbone, the hydrophobic part of the side

chain and the guanidinium moiety. It also interacts with the hinge

(through the residue #8) and the PBC (via hydrophobic contact

between residue #7 and A202). The PBC serves, first of all, as a

cyclic nucleotide molecule stabilizer, but it also plays an important

role in immobilization of the arginine side chain (via A202). In

addition, it interacts with the hinge and the N3A-motif, which

usually forms protein-protein interface, providing the transition of

the allosteric signal to the molecule, which contains the CNB

domain.

Conclusions
The LSP-alignment of H- and B-forms of different CNB

domains revealed four conserved structural motifs: the PBC, the

Hinge, the N3A-motif and the b2,3-loop. These elements were

found in all studied cis-regulated CNB domains. The N3A motif is

not present in CAP, which represents a trans-regulated CNB

domain family. We propose a generalized allosteric mechanism for

cis-regulated domains as follows: a) The PBC is a primary element,

which binds sugar-phosphate moiety of cAMP. b) The b2,3-loop

regulates the cAMP binding to the PBC via the conserved PBC-

arginine. c) Both the PBC and the b2,3-loop communicate with the

Hinge, which transfers the allosteric signal further to the N3A

motif. d) The N3A-motif is the most malleable element of a CNB

domain as it provides communication to the host protein.

Methods

The following structures were used in the current work:

PKA:RIa B-form [32] (PDBID – 1RGS); PKA:RIa H-form [8];

PKA:RIIa H-form [20]; PKA:RIIb B-form [13] (1CX4); PKA:R-

IIb H-form (Brown et al., unpublished results); HCN B-form [33]

(1Q43); MloK1 B-form [19] (1VP6); MloK1 H-form [19] (1U12);

Epac2 H-form [34] (2BYV). LSP-alignment was made by

previously reported algorithm for surface matching [21]. All

residues (both water accessible and buried inside protein) were

included in the analysis. For that reason, the water accessibility

cut-off was taken equal to zero. Residues were represented by their

Ca–Cb vectors. The maximum distance between Ca atoms was

12 Å. Tolerance for Ca–Ca distance was 0.4 Å. Tolerance for Ca–

Cb distance was 0.75 Å. Tolerance for the dihedral angle between

the vectors was 30u. Residues with the BLOSUM62 score greater

than or equal to 1 were considered to be similar. Calculations were

made on a personal computer (Pentium 4; 1.8 GHz; 1 Gb RAM)

under Linux OS. Molecular graphics were prepared using

PyMOL (DeLano Scientific, San Carlos, CA).

Supporting Information

Figure S1 Study of the cAMP-induced conformational changes.

Changes in (A) PKA:RIIb (A-domain) and (B) potassium channel

(MloK1) by LSP-alignment.

Found at: doi:10.1371/journal.pcbi.1000056.s001 (0.09 MB

DOC)
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