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Abstract

Achieving biologically interpretable neural-biomarkers and features from neuroimaging

datasets is a challenging task in an MRI-based dyslexia study. This challenge becomes

more pronounced when the needed MRI datasets are collected from multiple heteroge-

neous sources with inconsistent scanner settings. This study presents a method of improv-

ing the biological interpretation of dyslexia’s neural-biomarkers from MRI datasets sourced

from publicly available open databases. The proposed system utilized a modified histogram

normalization (MHN) method to improve dyslexia neural-biomarker interpretations by map-

ping the pixels’ intensities of low-quality input neuroimages to range between the low-inten-

sity region of interest (ROIlow) and high-intensity region of interest (ROIhigh) of the high-

quality image. This was achieved after initial image smoothing using the Gaussian filter

method with an isotropic kernel of size 4mm. The performance of the proposed smoothing

and normalization methods was evaluated based on three image post-processing experi-

ments: ROI segmentation, gray matter (GM) tissues volume estimations, and deep learning

(DL) classifications using Computational Anatomy Toolbox (CAT12) and pre-trained models

in a MATLAB working environment. The three experiments were preceded by some pre-pro-

cessing tasks such as image resizing, labelling, patching, and non-rigid registration. Our

results showed that the best smoothing was achieved at a scale value, σ = 1.25 with a 0.9%

increment in the peak-signal-to-noise ratio (PSNR). Results from the three image post-pro-

cessing experiments confirmed the efficacy of the proposed methods. Evidence emanating

from our analysis showed that using the proposed MHN and Gaussian smoothing methods

can improve comparability of image features and neural-biomarkers of dyslexia with a statis-

tically significantly high disc similarity coefficient (DSC) index, low mean square error

(MSE), and improved tissue volume estimations. After 10 repeated 10-fold cross-validation,

the highest accuracy achieved by DL models is 94.7% at a 95% confidence interval (CI)
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level. Finally, our finding confirmed that the proposed MHN method significantly outper-

formed the normalization method of the state-of-the-art histogram matching.

Introduction

Magnetic resonance imaging (MRI) has been commonly used as a very simple non-invasive

imaging technique to study and examine human brain anatomy in order to explain the neuro-

pathogenic causes of various learning disorders, including dyslexia [1–5]. With the increasing

generation of MRI data of various phonological and cognitive subsystems of human brains,

the chances of machine learning (ML) methods and, more recently, deep learning (DL) meth-

ods for dyslexia diagnosis, is promising. However, the achievement of state-of-the-art high

accuracy, sensitivity, and specificity for ML and DL methods for dyslexia prediction depends

largely on biological interpretability of the sub-anatomical structure of different brain tissue

features found in the input MRI dataset. Such features are otherwise referred to as neural-bio-

markers and constitute the neuroimaging dataset’s key region of interest (ROI). Lack of bio-

logical interpretability is consequent upon variations in the scanner-dependent acquisition

methods and protocols as well as differences in the timeframe between MRI data acquisition

for the same subject [6], hence the need for image smoothing and intensity normalization.

Although lacking intensity normalized MRI do not have any direct impact on clinical diag-

nosis of developmental dyslexia by medical doctors or radiologists, the situation can be com-

plicated by some image pre-processing and post-processing tasks that precede ML analysis.

These tasks include ROI segmentation, quantitative tissue analysis (estimation of tissue vol-

umes), image registration, and classification, which are highly dependent on intensity infor-

mation to achieve efficient performance [7–9]. In addition, the majority of ML-based

neuroimaging studies for dyslexia neural-biomarkers discrimination require the use of vast

amounts of multi-site MRI datasets to evaluate the anatomical variations and alterations in the

brains of the study participants. Such datasets are scanned using various scanner types with

inconsistent parameter settings at different geographical locations within and across subject

classes, as seen in the studies by Plonski et al. [10,11] and Jednorog et al. [12]. While the use of

a multi-site MRI dataset provides a way of examining a greater number of subjects to develop

a unique dyslexia diagnostic cohorts [11], the method is sometimes hindered by noise and

high-intensity variations with a significant negative impact on the results of ML classifiers

[13]. The existence of traditional MRI units, by implication, makes direct quantitative analysis

difficult. Specifically, MRI datasets are acquired in arbitrary units which are not comparable

between study visits within a single subject or between different subjects or groups [9]. For the

above reasons, the smoothing and intensity normalization algorithms are expected to improve

the distribution of pixels or voxels for each MRI dataset to match the consistency of the chosen

high-quality baseline scan, otherwise referred to as the reference image. This will help in

enhancing image homogeneity and comparability of essential tissues, more specifically the

grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) between different MRI

scans [14]. Therefore, the intensity normalization and smoothing aim to correct scanner-

dependent variations for accurate interpretation of the relevant tissues and neural-biomarkers

[8].

In this study, Gaussian smoothing and modified histogram normalization (MHN) methods

are proposed in order to achieve homogeneous image intensity for brain MRIs. The MRI data-

set generated under different field strengths and acquisition parameters scanners, was
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collected from two publicly accessible databases to analyze inherent dyslexia neural-biomark-

ers. It is however, hypothesized that proposed smoothing and normalization methods would

improve the image pre-processing tasks that enhance the performance of proposed DL models

for dyslexia neural-biomarkers discrimination. The proposed smoothing and normalization

method’s performance was evaluated based on three image analysis experiments: ROI segmen-

tation, GM volume estimation, and DL classification. The objective of our study is, therefore,

to demonstrate how MHN and Gaussian smoothing can improve the biological interpretations

and quantification of GM volumes in the ROIs, and thus, improve the classification accuracy

of dyslexia neural-biomarkers prediction. The contributions of this study are summarized

thus:

i. Design a novel mechanism for improving biological interpretations and homogeneity of

dyslexia neural-biomarkers inherent in multi-site MRI datasets.

ii. Efficient segmentation of GM brain tissue with a statistically high mean DSC index of

0.7756 and low MSE of about 8.1153.

iii. Statistically significantly high tissue volume estimations for segmented ROIs at p-

value<0.05 and;

iv. Improved DL classification accuracy of 94.7%, the sensitivity of 95.8%, the specificity of

94.9%, and F-Score of 95.4% at significantly low feature extraction time of 12.7 minutes.

Related works

Several previous studies have highlighted the significance of intensity normalization and

smoothing with some various proposed methods focusing on medical image processing. Previ-

ous studies such as Nyul and Udapa [15] have suggested a normalization method consisting of

two key stages: training and transformation. The standard image histogram scale parameters

are determined at the training stage while the candidate volume histograms are mapped to the

standard histogram scale at the transformation stage. This method was validated and improved

upon by Shah et al. [16] and Nyul et al. [6] in their various independent studies. Collewet et al.

[17] have investigated the impacts of normalization on different acquisition protocols in a tex-

ture classification study for old and young soft cheeses. Meier and Guttmann [14] suggested

an intra-scan and inter-scan normalization approach for serial MRI scans for direct quantita-

tive analysis. Gonzalez & Woods [18] proposed a histogram mapping method, while Koptenko

[19] has implemented a contrast stretch normalization method based on the maximum and

minimum grayscale values in the image. Christensen [20] proposed a histogram even-order

derivative analysis normalization method for brain MRI scans with a good WM peak distinc-

tion, regardless of the similarity between GM and WM peaks. Wang et al. [21] proposed a his-

togram matching method to correct variations due to the scanner’s sensitivity in the brain

MRI analysis. The method achieved a 5% variation reduction in WM intensity for all images of

the study participants.

In order to correct low-reliability landmark tissue representation that characterized Nyul’s

algorithm [15], Madabhushi and Udupa [22] implemented two-scale concepts proposed in

Madabhushi et al. [23]. This method improves tumor segmentation for multiple sclerosis (MS)

using an MRI dataset. Arguably, existing normalization methods suffer from limited biological

interpretability of the normalized space and are considerably slower due to the strong reliance

on non-rigid registration to suit the histogram. The results of post-processing tasks, such as

ROI segmentation and classification, are, therefore, of poor reliability and low accuracy.
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However, to enhance MRI intensity normalization, Sun et al. [8] proposed a simple histogram

normalization method. In this method, the intensity of a low-quality input image was made to

range between the minimum and the maximum intensity values of the high-quality image

through stretching and shifting its histogram to cover all the available grayscale levels. Further-

more, many methods of neuroimaging data smoothing exist. Among them are wavelet filter

[24], fourth-order partial differential equation [25], total-variation-norm denoising scheme

[26,27] and template-based filtering procedure [28]. Awate and Whitaker [29] proposed non-

parametric neighbourhood statistics for the MRI dataset smoothing based on the Rician noise

model. Basu et al. [30] proposed a Perona-Malik-like noise filter that assumes a known noise

level for the Rician noise model in combination with a local Rician data attachment term. Mar-

tin-Fernandez et al. [31] proposed the Wiener-filter technique, while Aja-Fernández et al. [26]

proposed a method of smoothing MRI dataset using the Rician noise estimator for linear mini-

mum mean square error (LMMSE). The Rician noise model assumes zero-mean uncorrelated

Gaussian noise with equal variance in the MRI dataset, hence the use of Gaussian smoothing

proposed in this study. Gaussian smoothing is computationally powerful in the sense that,

since it is a linear low-pass rotationally symmetric filter, it gives weight to higher significance

pixels near the edge with the ability to control the degree of smoothness.

Materials and methods

The mechanism for improving dyslexia neural-biomarker interpretations and DL classification

is presented in Fig 1. As shown in the figure, the entire mechanism comprises 8 distinct mod-

ules. The first module is multi-site/multi-parameters MRI data acquisitions followed by some

image pre-processing operations include labelling, uniform resizing, noise removal, otherwise

known as smoothing. The proposed Gaussian smoothing and MHN methods are contained in

module 2 and 3 respectively. Post-processing operations used to evaluate the smoothing and

normalization performance include ROI segmentation, GM volume estimation, as captured in

modules 6 and 7, and finally, DL classification shown in module 8. For DL classification exper-

iments, the entire images were split into 64×64 small, randomly overlapping patches using a

patching algorithm. They were resized accordingly to create an augmented dataset, which

addresses the effect of overfitting on the proposed pre-trained CNN models. The image nor-

malization and smoothing are essential operations because of the variations in the acquisition

protocols, electromagnetic field noise, scanner field strength, and different acquisition param-

eters. The detail about the proposed mechanism is described in the subsequent sub-sections.

All post-processing operations are linked with other pre-processing operations of module 5.

Module 1 and 2: MRI data acquisition and pre-processing

The MRI datasets used in the analysis were obtained from two publicly available databases. At

first, a total of 97 randomly selected brain MRI scans were collected from the pool of available

datasets on the OpenNeuro repository via https://openneuro.org. The datasets have been stored

according to the specifications of the Brain Imaging Data Structure version 1.3.0 [32] and were

collected from 91 schoolchildren between 8.7 and 15.5 years of age (mean age = 11.4, SD = 2.1,

39 females). All brain MRI scans were performed using a 1.5T General Electric Signal Excite

scanner at Evanston Hospital, IL, USA, from recruited participants in the greater Chicago

area. Participants were recruited through advertisements, community events/organizations,

and brochures. The datasets comprise two types of MRI scans obtained but different acquisi-

tion protocols: structural MRI (sMRI) and task-based functional MRI (fMRI). The following

acquisition parameters were used for the collection of all sMRI scans. These scans comprises:

T1-weighted spoiled gradient recalled echo (SPGR) images, repetition time (TR) = 33.333ms,
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echo time (TE) = 8ms, acquisition matrix (AM) = 256×256, bandwidth = 114.922Hz/Px, slice

thickness (ST) = 1.2mm, number of slices (NoS) = 124, voxel scale (vs) = 1mm isotropic, flip

angle (FA) = 30 deg. Blood oxygen level-dependent signal (BOLD) images were obtained for

all fMRI scans type. These scans comprise T2-weighted susceptibility single-shot echo-planar

imaging (EPI). Acquisition parameters are as follows: TR = 2000ms, TE = 25ms, AM = 64×64,

bandwidth = 7812.5Hz/Px, ST = 5mm, NoS = 24, vs = 3.75×3.75×5mm, FA = 90 deg. Gener-

ated slices were acquired in layers from bottom to top, in an odd-first arrangement manner.

According to the datasets’ authors, the datasets were originally collected to analyze neural and

lexical developmental processes underlying children’s auditory and visual modalities in

Fig 1. Dyslexia neural-biomarkers interpretability and classification mechanism. In the above mechanism, multi-sites

neuroimaging datasets are smooth using a Gaussian filter followed by normalization using a modified histogram method,

template registration, ROI segmentation, GM estimations, and DL classification. Other pre-processing steps are required

during DL training and classification.

https://doi.org/10.1371/journal.pone.0245579.g001
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rhyming, spelling, and semantic decision tasks. Therefore, the images of subjects showing

impaired visually, auditory, and phonology (reading/spelling) for the given tasks during task-

based scanning are categorized as dyslexic. The details about participant demographics, lexical

processing tasks, reading, cognitive tests, participants selection criteria, etc. can be found in

Lytle et al. [33].

Secondly, 25 randomly selected brain MRI samples were collected from the Connectivity-

based Brain Imaging Research Database (C-BIRD) of Beijing Normal University (BNU).

These images were used to validate the proposed smoothing and normalization methods and

also for training the proposed DL models. According to the information contained in the

above database, which was accessed via http://dx.doi.org/10.15387/fcp_indi.corr.bnu1, there

are two types of resting-state fMRI scans (i.e., T1-w and T2-w) and DTI datasets, all scanned at

different acquisition parameters. These datasets were obtained from 57 healthy young volun-

teers (aged 19–30 years) at two different time intervals. Every volunteer completed two sepa-

rate MRI scan sessions at an interval of approximately 6 weeks (40.94±4.51 days). All

participants were right-handed without a history of any neurological or mental illness. The

acquisitions which have been approved by the State Key Laboratory of Cognitive Neuroscience

and Learning at BNU Institutional Review Board, have their parameters summarized thus:

fMRI scans were obtained using a 3T Siemens Avanto TrioTim Scanner with a 12-channel

head coil for 3D MPRAGE [34] whole-brain scans (144 saggital slices for anatomical, 33 axial

slices for resting-state). The AM = 256×192, TR = 2530ms, TE = 3.39ms, FA = 7 deg,

FOV = 256mm, and acquisition time (AT) = 8.07ms. Acquisition parameters for the second

type of resting-state fMRI scans include AM = 64×64, TR = 2000ms, TE = 30ms, FA = 90 deg,

FOV = 200mm, and AT = 6.46ms. DTI scans were obtained using the same scanner for 62

slices with AM = 128×128, TR = 8000ms, TE = 89ms, FOV = 282mm, and AT = 8.07ms. None

of the participants was diagnosed with impaired vision and hearing or any other serious neu-

rological disorders, such as ADHD and Alzheimer’s disease.

All datasets were first accessed using ITK-SNAP software package [35] and were saved as

MetaImage file formats with (.raw) extension. They were, after that, read in the MATLAB pro-

gram and saved as jpeg formats. Smoothing of all images was achieved using a Gaussian isotro-

pic kernel of size 4mm (Gaussian filter) at a scale value, σ ranges between [0.5, 3.0], as shown

in module 2 of Fig 1. The third module is the implementation of the proposed MHN method.

Implementation of the above modules improves image quality by removing unnecessary

details such as noise, variations, and impractical detail from textual image output, thus,

enhancing the readability of neural-biomarkers of anatomical information contained in the

dataset [36]. After initial resizing, the best smoothing performance was achieved at a scale

value, σ = 1.25 at execution time, t = 0.563 seconds on a sample of neuroimage data before

applying the same space value to smooth other neuroimaging datasets used. The peak signal-

to-noise ratio (PSNR) between the reference image and the Gaussian smooth image was 18.21

after denoising. There is a 0.9% improvement in the denoised image compared to the PSNR

value obtained prior to smoothing. Fig 2 shows the visual comparison of a sample of neuro-

image at different σ values, while Fig 3 graphically illustrate the behaviour of the Gaussian filter

at these values relative to their execution times. It can be deduced from Fig 3 that all smoothing

tasks were completed in less than 1 seconds regardless of the value σ.

Module 3: Proposed modified histogram normalization (MHN) method

By definition, normalization algorithms transform each neuroimage scan’s distributions to the

chosen standard image quality baseline to achieve homogeneity and promote the comparabil-

ity of images between different MRI scans [7,8,14]. In an attempt to select the most effective
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normalization method for brain lesions dataset acquired through intra-scan and inter-scan

MRI machines, Loizou et al. [7] compared six different normalization algorithms. They found

that histogram normalization (HN) allows accurate computation of texture features that dis-

tinguish between normal and lesion tissues. Furthermore, Sun et al. [8] found that the HN nor-

malized intra-scan MRI dataset improves image registration accuracy, tissue-types

segmentation, tissue quantification, and brain template construction. Consequent upon the

above justifications, we modified the existing HN method to suit patterns and features present

in the study neuroimaging datasets.

In the proposed MHN method, two steps are involved, namely: intensity scaling and nor-

malization. Assuming that the minimum and maximum intensity levels on the standard scale

are denoted by qmin and qmax, firstly, during intensity scaling, the low-intensity region of inter-

est (ROIlow) and the high-intensity region of interest (ROIhigh) in the original (reference high-

quality) image are identified from its histogram after smoothing. The intensities of the image

are mapped to the values between ROIhigh and ROIlow using a function g(x,y) shown in Eq (1):

g x; yð Þ ¼
f ðx; yÞ � ROIlow

ROIhigh � ROIlow
ð1Þ

where f(x,y) is a grayscale value of the original image at coordinate x and y and g(x,y) is the

Fig 2. Visual comparison of a neuroimage sample at a different value of σ. In (a), (b), and (c), the left side is a noisy image; the right side is a Gaussian

smooth image. (a) GM area which constitutes the main ROI of the study is distinguishable from WM and background areas after smoothing; for (b) GM is

fairly distinguishable after smoothing; (c) GM area becomes blur when σ>3; (d) shows the symmetrical property of the filter at σ = 1.25.

https://doi.org/10.1371/journal.pone.0245579.g002
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corresponding transformed greyscale value. Secondly, during the normalization, the original

image is stretched and shifted to cover all the grayscale levels in the image using a function h(x,

y) shown in Eq (2):

h x; yð Þ ¼
ROIhigh � ROIlow

qmax � qmin
gðx; yÞ � qminð Þ þ ROIlow ð2Þ

If the target histogram of the original image, function g(x,y) starts at qmin and spreads up to

qmax grayscale levels in the intensity region of interest (ROI), then the image can be scaled up

between the lower boundary m1’ and the upper boundary m2’ so that the pixels in the normal-

ized image h(x,y) lie between the minimum intensity level (ROIlow) and the maximum inten-

sity level (ROIhigh). The variables m1 and m2 represent the lower boundary and the upper

boundary of the original image before scaling.

The above image normalization can be accomplished by creating two distinct linear map-

pings. The first mapping is [P1,μi] to [S1,μs] and the second mapping is [μi,P2] to [μs,S2] as

shown in the mapping function curve displayed in Fig 4. Subsequently, the lower and upper

ends of the standard scale are applied to S01 and S02, respectively, by mapping [m1,P1] to [S01,S1]

and [S’2,m2] to [S2,S02]. This mapping is called the normalization of the input image from the

intensities [S01,S02] to [m1,m2] of the standard scale. The normalization function is defined in

Eq (3) as N(x,y). Note that, for simplicity purpose, S1 = ROIlow, and S2 = ROIhigh, respectively,

in Fig 4.

N x; yð Þ ¼

ms þ g x; yð Þ � mið Þ
S1 � ms

P1 � mi

mþ g x; yð Þ � mð Þ
S2 � ms

P2 � mi

2

6
6
6
6
6
6

3

7
7
7
7
7
7

; m0
1
� g x; yð Þ � mi � m0

2
ð3Þ

where d∎e denote the ’ceiling’ operator, μi and μs are the mean values for the input image

Fig 3. Time-behaviour of Gaussian filter at a different scale, σ values on a neuroimage data sample. This shows

that all smoothing process requires less than 1 second to complete regardless of the value of σ. Sigma (SD) axis

represents σ values.

https://doi.org/10.1371/journal.pone.0245579.g003
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histogram and original histogram, respectively. P1 and P2 are pixel values from the input

image. In this study, three important intensity values were considered contrary to the

approach suggested by Nyul et al. [6]. The purpose is to avoid unreliable dependent on

landmarks in the histogram for normalizing used neuroimaging dataset. These intensity

values include minimum, maximum, and mean value, indicating that the proposed nor-

malization method is different from the popular histogram matching normalization (HMN)

method.

In this study, it was found that the proportions of intensity levels for the same type of tissue

for the neuroimages of subjects within the same group from the same scanners were similar

despite variations in field strengths and acquisition parameters. Prior to normalization, visu-

ally examination of histograms and cumulative frequency curves (CFC) from randomly

selected neuroimages across the two subject groups (dyslexics and controls) and across differ-

ent scanner types was performed. As shown in Fig 5, there are wide variations in the grayscale

intensity levels of all the selected images. The high-quality (reference) image for each group

was then used to normalize the low-quality images (input images) between the ROIlow-ROIhigh

ranges of its intensity. The procedure is repeated across groups to have uniform intensity nor-

malization for all images. The proposed smoothing and normalization algorithms’ perfor-

mance was evaluated to analyze improvements to the accuracy and reliability of three post-

processing neuroimaging datasets analysis. In each scenario, results from MHN normalized

dataset were then compared against the most popular HMN method. These post-processing

tasks include tissue segmentation, ROI gray matter volume estimation, and DL classifications,

described in the subsequent sections. From the histograms and CFCs of Fig 5, it can be

deduced that image pixels are not evenly distributed across the entire greyscale levels in most

of the samples shown prior to histogram normalization.

Fig 4. Mapping function curve for MHN. The first mapping is from [P1, μi] to [S1, μs] and the second mapping is from

[μi, P2] to [μs, S2]. The lower and the upper boundaries of the standard scale are m1’ and m2’, respectively.

https://doi.org/10.1371/journal.pone.0245579.g004
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Module 4, 5 and 6: ROI segmentation

Image segmentation is a critical step in many applications involving image analysis, video pro-

cessing, and computer vision in general. It is also used to divide the image into separate

regions that ideally correspond to specific objects in the real world, especially in medical image

processing [37,38]. Segmenting neuroimages into different tissue types, specifically GM, WM,

and CSF, is a vital post-processing activity and significantly affects the efficiency of other post-

processing operations, such as tissue volume estimation, feature extraction, and neural-bio-

markers detection. In this study, segmentation of neuroimaging dataset into three main brain

tissues was accomplished using Markov random field segmentation algorithm [39] imple-

mented on computational anatomy toolbox version 12 (CAT12). This software package is an

extension of statistical parametric mapping (SPM12) and implementable in a MATLAB envi-

ronment. At first, a non-rigid image registration into Montreal Neurological Institute

(MNI152) brain template [40] was performed on the reference image, and all the MHN nor-

malized images using FSL FNIRT software tool [41]. After that, cognitive/phonological fea-

tures relating to GM, WM, and CSF tissues were retrieved with a focus on only three brain

regions. These regions are otherwise referred to as ROIs of the study respectively. They include

the left superior temporal gyrus (LSTG), left occipital temporal gyrus (LOTG), and lateral cere-

bellum (LC). Comparative evaluation of the segmentation results is conducted by measuring a

spatial overlapping index between the images using the dice similarity coefficients (DSC)

defined in Eq (4) as:

DSC X;Yð Þ ¼
2jX \ Yj
jXj þ jYj

ð4Þ

where X and Y represent cardinalities of binary labels for two compared segmented images.

The DSC index’s value varies from 0 to 1, where 0 indicates no spatial overlap, and 1 indicates

total overlap. The mean square error (MSE) value between the MNI152 registered image ver-

sion and the MHN normalized image was also computed and the results compared against

HMN method using Eq (5):

MSE ¼
1

n
Pn

i¼1
ð bXi � XiÞ

2
ð5Þ

where X̂i is the pixel intensity of the non-rigid registered image, and Xi is the equivalent inten-

sity of the input image.

Module 7: Gray matter volume estimation

After the segmentation process, the gray matter density in the three-segmented ROIs brain

regions was utilized to estimate the textual feature volumes. The purpose of this task is to

determine the extent to which the proposed MHN and smoothing methods have improved the

biological interpretability of the texture feature contained in the MRI dataset used. To accom-

plish this task, FreeSurfer software tool downloaded at http://surfer.nmr.mgh.harvard.edu/

was used to count the GM volumes in the three brain regions, i.e., LSTG, LOTG, and LC for all

the subjects before and after normalization. Volume difference between groups and across the

same subject class for both dyslexics and controls were then compared. This procedure was

Fig 5. Visual inspection of image histograms and CFCs for four randomly selected neuroimages before MHN. (a) the first column shows image samples from

both controls and dyslexic group, (b) the second column shows their transformed histograms, while (c) the third column shows their CFCs. The first two rows are

samples drawn from the control group, while the last two rows are samples drawn from the dyslexic group.

https://doi.org/10.1371/journal.pone.0245579.g005
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validated by manual measurement conducted by an experienced radiologist and fMRI expert

at UKM Teaching Hospital, Malaysia. According to studies by Plonski et al. [10,11], FreeSurfer

morphometric measurements exhibits good test reliability outputs across different scanner

manufacturers and across multiple field strengths. The GM volumes before and after normali-

zation between the input and referenced images for the same subject class are finally compared

with an additional comparison with the HMN method.

Module 8: Deep learning models, training and classification procedure

This section presents the details of how the proposed pre-trained CNN models were used to

discriminate dyslexia neural-biomarkers from normal (control) brain features using normal-

ized and smoothen neuroimaging datasets. Each neuroimage data was randomly patched to

generate more features, which helps to deal with the overfitting problem. In order to extract

the deep features from the patched images, three state-of-the-art depth-based pre-trained net-

works were implemented. Their training process follows a transfer learning paradigm with

parameter fine-tuning from the top n-block layers. In our case, the proposed models have

been adapted by carefully updating weights using our task-specific training data patches. The

value of n = 4,3,5, respectively, for each of the three selected models. As shown in module 8 of

Fig 1, these models include Inception-V3, two-ways cascaded CNN, and ResNet-50. The

choice of these models was based on the premise that CNN models with increased depth can

better approximate the target function to the number of non-linear mappings, resulting in bet-

ter feature representations as demonstrated by the previous studies [42–44].

Implementation of Inception-V3 model. In the first stage of deep models’ implementa-

tions, pre-trained Inception-V3 CNN model’s architecture was modified. The modified model

maintains a depth of 42 layers with 11 Inception modules of five different kinds (A-E), as

shown in Fig 6. The general goal of training the network is to reduce the computational costs

of deeper networks without decreasing its generalization power. This was done by replacing

large filters sizes, e.g., 5×5 and 7×7 feature maps with smaller asymmetric filters (1×7 and 1×5)

and also, by using 1×1 convolution as a barrier before large filters [45]. Each module consists

of a convolution layer, a rectified linear activation unit (ReLU) layer, a pooling layer, and a

batch normalization layer. In the proposed model, these modules are concatenated to realize

maximum extraction of the input data features. Fig 6(A)–6(E) demonstrate how factorization

of 5×5, 7×7 convolutions into smaller convolutions 3×3, or asymmetric convolutions 1×7 and

7×1, is conducted during the experiment. This reduces the number of deep network parame-

ters [46]. Compared against the new classification layers added, the original classification lay-

ers replaced include the global average pooling layer and the last dense layer with 1000

outputs. In this case, the new network architecture was able to adapt to neuroimaging datasets

for the study.

Implementation of Cascaded CNN model. During the second stage of deep models’

implementations, cascaded CNN architecture was used. Cascaded deep CNN is one of the

most recent depth-based CNN architectures that consists of several concatenated CNN mod-

els, each predicting a specific aspect of the input image features. The two-pathway cascaded

feed-forward CNN model implemented in this study is similar to the one earlier implemented

by [47] in both architecture and feature representation manners. As shown in Fig 7, the archi-

tecture has two CNN model pathways. The input image goes through two separate pathways

of convolution operations. The two pathways were trained concurrently to extract high-level

features. The first pathway consists of smaller 7×7 stacked receptive fields, while the second

path consists of larger 15×15 stacked receptive fields. The first CNN output line was linked

directly to the first hidden layer of the second CNN model, and its outputs were concatenated
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Fig 6. Inception-V3 architecture. Blocks in dotted lines represent modules that can be removed in this experiment. (a) is the Inception-V3 model, (b)-(f) are

architectures of Inception modules A-E.

https://doi.org/10.1371/journal.pone.0245579.g006
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with softmax activation after each convolution layer. Fully-connected layers were utilized for

training and classification, while a dropout layer was included to deal with the risk of

overfitting.

Implementation of ResNet50 model. In the third and final stage of deep models’ imple-

mentations, pre-trained ResNet50 CNN model was used. The proposed model comprises 152

layers, 34 of which are plain, and 34 layers are residual. As shown in Fig 8, there are four stacks

of ResNet blocks (enclosed in red broken boxes) in the proposed architecture. Each ResNet

block comprises stacked layers of convolution block and repeated identity blocks which repre-

sent two kinds of shortcut modules. The identity block does not have a convolutional layer at

the shortcut, as shown in Fig 8(B). This makes its input to preserve uniform dimensions as its

output. In the case of a convolution block, its input dimensions are smaller than its output

dimensions due to the convolutional layer’s availability at a shortcut (Fig 8(C)). In both

blocks, 1×1 convolution is implemented at the beginning, and the end of the network through

a technique called a bottleneck design [46]. This technique decreases the number of parame-

ters without degrading the performance of the network. In this experiment, some of the

deep shortcut modules were replaced with a new set of classification layers specific to study

dataset.

Training and classification procedure. The training of DL models requires a large vol-

ume of data. Compared to natural images, such as ImageNet, which run into several million,

our sample size was relatively small. Image patching approach was adopted to reduce input

dimensionality, with a transfer learning to obtain effectively trained DL models. The hyper-

parameters were then fine-tuned based on the patched images. Small patches are usually more

homogeneous than the entire image and can be predicted more precisely [48]. Each image is

divided into a series of 50 small randomly overlapping 64×64-pixel patches using some pro-

gram codes written in MATLAB. Each patch was, thereafter, resized to a 117×117 pixels

dimension for training both Inception-V3 and cascaded CNN models and later, to a 224×224

pixels dimension for training the ResNet50 model. Other hyper-parameters of each of the pro-

posed deep models, as adjusted, are summarized in Table 1.

Fig 7. A diagrammatical representation of two-pathways cascaded CNN model.

https://doi.org/10.1371/journal.pone.0245579.g007
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The proposed algorithm for neuroimaging datasets patching is summarized in Fig 9. There

was a total of 390,400 image patches after the patching process, including 124,800 patches hav-

ing dyslexia neural-biomarkers and features, while 265,600 patches have the control (non-dys-

lexic) features. The evaluation of proposed DL models was based on 10-fold cross-validation

Fig 8. ResNet50 model. ResNet blocks are enclosed in red broken boxes. (a) is the architecture of ResNet50; (b) is the architecture of identity block; (c) is the structure

of the convolution block.

https://doi.org/10.1371/journal.pone.0245579.g008

Table 1. Parameters settings for DL models utilized in the study. Conv, convolutional layer; fc, fully connected layer; SGD, stochastic gradient descent.

Parameters Inception-V3 Cascaded model ResNet50

Input image size 117×117×3 117×117×3 224×224×3

Input kernel size - - -

Number of layers 42 40 152

First conv layer feature maps 55×55×4 53×53×4 55×55×4

First conv layer kernel size 5 3 5

First conv layer stride 3×3 3×3 3×3

Next few conv layer feature maps 24×24×28 21×21×24 27×27×64

No. fully connected layer (fc) fc800 fc800 fc800

No. of parameters in million 23.2 22.8 25.6

Batch size 10,000 patches 10,000 patches 10,000 patches

Learning rate 0.001 0.001 0.001

Optimizer SGD SGD SGD

https://doi.org/10.1371/journal.pone.0245579.t001
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(CV) with 70% (273,280 patches) reserved for training and 15% (58,560 patches) each reserved

for validation and testing, respectively. In other words, the train-test-validation split ratio of

the total image patches is 14:3:3. Binary digit 1 was used to label patches with dyslexia neural-

biomarkers, and 0 was used to label features of control patches. The performance of the pro-

posed DL models for dyslexia neural-biomarkers classification were obtained using perfor-

mance evaluation metrics including accuracy, sensitivity, specificity, and F-score, defined in

Eqs (6)–(9):

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
ð6Þ

Sensitivity ¼
TP

TP þ FN
ð7Þ

Specificity ¼
TN

TN þ FP
ð8Þ

F � score ¼
2� precision� recall

precisionþ recall
ð9Þ

Fig 9. Summary of neuroimaging datasets patching algorithm.

https://doi.org/10.1371/journal.pone.0245579.g009
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Fig 10 schematically illustrates the procedure for training the proposed DL models. The

training and testing of DL models were accomplished at various training iterations with 100

set as minimum training epoch and 550 set as maximum training epoch. The iterations were

incremented at an interval of 50 epoch. In-line with Zhao et al. [49], the ’poly’ learning rate pol-

icy has been used to dynamically update the learning rate for all model convergences where

the learning rate was 0.001. The training rate was initialized to 0.1 and steadily decreased by a

factor of 10, while the decay value was retained at 0.0005, a momentum of 0.9, and a batch size

of 10,000 patches. Stochastic gradient descent (SGD) with momentum algorithm was

employed to minimize the negative log-probability for each predicted class. Confidence Inter-

val (CI) levels for prediction accuracy for all three models were estimated to be 95%.

Experimental setup and results

All experiments were performed on a GPU-based system with a 2.70GHz and 8.00GB RAM,

and 4 Core (s) Intel (R) processor due to high-speed requirements. The version of the GPU

processor on the system used for the experiment is NVIDIA GeForce GTX680. This processor

helps to accelerate speedy implementations of DL models. According to [50,51], GPU proces-

sors are powerful compared to their CPU-based counterparts in processing speed and memory

usage. This is due to their enlarged arithmetic computational capabilities. The performance of

the proposed models was evaluated at different levels of training iteration. Table 2 presents the

computed mean DSC index of tissue segmentation for all the 97 subjects with and without dys-

lexia. From this table, it can be observed that the proposed MHN and Gaussian smoothing

methods produced statistically significantly high DSC index values for LSTG and LOTG brain

regions that were segmented compared to the popular HMN method, whereas the mean DSC

Fig 10. Schematic illustration of training and classification procedure for DL models.

https://doi.org/10.1371/journal.pone.0245579.g010
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index value for LC is comparable for both normalization methods. The degradation in the

state-of-the-art HMN method’s performance was because it is highly dependent on several

numbers of histogram bins. Visual inspection probability density function (pdf) curves of Fig

11 also shows that the proposed normalization method demonstrates significant improvement

over the HMN method, thus improving the biological interpretability of tissue neural-bio-

markers and features present in the used neuroimaging dataset. Smoothing of data also signifi-

cantly enhances the mean DSC index values for all the three cognitive and phonological brain

regions analyzed.

As shown in Table 3, the MSE value generated after implementing the proposed smoothing

and MHN methods is the lowest compared to the remaining three sets: reference image, the

input image, and HMN normalized image. This is observed within and across the two subject

groups, i.e., for the dyslexic and control groups. This corroborates Sun et al.’s [8] assertion that

the HN method can contribute to many clinical applications through efficient template regis-

tration accuracy.

In Table 4, the mean volumes of GM density in the LSTG, LOTG, and LC for normalized

input image using the proposed MHN method are closer to the reference image than the result

Table 2. Mean DSC for segmentation of all 97 subjects (dyslexic and control) before and after smoothing and normalization using GM tissue overlaps (mean ± SD).

Segmentation DSC index LSTG LOTG LC Mean

DSC (Input Image) 0.8124±0.0221 0.7315±0.0436 0.6219±0.0362 0.7321

DSC (normalized image with HMN method [16]) 0.8249±0.0197 0.7367±0.0502 0.6424±0.0412 0.7532

DSC (normalized image with proposed MHN method) 0.8561±0.0183� 0.7511±0.0497� 0.6548±0.0338 0.7756�

�Statistically significantly larger than the other two (p-value<0.05); SD-standard deviation; LSTG-left superior temporal gyrus; LOTG-left occipital temporal gyrus; LC-

lateral cerebellum; HMN-histogram matching normalization; MHN-modified histogram normalization.

https://doi.org/10.1371/journal.pone.0245579.t002

Fig 11. Visualizing the pdf curves of the reference image, input image, and normalized images. HMN-histogram

matching normalization; MHN-modified histogram normalization. MHN shows better performance for the input image.

https://doi.org/10.1371/journal.pone.0245579.g011
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produced by the popular HMN method. Results obtained for GM tissue volumes for the three

ROI studied is significantly larger (p-value<0.05) after the proposed MHN method than its

equivalent HMN method and the input image.

The results from the three DL models for dyslexia neural-biomarker discrimination are pre-

sented in Table 5 and boxplot of Fig 12. After 10 repeated 10-fold CV for each of the proposed

models at a 95% CI level, these results are obtained. All the three models performed signifi-

cantly high when the datasets have been normalized and smoothen using the proposed meth-

ods. Meanwhile, the best performance was observed for ResNet50, which completed feature

extraction in a significantly lesser time of 12.65 minutes compared to other models. Although,

the three models’ performance is good without smoothing and pre-processing normalization

tasks, the models require a longer time to learn high-level abstract patterns of the neural-bio-

markers found in the datasets. This is due to the poor comparability and interpretability of

important tissue features.

Table 6 and Fig 13 further illustrate the test accuracy performance behaviours for the pro-

posed DL models. These results were obtained without and then, with implementation of the

proposed Gaussian smoothing and MHN methods and confirmed that the performance of the

three proposed DL models are significantly improved. The purpose of the test accuracy perfor-

mance experimental is to validate the earlier results presented in Table 5.

Discussion

Findings from the study have shown that intensity normalization and smoothing play a very

important role in improving the neuroimaging dataset analysis results for dyslexia neural-bio-

markers classification. Such neuroimaging data analysis includes ROIs segmentation, brain tis-

sue density volume estimations, and DL classifications. This is largely due to an improvement

in the biological interpretability of neural-biomarkers and features embedded in the neuroim-

aging datasets.

Table 3. Summary of MSE within and across the subject groups for dyslexic and control (mean ± SD).

Neuroimage type Dyslexic Control All subject

Reference image 8.1690±0.4186� 8.0702±0.4847� 8.1099±0.4618�

Input image 9.8087±0.4932 10.0228±0.5842 9.9367±0.5593

Normalized with HMN method [16] 8.4431±0.5289 8.4857±0.5564 8.4686±0.5459

Normalized with proposed MHN method 8.1805±0.4178� 8.0714±0.4828� 8.1153±0.4609�

�Statistically significantly lower than the other two; HMN-histogram matching normalization; MHN-modified histogram normalization.

https://doi.org/10.1371/journal.pone.0245579.t003

Table 4. Mean segmented brain region volume for all 97 subjects (dyslexic and controls) before and after normali-

zation (mean ± SD).

Gray matter volume in selected brain regions LSTG LOTG LC

Volume (reference image) 583.7±61� 411.3±61� 1098.8±133�

Volume (input image) 509.6±63 472.7±28 1082.4±134

Volume (normalized image with HMN method [16]) 542.9±65 421.6±28 1077.3±130

Volume (normalized image with proposed MHN method) 581.9±62� 409.1±62� 1093.6±135�

�Statistically significantly larger than the other two (p-value<0.05); SD-standard deviation; LSTG-left superior

temporal gyrus; LOTG-left occipital temporal gyrus; LC-lateral cerebellum; HMN-histogram matching

normalization; MHN-modified histogram normalization.

https://doi.org/10.1371/journal.pone.0245579.t004
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As shown in Fig 2, the best smoothing output was obtained by Gaussian filter when the

value of σ = 1.25 at a very reasonable execution time prior to using the same value to smooth

entire datasets. The proposed MHN method, combined with the Gaussian smoothing method,

can outperform other existing normalization methods for the MRI dataset. This has been dem-

onstrated by comparing the post-processing tasks’ outputs generated by the proposed smooth-

ing and MHN methods with the most popular HMN method.

As presented in Table 2, the proposed MHN and smoothing methods produced statistically

significantly high mean DSC index values for the segmented LSTG and LOTG brain regions

compared to the HMN method although, the mean DSC index value for LC is comparable for

both methods. The implication of the above is that tissue comparability has been significantly

improved, resulting in a good biological interpretation of the selected brain regions. Evidence

supporting the above findings is shown in Fig 11, where the pdf curve shape of the proposed

normalization method is very similar to the reference image used.

The MSE values computed and shown in Table 3 confirmed that the proposed MHN and

smoothing methods give the lowest error rates for the input images compared to the popular

HMN method. This was observed within and across the two subject groups for the study and

corroborates Sun et al.’s [8] claim that the HN method can contribute to many clinical applica-

tions, including template registration accuracy.

Table 5. Performance evaluation of DL models for dyslexia neural-biomarker classification without/with smoothen and normalized dataset (mean ± SD after 10

repeated 10-fold CV).

DL Model Iteration (Epoch) Accuracy (%) Sensitivity (%) Specificity (%) F-Score (%) Feature extraction time (mins)

Inception-V3 Without smoothing and MHN 402 86.23±1.99 88.91±3.78 85.68±3.20 87.27±3.47 41.66

With smoothing and MHN 380 89.08±1.22 90.22±2.61 92.86±2.14 91.52±2.35 33.45�

Cascaded CNN Without smoothing and MHN 498 80.91±2.31 91.74±1.88 93.11±3.04 92.42±2.23 44.02

With smoothing and MHN 550 91.21±0.89 93.11±2.64 92.95±2.46 93.03±2.55 31.78�

ResNet50 Without smoothing and MHN 369 93.33±1.02 95.11±2.87 91.42±0.83 93.23±1.29 23.67

With smoothing and MHN 450 94.67±0.69� 95.79±2.18� 94.91±2.16� 95.35±2.17� 12.65�

�Statistically significantly larger than the other two (p-value<0.05); 95% CI level. MHN-modified histogram normalization; CNN-convolutional neural network.

https://doi.org/10.1371/journal.pone.0245579.t005

Fig 12. Boxplot showing classification accuracy for the three DL models at a 95% CI level.

https://doi.org/10.1371/journal.pone.0245579.g012
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As illustrated in Table 4, the mean volume estimate for GM tissue density in the LSTG,

LOTG, and LC for input image has been improved significantly with the application of the

proposed methods. The results obtained for GM volume estimations using the proposed

MHN method are closer to the reference image than the result produced by the popular HMN

method. The result obtained for GM tissue volume for the three ROI brain areas studied is sig-

nificantly larger (p-value<0.05) after applying the MHN method than its equivalent HMN

method for the input image.

Finally, the results presented in Tables 5 and 6 as well as Figs 12 and 13 confirmed the effi-

ciencies of the biological interpretability of features and neural-biomarkers in the neuroimag-

ing datasets used for the study. This can be observed in the high accuracy, sensitivity,

specificity, and F-score value returned by the proposed pre-trained DL models. Specifically,

the Inception-V3 network generated 89.1% accuracy at 380 epochs at feature extraction time

Table 6. 10-fold cross-validation experimental performance for test accuracy (%).

Cross-validation k-fold Inception-V3 Cascaded CNN ResNet50

Without With Without With Without With

1-fold 88.2 90.3 82.1 90.7 93.2 97.9

2-fold 79.5 89.1 77.4 89.4 93.8 94.1

3-fold 87.6 88.0 72.8 89.8 86.9 90.8

4-fold 80.8 88.1 89.7 90.6 88.9 91.6

5-fold 86.8 90.1 88.3 91.3 95.4 96.6

6-fold 89.3 88.9 74.9 92.5 96.5 97.4

7-fold 87.2 88.9 70.6 89.1 91.9 95.7

8-fold 89.8 89.0 83.3 90.2 90.7 89.4

9-fold 88.3 87.7 81.4 94.1 96.5 98.1

10-fold 85.7 91.0 88.6 93.2 95.5 95.7

Mean±SD 86.32±3.47 89.11±1.07� 80.91±6.82 91.09±1.67� 92.93±3.29 94.73±3.13�

� Significantly larger than other (p-value<0.05); 95% CI level; SD-standard deviation; Without-without smoothing & MHN; With-with smoothing & MHN; CNN-

convolutional neural network.

https://doi.org/10.1371/journal.pone.0245579.t006

Fig 13. 10-fold cross-validation experimental performance for test accuracy.

https://doi.org/10.1371/journal.pone.0245579.g013
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of 33.5 minutes as its best accuracy from the normalized and smoothened datasets. Cascaded

CNN produced 91.2% accuracy as its best accuracy at 550 epochs at 31.8 minutes feature

extraction time while ResNet50 gives 94.7% accuracy as its best accuracy at 450 epoch and sig-

nificantly reduced feature extraction time down to 12.7 minutes. The evaluation metrics

employed were obtained after 10 repeated 10-fold CV at a 95% CI level. It can be observed that

performance of the three models shows significant improvements with normalized and

smoothen neuroimaging datasets. The best performance was observed for ResNet50 compared

to other two proposed deep models. When compared against its equivalent state-of-the-art 3D

CNN model by Zahia et al. [1], proposed models showed considerable improvement in terms

of accuracy, sensitivity, specificity, and F-score (Fig 14). Although, proposed pre-trained DL

models showed considerably high performance above the state-of-the-art baseline without

prior implementation of the proposed Gaussian smoothing and MHN methods, but with fur-

ther improvement after the implementation of these pre-process operations. The is because,

Gaussian smoothing suppresses the interference of Rician noise and other irrelevant informa-

tion that characterized the used neuroimaging dataset by reducing the discontinuity at the

edges and texture of the relevant tissues while MHN method improves the pixel comparability

of these tissues.

In summary, developmental dyslexia neural-biomarkers are traceable to tissue densities

alterations and activations of both GM and WM in the heterogeneous brain areas with

Fig 14. Performance comparison with state-of-the-art DL model for fMRI-based dyslexia study.

https://doi.org/10.1371/journal.pone.0245579.g014
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profound effects on a child’s phonological and cognitive behaviours as well as orthographic

reading tasks [1,52]. These brain areas, as obtained from MRI-based dyslexia studies, include

left and right occipital fusiform gyri, left inferior parietal lobule, left and right supramarginal

gyri, cerebellum, precentral gyri, superior and middle temporal gyri, corpus callosum, inferior

and superior fasciculus, to mention but a few [10,12,53,54]. The activation patterns of these

areas can also be deployed for learning disabilities analysis [55,56].

Conclusion

Dyslexia is a neuro-developmental cognitive and language disorder with heterogeneous causes

and behavioral symptoms. In addition to the MRI dataset used in this study, additional data

sources include standardized tests, EEG scans and eye movement tracking [57,58]. The

achievement of high classification output using these datasets depends to a large extent on the

biological interpretability and comparability of the neural-biomarker features inherent in

them.

In this study, we propose a method for improving the comparability and biological

interpretability of neuroimage datasets to study dyslexia neural-biomarkers based on proposed

MHN and Gaussian smoothing methods. This, we demonstrated by applying three post-pro-

cessing tasks to already pre-processed MRI datasets using the proposed methods. In this study,

a Gaussian filter with an isotropic kernel of size 4mm was employed to smooth the study neu-

roimaging dataset by removing the noise signals in them prior to intensity normalization.

Meanwhile, the proposed MHN method was employed to correct intensity variations between

high-quality image and low-quality images. This was achieved by stretching and shifting the

histograms of low-quality input images to cover all the available grayscale levels within the

range of ROIlow and ROIhigh of the referenced high-quality image.

Evidence emanated from all results presented show that these two pre-processing tasks

become expedient when a study involves the collection of large volumes of different MRI data-

sets types from multi-sites and multi-parameters scanning centres. This dataset often exhibits

large quality variations owing to inconsistent scanner parameter settings. This kind of dataset

can limit the reliability of results of post-processing operations such as ROI segmentation, tis-

sue volume estimations, and DL classification, if not appropriately pre-processed before deep

feature extraction and classification as the case may require. Meanwhile, the proposed Gauss-

ian smoothing and MHN as well as proposed DL models have been successfully tested on neu-

roimaging datasets obtained from subjects with age group ranging from 8.7–30 years. It is,

therefore, sufficient to state equivocally that age is not a barrier on the performance of the pro-

posed methods.
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15. Nyúl LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med. 1999; 42

(6):1072–81. https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m

PMID: 10571928

16. Shah M, Xiao Y, Subbanna N, Francis S, Arnold DL, Collins DL, et al. Evaluating intensity normalization

on MRIs of human brain with multiple sclerosis. Med Image Anal [Internet]. 2011; 15(2):267–82. Avail-

able from: https://doi.org/10.1016/j.media.2010.12.003 PMID: 21233004

17. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normali-

zation methods on texture classification. Magn Reson Imaging. 2004; 22(1):81–91. https://doi.org/10.

1016/j.mri.2003.09.001 PMID: 14972397

18. Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. Pearson Educational International Pren-

tice Hall; 2002.

19. Koptenko S. Contrast Stretch and Normalization [Internet]. MATLAB Central File Exchange. 2020 [cited

2020 Aug 8]. Available from: https://www.mathworks.com/matlabcentral/fileexchange/11429-contrast-

stretch-and-normalization.

20. Christensen JD. Normalization of brain magnetic resonance images using histogram even-order deriva-

tive analysis. Magn Reson Imaging. 2003; 21(7):817–20. https://doi.org/10.1016/s0730-725x(03)

00102-4 PMID: 14559347

21. Wang L, Lai HM, Barker GJ, Miller DH, Tofts PS. Correction for variations in MRI scanner sensitivity in

brain studies with histogram matching. Magn Reson Med. 1998; 39(2):322–7. https://doi.org/10.1002/

mrm.1910390222 PMID: 9469718

22. Madabhushi A, Udupa JK. New methods of MR image intensity standardization via generalized scale.

Med Phys. 2006; 33(9):3426–34. https://doi.org/10.1118/1.2335487 PMID: 17022239

23. Madabhushi A, Udupa JK, Souza A. Generalized scale: Theory, algorithms, and application to image

inhomogeneity correction. Comput Vis Image Underst. 2006; 101(2):100–21.

24. Nowak RD. Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image

Process. 1999; 8(10):1408–19. https://doi.org/10.1109/83.791966 PMID: 18267412

25. Lysaker M, Lundervold A, Tai XC. Noise removal using fourth-order partial differential equation with

applications to medical magnetic resonance images in space and time. IEEE Trans Image Process.

2003; 12(12):1579–89. https://doi.org/10.1109/TIP.2003.819229 PMID: 18244712
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