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Abstract: The heart is an essential organ in the human body. It contains various types of cells, such as
cardiomyocytes, mesothelial cells, endothelial cells, and fibroblasts. The interactions between these
cells determine the vital functions of the heart. Therefore, identifying the different cell types and
revealing the expression rules in these cell types are crucial. In this study, multiple machine learning
methods were used to analyze the heart single-cell profiles with 11 different heart cell types. The
single-cell profiles were first analyzed via light gradient boosting machine method to evaluate the
importance of gene features on the profiling dataset, and a ranking feature list was produced. This
feature list was then brought into the incremental feature selection method to identify the best features
and build the optimal classifiers. The results suggested that the best decision tree (DT) and random
forest classification models achieved the highest weighted F1 scores of 0.957 and 0.981, respectively.
The selected features, such as NPPA, LAMA2, DLC1, and the classification rules extracted from
the optimal DT classifier played a crucial role in cardiac structure and function in recent research
and enrichment analysis. In particular, some lncRNAs (LINC02019, NEAT1) were found to be quite
important for the recognition of different cardiac cell types. In summary, these findings provide a
solid academic foundation for the development of molecular diagnostics and biomarker discovery
for cardiac diseases.

Keywords: heart cell; single-cell profiles; machine learning method; biomarker; decision rule

1. Introduction

The heart is a complex organ containing various cardiac cell types, and the interac-
tion between different heart cell types could realize the important functions of the heart.
Previous pioneering studies have shown that the heart is composed of approximately
70% non-cardiomyocytes and 30% cardiomyocytes [1]. Cardiomyocytes could be divided
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into atrial myocytes and ventricular myocytes, while non-cardiomyocytes mainly include
fibroblasts, smooth muscle cells, pericytes, and endothelial cells. These cells form four
chambers with different morphologies and functions, and they complete the systemic blood
circulation [2].

Cardiomyocytes are responsible for contractile function, and they are the most im-
portant part. However, they do not function in isolation. Fibroblasts account for more
than 40% of the total cells in the ventricle. Their core function is to maintain the cardiac
extracellular matrix homeostasis and provide structural and mechanical support for the
cardiomyocytes [3]. The mural cells of the vessel wall are mainly composed of smooth
muscle cells and pericytes, and these two cell types are important for vascular integrity and
heart function [4]. Endothelial cells form the inner layer of blood and lymphatic vessels;
they maintain blood circulation by regulating the permeability and caliber of blood vessels
and play an important role in controlling and maintaining the growth, contractility, and
rhythm of the heart [5,6]. Mesothelial cells are transitional mesodermal-derived cells with
similar morphological and functional characteristics to endothelial cells. They can secrete
angiogenic factors, which are important for angiogenesis [7]. Heart adipose tissue not only
can supply energy locally but also has heart repair functions, such as new blood vessel
formation and immune regulation [8,9]. Immune cells and neurons are also very important
for the functional homeostasis [10,11].

Identifying cell components and cell types are important for understanding cell func-
tions, especially in complex organs, where multiple cell types work together. There are two
types of traditional methods for cell type annotation: (1) cell marker-based methods, such
as CellAssign [12], which needs high quality cell specific expressed genes, but most cell
types do not have very specific biomarkers. (2) reference dataset-based methods, such as
SingleR [13], which compare the scRNA data with reference scRNA data with known cell
types and make predictions. Previous studies have reported some markers for cardiac cells,
such as in atria (NPPA and SLN), ventricles (MYL2 and MYL3), endothelial cells (FABP4
and AQP7), smooth muscle cells (ACTA2), fibroblasts (COL1A1), pericytes (PDGFRB) or
immune cells (PTPRC), neurons (NEXN1), and adipocytes (GPAM and FASN) [14–17].
Although these genes are very important for each cell type, the maintenance of cell function
depends on the interaction among different genes. Therefore, revealing the specific expres-
sion patterns of different cell types, especially the expression features that distinguish them
from other cell types, is very important for an enhanced understanding of fate decisions
and cell functions.

On the basis of existing single cell profiling datasets from the Human Cell Atlas study
of adult human heart cells [17], machine learning algorithms were used in the present study
to analyze data to extract gene expression characteristics and biomarkers to characterize
different heart cell types. Machine learning algorithms can extract hidden biomarkers
that cannot be found by traditional methods through in-depth research on a large number
of cell gene expression data. By using the light gradient boosting machine (lightGBM)
algorithm [18], a ranking feature list was generated on the basis of the importance of
these features. Then, the incremental feature selection (IFS) method [19] with decision tree
(DT) [20] and random forest (RF) [21] algorithms was applied to determine the best number
of features and build the optimal classifier. As a result, the most relevant gene features
and decision rules were identified. Through these rules, 11 cell types could be accurately
classified. Meanwhile, the results of Gene Ontology and Kyoto Encyclopedia of Genes
and Genomes pathway enrichment analysis suggested that the selected genes may have
important significance for the phenotype of cells or function of the heart. Further research
on these genes may help clarify the detailed mechanism of heart development. In short,
this research identified a group of potential cardiac cell biomarkers and a precise classifier
composed of many decision rules, thus providing insights for further research on cardiac
development and function. The method we proposed to identify heart cell types was a type
of reference dataset-based method. But unlike traditional reference dataset-based methods
which use all the genes, we only use discriminative genes selected with feature selection
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methods. The method had the merits of both two types of traditional methods: (1) we only
considered the discriminative genes; therefore, it was faster and more explainable than
the refence dataset-based methods; (2) we quantitively considered the combinations of
expression levels, i.e., expression rules, rather than only cell specific markers; therefore, it
was more accurate than the cell marker-based methods. The following text was organized
as follows: (1) Section 2 lists the dataset analyzed in this study and algorithms used in this
study; (2) The results were presented in Section 3; (3) Extensive discussion on results was
provided in Section 4; (4) Section 5 summarized this study.

2. Materials and Methods
2.1. Study Design

In this study, the interpretation of the model (i.e., classifier) was consisted of two
parts, that is, interpretation on (1) single gene expression signatures and (2) combined gene
expression rules. Single-gene interpretation explained the effect of single optimal genes on
the classification, while combined-gene interpretation focused on exploring how multiple
genes contribute to the classification together. The whole framework of this study is shown
in Figure 1.
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Figure 1. Flow chart of the study design. First, lightGBM method was applied to rank the features
of single-cell gene expression profiles into a ranked list. Second, IFS method with machine learning
algorithms was used to detect the best number of features and build the optimal classifiers and
decision rules. Finally, functional enrichment analysis was performed on the optimal gene feature set.
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2.2. Data Collection

Raw dataset was downloaded from the publicly available Human Cell Atlas Data
Coordination Platform, with accession number: ERP123138 (https://www.ebi.ac.uk/ena/
browser/view/ERP123138, accessed on 29 January 2021) [17]. The processed 10X Genomics
dataset included the expression profiles of 33,538 genes in 451,513 cells from 11 cell types.
The 11 major cell types and the corresponding sample sizes are presented in Table 1.

Table 1. Sample size of each heart cell type on single-cell dataset.

Index Cell Type Sample Size

1 Adipocytes 3799
2 Atrial cardiomyocyte 23,483
3 Endothelial 100,579
4 Fibroblast 59,341
5 Lymphoid 17,217
6 Mesothelial 718
7 Myeloid 23,028
8 Neuronal 3961
9 Pericytes 77,856
10 Smooth muscle cells 16,242
11 Ventricular cardiomyocyte 125,289

2.3. Feature Ranked by LightGBM

LightGBM is a well-known boosting learning machine [18] that combines many weak
classifiers to achieve a single strong one. It could be regarded as an improved version of
gradient boosting DT (GBDT) [22], which recurrently fits a new DT by using the negative
gradient of the loss function of the current DT as the approximate value of the residual. The
main differences between lightGBM and gradient-based one-side sampling (GOSS) lie in the
two new strategies adopted by lightGBM. These are GOSS and exclusive feature bundling
(EFB), which both greatly improve the efficiency and ensure the accuracy of classification.
In GBDT, the gradient of a sample in calculating the residual error of a DT reflects the
contribution of the sample to subsequent classification. Therefore, GOSS down samples
the training data by randomly screening out most of the samples with small gradient and
keeping a small number of them to maintain the distribution of the data. EFB bundles the
mutually exclusive features together to reduce the dimension of the data. The mutually
exclusive features are those that rarely take nonzero values simultaneously, and no or very
little information is lost by bundling them as a new feature. EFB is realized by solving a
graph coloring problem with the use of a greedy algorithm with a constant approximation
ratio. As described in LightGBM’s documentation (https://lightgbm.readthedocs.io/en/
latest/, accessed on 10 May 2020), the advantages of lightGBM include faster training
efficiency, low memory usage, higher accuracy, support for parallel learning, and being
able to handle large-scale data. In addition to classification, lightGBM sorts features in
accordance with their importance, which is quantified by the number of times the feature
is selected to build DTs. The more times a feature is used, the higher the ranking. In this
research, the features were sorted using lightGBM for further analysis. The lightGBM
program was implemented through a Python module.

2.4. IFS Method

Once the feature list F was generated by sorting the gene features with the lightGBM
method, the number of significant features could still not be determined. Here, the optimal
number of features was discovered using the IFS method [19]. IFS first generates a series of
feature subsets from the feature list F on the basis of the specific step size. For example,
when the step size is 5, the first feature subset f1 generated is the top five features in F,
the second feature subset f2 is the top 10 features in F, and so on. Next, each classifier
trains on a training set whose samples are expressed by the features in a feature subset.

https://www.ebi.ac.uk/ena/
https://lightgbm.readthedocs.io/en/latest/
https://lightgbm.readthedocs.io/en/latest/
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The performance of the classifier is evaluated using 10-fold cross-validation [23] and
synthetic minority oversampling technique (SMOTE) [24], and the classifier with the best
performance is considered the optimal classifier, and its trained subset is regarded as the
optimal subset.

2.5. Classifier Building with DT and RF

In this study, DT and RF were adopted to build classifiers. Their descriptions are
as follows:

RF [21,25–28] is a classification algorithm that integrates multiple DT classifiers.
Through a bootstrap resampling technique, a new training set is composed, and the DT is
constructed by randomly selecting samples and features from the original data set. The
prediction labels of RF are obtained by combining the prediction results of multiple DT
classifiers by using the principle of minority rule. RF has few parameters to tune, users can
only choose a proper number of DTs so that it can yield good performance. Because RF
contains several DTs, it has excellent noise tolerance and can avoid the overfitting problem.
Importantly, although DT is a relative weak classifier, RF is much stronger. Thus, it is
widely used in omics research.

Through RF, investigators can build an efficient classifier. However, it is a black-box
classifier. Its classification principle is not easy to understand. Accordingly, we cannot
extract essential difference of heart cells in different types. In view of this, DT [20,29,30]
was also employed in this study, which is widely used in the field of biomedical research,
because the decision rules generated by DT can effectively elucidate how decisions are
made for classification or regression tasks. In another word, a DT is a white-box classifier
that splits the data many times on the basis of certain thresholds in the features by using
the IF-THEN format. These IF-THEN formats constitute decision rules, which can clearly
exhibit special patterns for each class. In this study, these patterns indicated specific
characteristic of heart cell types. Although DT provides relative low performance, it can
give novel insights to study heart cells. In the output file of DT, the value of “passed
counts” indicates the number of samples satisfying the condition of the rule. The above
two algorithms were performed by the scikit-learn program with default parameters in
Python [31].

2.6. SMOTE

The different number of samples from different cell types leads to the problem of data
imbalance. Synthetic minority oversampling technique (SMOTE) was applied to minimize
the effect of sample imbalance on the construction of classifiers [24]. It generates many
synthetic samples for minority cell categories on the basis of the principle of k-nearest
neighbors [32]. For each cell type, except for the cell type with the highest number of
samples, new synthetic samples were added to this cell type via SMOTE until the number
of samples of each type was almost the same. The SMOTE program was accessed from
https://github.com/scikit-learn-contrib/imbalanced-learn (accessed on 24 March 2021),
and the parameters were set to default.

2.7. Performance Measurement

As the number of samples in each category in the dataset could be strongly unbalanced,
the weighted F1 score [33–35] is an appropriate measurement of the classifier’s performance.
First, the F1 score was calculated using the following formula:

F1score =
2 × precision × recall

precision + recall
(1)

Next, weighted average was performed to the F1 score of each category, and the weight
was the proportion of the number of categories in the correct label. This measurement was
called weighted F1 score.

https://github.com/scikit-learn-contrib/imbalanced-learn
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2.8. Functional Enrichment

For functional enrichment analysis, the Clusterprofile package was applied to the
annotation of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway, where p < 0.05 was taken as the screening criterion [36]. The GO terms are
divided into three subgroups, namely, biological process (BP), cellular component (CC),
and molecular function (MF).

3. Results
3.1. Results of LightGBM Method on the Dataset

In this study, single cell expression profiles of 451,513 cell samples and 11 cell types
for heart disease were obtained, and each sample of heart cell type was represented by the
expression of 33,537 genes. LightGBM method was first applied to rank the genes into a
feature list on the basis of feature importance to filter out the important set of features from
these genes, and the results are provided in Table S1. The top 20 genes in the list are shown
in Table 2.

Table 2. Top 20 genes in a feature list, as ranked by lightGBM method.

Index Gene Symbol Index Gene Symbol

1 LINC02019 11 LAMA2
2 CAMSAP3 12 NPPA
3 AC128685.1 13 LINC01958
4 AL139125.1 14 LMNTD2
5 AL024508.2 15 AC131009.2
6 AL121772.1 16 DLC1
7 LINC02346 17 AC020978.5
8 GLB1L3 18 RYR2
9 C22orf15 19 LDB2
10 UPK3A 20 SPARCL1

3.2. Results of IFS Method with RF

A feature ranking list was obtained by the lightGBM method, but the optimal number
of features was not determined. The IFS method was applied to optimize the selected gene
features. We first adopted RF to execute IFS method. The propuse was to construct an
efficient classifier for classifying heart cells.

Based on the feature list provided in Table S1, the IFS method produced a series of
feature subsets with the step size of 5. A SVM classifier was then built based on each feature
subset to predict the label of each sample. To save time, we only considered top 1000 gene
features in the list. The evaluation results of all SVM classifiers are shown in Table S2. The
IFS curve with the number of features as the X-axis and the performance of each classifier,
measured by weighted F1score, as the Y-axis is drawn in Figure 2. RF obtained the optimal
weighted F1 score of 0.981 with the top 470 features. Accordinly, the optimum RF classifier
can be built using these 470 features. Table 3 provides the detailed evaluation metrics of
the optimal RF classifier. It also provided good performance on other metrics. In addition,
the F1 score for each cell type under the optimal RF classifier is presented in Figure 3. Such
optimum RF classifier showed excellent performance on the prediction of each category,
indicating the effectiveness of this classifier.

Table 3. Performance of the two optimal classifiers.

Classification
Algorithm

Number of
Features ACC MCC Macro F1 Weighted F1

Random forest 470 0.981 0.977 0.973 0.981
Decision tree 380 0.957 0.945 0.934 0.957
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As mentioned above, the optimal RF classifier provided quite good performance. It can
be an efficient tool to classify heart cells. To further elaborate its robustness, the following
test was conducted. First, some noise was added to the dataset, in which cells were
represented by features used in the optimal RF classifier. In detail, we randomly selected
10% cells. Each feature of these cells randomly increased or decreased by a small number.
On such dataset, the optimal RF classifier was evaluated by 10-fold cross-validation. Above
procedures were executed for ten times, producing ten weighted F1 scores. A box plot was
drawn (Figure 4) to show these values. It can be observed that the performance on datasets
with noise was almost same as that on the original dataset. This proved the robustness of
the optimal RF classifier.
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3.3. Results of IFS method with DT

Although the optimal RF classifier exhibited quite good performance, it is a black-box
classifier that fails to explain the decisions. To extract more insights for the study of heart
cells, DT, a white-box algorithm, was employed. We conducted the same procedures on DT
that had been done for RF. The performance of DT classifiers on different feature subsets is
listed in Table S2. An IFS curve was also plotted, as shown in Figure 2. It can be observed
that the highest weighted F1score was 0.957 when top 380 features were used. Thus, an
optimum DT classifier can be built with these features. Other metrics of such classifier
are provided in Table 3. The performance of such classifier on all cell types is shown in
Figure 3. Evidently, the performance of the optimum DT classifier was lower than that of
the optimum RF classifier, which conform to the general fact that RF is more powerful than
DT. However, DT has its own merit that RF cannot have. The classification procedures of
DT were completely open, which make us possible to understand its classification principle,
thereby giving new insights to uncover the difference of heart cells in different types.

3.4. Classification Rules Generated by the Optimal DT Classifier

The optimum DT classifier was built based on top 380 features. Accordingly, we used
these features to represent all heart cells. Such representation of all heart cells was learnt
by DT. A large tree was obtained, from which we constructed 11,139 interpretable rules.
The detailed rules are listed in Table S3. The number of rules for each category is shown
in Figure 5. Endothelial cells obtained the largest number of rules, with 2588, followed by
atrial cardiomyocytes and pericytes. A detailed description of these rules could be found
in the Section 4.2.

3.5. Functional Enrichment Analysis with Optimal Gene Set

The best gene set was obtained, including the top 470 features, by using the IFS method.
These genes were analyzed by GO and KEGG pathway functional enrichment, and the
results are presented in Table S4 and Figure 6. Many genes were enriched in the KEGG
pathway of hypertrophic cardiomyopathy and dilated cardiomyopathy, and some genes
were enriched in the BP of heart process, indicating that these genes may be associated
with the development of heart disease and further demonstrating the effectiveness of
the method.
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(B) Top five key KEGG pathways.
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4. Discussion

In this study, several machine learning algorithms were applied to classify different
cell types from single-cell and single-nucleus transcriptome profiles of six adult heart
regions. First, the lightGBM method was performed to obtain a ranking feature list in
accordance with feature importance. Second, an RF algorithm was applied to construct
a precise classifier with a high classification accuracy of 0.981. However, as a black-box
classifier, this classifier cannot reveal the different expression patterns of different heart
cell types. Therefore, the DT algorithm was further used to obtain a group of decision
rules. By using the top 380 features, different cell types could be distinguished, with a
high classification accuracy of 0.957. Furthermore, novel biomarkers or expression patterns
may be identified by analyzing the expression pattern of 310 selected genes within these
decision rules.

4.1. Candidate Gene Expression Features Discriminating Different Heart Cells

A total of 470 selected features (genes) were used to classify 452,136 heart cells into
11 cell types. Among them, the top ranked genes are usually more decisive for distin-
guishing different cell types. Some relevant experimental evidence that supported the
results were presented.

NPPA (ENSG00000175206) encodes natriuretic peptide A (ANP), which is highly ex-
pressed in the heart muscle and related to the control of extracellular fluid volume and
electrolyte homeostasis. Studies have found that NPPA is expressed primarily in the heart,
and atria have higher expression than ventricles. NPPA can regulate vasodilation, natriure-
sis, diuresis, and aldosterone synthesis and further influence blood pressure. Moreover,
it is involved in inhibiting cardiac hypertrophy, cardiac fibrosis, and cardiac remodeling
by inducing cardiomyocyte apoptosis and attenuating the growth of cardiomyocytes and
fibroblasts [37]. In adipocytes, ANP can promote white adipocyte browning to increase
energy expenditure via a PKG-p38 mitogen-activated protein kinase mediated pathway
and make the heart as a central regulator of adipose tissue biology [38]. These findings are
consistent with the results of the present study, which showed that NPPA has a crucial role
in different functional heart cells.

Similarly, gene LAMA2 (ENSG00000196569), which encodes the laminin subunit, plays
an important role in normal heart function. Studies have demonstrated that homozygous
mutation of LAMA2 can cause unstable myotube formation in various cardiac muscle, and
abnormal LAMA2 expression may lead to heart dieases, such as cardiomyopathy, heart
failure, and dilated cardiomyopathy [39,40]. A previous adult human heart research also
showed that LAMA2 has different expression levels in fibroblasts, cardiac adipocytes, and
other cell types [17].

Other key features in our results are also important for cardiac function. For example,
the gene DLC1 (ENSG00000164741) is highly expressed in endothelial cells and a small
number of ventricular cardiomyocytes [17,41]; RYR2 (ENSG00000198626) encodes a calcium
channel component associated with cardiomyocyte and smooth muscle cell contraction
and thermogenesis in beige adipocytes [42–44]; TTN (ENSG00000155657) encodes titin, a
large abundant protein of striated muscle, mainly found in cardiac and skeletal human
muscle. Mutations in these genes may cause a variety of cardiac diseases [45–47].

More importantly, we found that some long non-coding RNAs (lncRNA) are important
for differentiating cardiac cell types. For example, LINC02019 (ENSG00000273356), it is
the top gene in our feature ranking. The product of this gene is a long intergenic non-
protein coding RNA (lincRNA). We used the starBase tool to study its related RNA-binding
proteins [48]. The most related proteins include EIF4A3, ELAVL1, LIN28A. Studies have
shown that EIF4A3 is associated with acute myocardial infarction, and knockout of EIF4A3
can lead to failure of heart looping [49,50]. ELAVL1 plays an important role in inhibiting
hyperglycemia-induced cardiomyocyte pyroptosis and regulating ferroptosis in myocardial
injury [51,52]. LIN28A is also implicated in various cardiac injuries or diseases [53,54].
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NEAT1 (ENSG00000245532) produces a lncRNA that may act as a transcriptional
regulator for numerous genes. NEAT1 was markedly downregulated in cardiomyocytes
following ischemia–reperfusion-induced injury. Moreover, by interacting with microRNA-
125a-5p, NEAT1 could modulate the concentration of BCL2L12, which in turn regulates
cardiomyocyte apoptosis [55]. Other studies also found that NEAT1 may influence myocar-
dial injury repair through the MAPK and TLR2/NF-κB signaling pathways [56,57].

In summary, these genes are all related to cardiac structure and function, and they
show various expression levels in the ventricle, atrium, and other cell types. Therefore,
these genes could be used as decisive feature for distinguishing different cardiac cells, and
we also confirmed that some lncRNAs may have more specific roles in the maintenance of
normal cardiac function.

4.2. Candidate Gene Expression Rules Discriminating Different Heart Cells

Through DT method, a classifier consisting of 11,139 decision rules involving 380 selected
features was built. Each cell type was assigned some rules, as shown in Figure 4. According
to the value of “passed counts”, top three rules for each cell type were extracted and listed
in Table 4. The genes involved in these 33 rules were analyzed in combination with the
existing literature to prove the reliability of the results. Studying other rules may also help
find some new characteristics of cardiac cell subtypes, which may provide new insights
into the in-depth understanding of cardiac development and function.

Table 4. Number and passed counts of the selected 33 rules based on the first three highest passed
counts in each cell type.

Rule Index Cell Type Passed Counts a Rule Index Cell Type Passed Counts

Rules_4 Atrial cardiomyocyte 14,567 Rules_12 Endothelial 2992
Rules_15 Atrial cardiomyocyte 2451 Rules_159 Mesothelial 199
Rules_25 Atrial cardiomyocyte 1657 Rules_269 Mesothelial 96

Rules_0 Ventricular
cardiomyocyte 95,879 Rules_287 Mesothelial 89

Rules_13 Ventricular
cardiomyocyte 2856 Rules_20 Neuronal 1950

Rules_14 Ventricular
cardiomyocyte 2728 Rules_182 Neuronal 165

Rules_2 Fibroblast 32,635 Rules_189 Neuronal 159
Rules_9 Fibroblast 6595 Rules_36 Adipocytes 1227

Rules_19 Fibroblast 2219 Rules_52 Adipocytes 866
Rules_11 Smooth muscle cells 3115 Rules_81 Adipocytes 486
Rules_17 Smooth muscle cells 2242 Rules_20 Neuronal 1950
Rules_29 Smooth muscle cells 1565 Rules_182 Neuronal 165
Rules_3 Pericytes 21,300 Rules_189 Neuronal 159
Rules_8 Pericytes 7142 Rules_5 Lymphoid 9681

Rules_10 Pericytes 4448 Rules_24 Lymphoid 1673
Rules_1 Endothelial 62,186 Rules_78 Lymphoid 503
Rules_7 Endothelial 8820

a: “passed counts” indicates the number of samples satisfying the condition of the rule.

4.2.1. Cardiomyocytes

Cardiomyocytes generate contractile force; thus, they normally show high expression
of sarcomere proteins and calcium-mediated processes [17]. The present study showed
that atrial cardiomyocytes and ventricular cardiomyocytes highly expressed TTN, which
was the most important factor for distinguishing cardiomyocytes and non-cardiomyocytes.
As mentioned above, atria showed higher expression of NPPA than ventricles [58]. The
decision rules in the present study also showed the same expression pattern. In addition,
atrial cardiomyocytes required a higher expression of KCNJ3 (ENSG00000162989) and
MYL7 (ENSG00000106631) than ventricular cardiomyocytes. KCNJ3 encodes an integral
membrane protein and an inward-rectifier type potassium channel. Studies have found
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that KCNJ3 plays an important role in governing cardiac electrical activity, and atrial
cardiomyocytes have high KCNJ3 levels than ventricular cardiomyocytes [59]. Other
studies also demonstrated that the protein encoded by MYL7, which is a part of myosin, is
highly expressed in atrial cardiomyocytes [60].

4.2.2. Fibroblasts and Vascular, Stromal, and Mesothelial Cells

In the decision rules, smooth muscle cells showed higher expression of MYH11
(ENSG00000133392) than other cell types. MYH11 encodes myosin heavy chain 11, and
high MYH11 level is a marker of mature contractile phenotype of smooth muscle cell,
while downregulation or mutation of MYH11 is associated with vascular disease [61].
ACTA2 (ENSG00000107796) is also a marker of smooth muscle cells; it is known as smooth
muscle α actin, which is usually highly expressed in smooth muscle cells, pericytes, and
myofibroblasts [62]. Studies found that mutation of ACTA2 could cause coronary artery
disease and thoracic aortic disease. An experimental study on smooth muscle cells and
myofibroblasts harboring ACTA2 mutations indicated that occlusive disease is associated
with increased proliferation of smooth muscle cells [63,64].

ABCC9 (ENSG00000069431) encodes a protein that is a member of the ATP-binding
cassette transporter superfamily. In this research, the decision rules of pericytes showed
high ABCC9 expression requirement. This finding is in accordance with various pub-
lished studies, which showed that ABCC9 is highly expressed in pericytes and could be a
biomarker for it [17,65,66].

VWF (ENSG00000110799) was required to be highly expressed in endothelial cells
in the decision rules. As a protein coding gene, VWF encodes a glycoprotein involved in
hemostasis, and it is reported to be highly expressed in endothelial cells in human cells [67],
thus confirming the results of the present study.

Unlike endothelial cells, smooth muscle cells, pericytes, and mesothelial cells, fibrob-
lasts are not involved in the construction of basement membranes. As known, collagen
IV, laminin-entactin/nidogen complexes, and proteoglycans are the major molecular con-
stituents of basement membranes [68]. This information was confirmed in the decision rules
because LAMA2 (ENSG00000196569) and CD36 (ENSG00000135218) showed a relatively
low expression in fibroblasts. As CD36 encodes collagen IV and LAMA2 encodes a subunit
of laminin, they both required to be highly expressed in other four cell types.

Although existing studies could not confirm why mesothelial cells need to relatively
highly express PLA2G2A in the rules, this may be a coincidence caused by the limited
number of mesothelial cells or the unknown effect of PLA2G2A on mesothelial cells.
Similarly, other types of cells have some very meaningful genes that have not been studied
in depth. However, the results of this study showed that they may be important.

4.2.3. Adipocytes and Immune and Neuronal Cells

Adipocytes, immune cells, and neuronal cells showed low expression of sarcomere
proteins or basement membranes components. NRXN1 (ENSG00000179915) encodes
neurexin 1, which is a cell surface receptor involved in the formation of synaptic contacts,
and efficient neurotransmission depend on NRXN1 [69]. The same expression pattern
could be observed from the decision rules of neuronal cells. Another highly expressed
gene in the rules was neuronal growth regulator 1 (NEGR1, ENSG00000172260). NEGR1
mediates neural cell communication and synapse formation, and its downregulation is
related to obesity, learning difficulties, intellectual disability, and psychiatric disorders [70].
Thus, appropriate NEGR1 expression is necessary to maintain neuronal cell function.

Hematopoietic cells are commonly classified into myeloid and lymphoid cells. The
expression of CD163 (ENSG00000177575) is the main criterion used to distinguish be-
tween myeloid and lymphoid cells in the rules. As CD163 encodes a member of the
scavenger receptor cysteine-rich superfamily, it is exclusively expressed in monocytes and
macrophages [71]. Thus, CD163 could serve as a marker for myeloid cells, and this finding
also confirmed the results of the present study.
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Adipocytes showed high PLIN1 (ENSG00000166819) and ACACB (ENSG00000076555)
levels than other cells. PLIN1 and ACACB participate in the inhibition of lipolysis and the
regulation of fatty acid oxidation, respectively. According to the recent publications, these
two genes are essential for the maintenance of adipocyte functions [72,73].

In conclusion, the genes that are highly expressed in the decision rules are often
markers of the cell types or essential for maintaining cell function, which reflects the
reliability of the research results. Some genes that are meaningful for cell classification,
which have not been investigated in detail before, may have important implications for the
function of the corresponding cell type.

4.3. Functional Analysis of the Optimal Gene Set

We also performed GO and KEGG pathway enrichments in the 470 decisive features
identified by the RF method, and here we presented the relevant enrichment results of
some cell types.

The enrichment terms related to adipocytes include GO:0019216 (regulation of lipid
metabolic process), GO:0036041 (long-chain fatty acid binding) and hsa04923 (Regulation
of lipolysis in adipocytes), which reflect the energy supply and regulation of adipocytes.
Similarly, there are also some terms related to lymphoid cells and neurons in the enrichment
results, such as GO:0140058 (neuron projection arborization) and GO:0035325 (Toll-like
receptor binding).

The primary function of the heart is to effectively pump blood to the body tissues
through the contraction–relaxation cycle of myocytes, and the heart is mainly composed of
cardiomyocytes and fibroblasts. In our GO and KEGG enrichement results, many of the
results are related to these two types of cells. Fibroblast-related terms are mainly related
to fibers, such as GO:0043292 (contractile fiber), GO:0030016 (myofibril), and GO:0030017
(sarcomere). Sarcomere is composed of a segment of myofibril between two adjacent Z
discs, and it is the contractile unit of myofibrils. Studies have found that various genetic
mutations in the cardiac sarcomere could lead to defects in sarcomere production and
further lead to ventricular dilatation and cardiac dysfunction [74]. The enrichment terms
of cardiomyocytes mainly include GO: 0048738 (cardiac muscle tissue development), GO:
0003779 (actin binding) and GO: 0008307 (structural constituent of muscle). Actin plays
an essential role in the assembly of cardiac myofibrils, and it is strongly associated with
muscle contraction. In the process of myofibrillogenesis, actin is assembled into highly
ordered mature state, and the abnormal expression of actin dynamic-related genes usually
leads to myofibril abnormalities and heart defects [75]. Meanwhile, the KEGG pathway
annotation showed that the features are related to muscle contraction and various cardiomy-
opathies (KEGG: hsa05410, hypertrophic cardiomyopathy; KEGG: hsa04260, cardiac muscle
contraction). The main cause of cardiomyopathy is muscle cell dysfunction caused by
genetic variation, especially the dysfunction of genes related to the cytoskeleton–sarcomere
connection [76,77]. This further illustrates the important role of these genes in cardiac
muscle cell function.

In this part, an extended description about the decisive features was discussed. These
terms have been shown to be associated with multiple cardiac cell types, further demonstrat-
ing the importance of our decisive features to the function of cardiac cell populations and
supporting the reliability and effectiveness of their usefulness in constructing classifiers.

4.4. Limitations of This Study

There are several limitations of this study: (1) The data we analyzed was from Human
Cell Atlas and it was not known how representative the Human Cell Atlas data is. When
more data from various heart locations becomes available, we need to test the model on
more data. (2) The tissue was only from adult human hearts. Can the model be applied
to children or infants? Do they have different cell types? We need to compare the adult
heart data with child and infant data. (3) The 10X Genomics data was sparse. If the cells
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were measured with smart-seq, will other low expressed biomarkers and rare cell types be
discovered? There may be more cell markers and cell types than the identified ones.

5. Conclusions

The feature selection method and machine learning algorithms were applied to build
a workflow to determine the essential gene features and specific gene expression rules for
classifying different heart cell types. The positive results received from this study indicated
that the developed classification models achieved an excellent classification performance.
The selected key genes and decision rules were demonstrated to be associated with cardiac
structure and function in recently published literature and enrichment analysis. In the
future, we will collect data from different heart locations, different age groups and different
sequencing platforms to get robust heart cell type annotation model. With the knowledge
of gene expression patterns at single cell resolution, we can decipher the cell composition
changes for diagnosis and target the dysfunctional cell without harming other cells for
precision treatment.
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