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Abstract: Foamed phase-change materials (FPCMs) were prepared using recycled linear low-density
polyethylene (LLDPE) blended with 30 wt.% of paraffin wax (PW) and foamed by 1,1’-azobiscarbamide.
The protection of pores’ collapse during foaming process was insured through chemical cross-
linking by organic peroxide prior foaming. This work represents one of very few attempts for a
preparation of polymeric phase change foams without a use of micro-encapsulated phase change
component leading to the enhancement of the real PCM component (PW) within a final product.
The porous structure of fabricated foams was analyzed using micro-computed tomography, and
direct observation, and reconstruction of the internal structure was investigated. The porosity of
FPCMs was about 85-87 vol.% and resulting thermal conductivity 0.054-0.086 W/m-K. Differential
Scanning Calorimetry was used to determine the specific enthalpies of melting (22.4-25.1 ] /g) what
is the latent heat of materials utilized during a heat absorption. A stability of samples during 10
heating/cooling cycles was demonstrated. The phase change changes were also investigated using
the dynamic mechanical analysis from 0° to 65 °C during the 10 cycles, and the mechanical stability
of the system and phase-change transition were clearly confirmed, as proved by DSC. Leaching
test revealed a long-term release of PW (around 7% of its original content) from samples which
were long term stored at temperatures over PW melting point. This is the usual problem concerning
polymer/wax blends. The most common, industrially feasible solution is a lamination of products, for
instance by aluminum foils. Finally, the measurement of the heat flow simulating the real conditions
shows that samples containing PW decrease the energy passing through the sample from 68.56 to
34.88 k] m~2. In this respect, FPCMs provide very effective double functionality, firstly common
thermal insulators, and second, as the heat absorbers acting through melting of the PW and absorbing
the excessive thermal energy during melting. This improves the heat protection of buildings and
reduces temperature fluctuations within indoor spaces.

Keywords: phase change materials; foams; paraffin wax; recycled polyethylene; micro-computed
tomography; dynamic mechanical analysis

1. Introduction

It is estimated that roughly 30-40% of the world’s total energy produced from fossil
fuels is consumed by the construction industry, what results in one-third of the world’s
greenhouse gas emissions. In Qatar, 65% of produced electricity is consumed by cooling
systems in all types of buildings [1]. From this reason, it is important to develop materials
which effectively absorb and release an excess thermal energy to insure thermal indoor
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comfort, minimizing the need of electrical energy for heating in winter and cooling in
summer. These materials can reduce variations in temperature of buildings when outside
temperature changes over day. The reduction of the energy consumption in buildings can
be insured by effective thermal insulation or a heat absorption. Polymeric foams, such as
polyurethane, polyethylene, and polystyrene are the most commonly applied materials for
insulation because of their low thermal conductivity, low density, acceptable mechanical
properties, and an appropriate price [2,3].

Another approach to decreasing the energy consumption for heating/cooling is based
on Phase Change Materials (PCMs). PCMs are materials which undergo phase transition
(usually from solid to liquid phase and vice versa) isothermally at relatively low, specifically
selected temperature, which is associated with an absorption and a release of high amount
of energy, proportionally to their specific heat of melting and crystallization. Various
materials can be used as PCM; the most usual ones are inorganic salts and their eutectics,
fatty acids, polyethylneglycol, and PWs [4]. PW are very suitable PCM because of their
favorable properties, like a high specific enthalpy of melting and crystallization, negligible
super-cooling, stability, easy availability, and an appropriate price in comparison to other
PCMs [5]. Among disadvantages belong relatively high flammability in comparison
with inorganic salts. The specific melting enthalpy of PW is in the range from 180 to
230 kJ-kg 1. This fact results in a high energy storage density of PW due to a high latent
heat which accomplishes the melting and crystallization of PW [6,7]. It is evident that
after melting, PW can leach from the system in which they are incorporated. The simplest
way to suppress this effect is to keep PW in closed tanks or containers; however, there are
some disadvantages resulting from this concept [4,5]. On the other hand, PW can be also
maintained in the stable forms by their encapsulation within a polymeric shell or by their
blending with selected polymers [8-13]. After blending, polymeric matrices keep PW in a
compact form and partly suppress leaching after PW melting, depending on the chemical
and morphological similarity of PW and selected polymers, viscosity, and a presence of
the fillers. These materials are called Shape Stabilized PCM. Polyethylene (PE) is the most
commonly employed polymeric material used for mixing with PW due to their structural
and chemical similarity [14-16], which enables and incorporate of a large amount of PW
into PE matrix (up to 60 wt.%) because of the components’ compatibility.

In recent years, foamed PCMs (particularly PU foams) have been extensively inves-
tigate in order to combine advantages of thermal insulation and thermal energy storage.
The preference of PU is because despite the higher price against polystyrene and polyethy-
lene, polyurethane foams are frequently used for thermal insulation of buildings due to
excellent thermal insulation properties and low flammability. It has been reported that
an appropriate content of various PCMs in a combined product can enhance the thermal
energy storage capacity [17-25].

The incorporation of active PCM component into the foams can be realized by tech-
niques which are classified as indirect and direct ones. The indirect methods employ
either different containers for a macro-encapsulation or polymeric shells materials for a
micro-encapsulation to suppress leakage. The direct techniques for an incorporation of
PCM components involve: (i) impregnation of polymeric structures (mostly PU) by liquid
PCM and (ii) polymerization of polymers together with added PCM active component [26].

In general, foams are mostly prepared from polymers, carbon-based (carbon nan-
otubes, graphene) materials, inorganic (silica formed by sol-gel processes) materials, and
metals (aluminum). Metallic foams (copper, nickel, and aluminum) are other structures
used as a skeleton for impregnation by PWs. The main reason is an enhancement of
thermal conductivity filled aluminum foam by PW is 5-9 times higher than that of pure
paraffin [27].

However, it has to be distinguished whether foamy structures are used as a skeleton
only which is fully filled by PCM component, and thus, it contains high concentration of
PCM component showing high latent heat, or as a hybrid structure, where pores filled by
air and by PCM are balanced in some proportion. It means that fully filled foams have
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much higher content of PCM and thus high heat absorption capacity (a melting enthalpy is
of the order tens J/g); however, those final products are not foams. The real PCM foams
should contain an appropriate ratio between PCM component (e.g., PW) and air voids
fractions [17,23,28-31].

Sarier [17] modified PU foams by n-hexadecane and n-octadecane. It was found that
PU foams consisting of n-octadecane with a weight portion of PCM to PU equals to 1 to 1.4
showed a good heat absorption performance, having the specific enthalpy of melting of
778]/g.

Melamine foams (MA) are highly porous materials which can be easily impregnated by
PCM components. Tetradecylamine (TDA) was used as a thermal energy storage medium
and melamine foam was used as the container. The melamine covalently bonded multi-
walled carbon nanotubes were added to improve the thermal conductivity of final structure.
Materials showed a large melting enthalpy (183.7 J/g), improved thermal conductivity and
excellent cycle stability. However, the final material is not foam—a foam just serves as
a skeleton.

Polymeric foams can be also prepared from polymeric mixtures formed by thermoplas-
tic matrix (polyethylene and encapsulated PCM using common procedures for a formation
of thermoplastics; however, the shell content consumes a lot of space which is not usable for
latent heat storage. It is evident from Figure 1, the PW (core content) in microcapsule has
outer diameter of 15 &= 3 pm, and the thickness of the shell of 1.5 & 0.3 pm is only 50 vol.%
(43 wt.%). Therefore, even in highly filled composite structures close to the maximum
packaging fraction (microcapsules content up to 60 vol.%), PW content is 30 vol.% [32,33].

D=15+3 um

A=15%£0.3um
Vol.% (wax) = 50
Wt.% (wax) = 43

Figure 1. Typical shape and dimensions of synthesized microcapsules [33].

In this paper, the preparation of foamed PCMs based on recycled linear low-density
polyethylene and PW blends is reported using foaming 1’-azobiscarbamide and (2,5-
dimethyl-2,5-di-(tert-butylperoxy)hexyne-3 as a cross-linking agent. The crosslinking
by organic peroxide was performed prior the foaming to suppress the collapse of the
developing pores.

The heat storage capacity given by the melting enthalpy is relatively low (around
20J/g); however, it is comparable with values reported in literature for usual PU foams
modified by various PCMs. PU foams modified by n-hexadecane, n-hexaoctane, and
myristyl myristate have specific enthalpies of melting in the range from 4 to 77 J /g, mostly
ranging from 15 to 20 ] /g. Materials showing higher values show very low porosity, and
the foam is used only as a skeleton for an impregnation. It means that the volume portion
of unfilled voids (pores) is very low. Our results fall in the usual range of the specific
melting enthalpies reported in literature [28,29].

It is worth to mention that recycled polyethylene was used in this work. The recycling
or reuse of plastics in general and PE, particularly LDPE and LLDPE grades for packaging,
is a topic of high priority today. The reuse of LDPE is currently very low due to limited
possibilities to design any useful product with it. Simply said, packaging grades are suitable
only for packaging, and after their use, they are not suitable for recycling for the same
application due to many reasons such as complicated gathering and cleaning, deteriorated
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properties, a presence of additional components through packages’ post-treatment, etc. The
utilization of recycled PE as a part of PCMs can be one of the few reasonable applications
because some of the previously mentioned drawbacks are not important in this application.

2. Materials and Methods

Foamed PCMs were fabricated using recycled LLDPE (Twyla, Doha, Qatar), PW
(Rubitherm Technologies GmbH, Berlin, Germany), a blowing agent 1,1’-azobiscarbamide,
(Hangsun Plastic additives Co. limited, China), and a cross-linking agent (2,5-dimethyl-
2,5-di-(tert-butylperoxy)hexyne-3 (Luperox130; Arkema, Colombes, France). Firstly, all
the components (LLDPE/PW =70/30 w/w, 10 wt.% of blowing agent, and 0.5 or 1 wt.%
of cross-linking agent) were blended for 11 min at 140 °C in a Plastograph (Brabender
GmbH & Co. KG, Duisburg, Germany). Then, the blended compound was hot pressed
at 150 °C for 3 min in a cylinder-shaped mold to obtain the required shape, followed by
further heating at 150 °C for 13 min to ensure the cross-linking of the mixture. Finally, the
sample was put into an oven and kept at 150 °C for 25 min to allow decomposition of the
blowing agent which led to the formation of the foamy material. The preparation of FPCM
is schematically depicted in Figure 2.

Brabender Plasticorder The press ‘ Oven
Blending of all components Shaping of sample Foaming

and crosslinking

Figure 2. FPCM preparation.

For a comparison, foams without PW were prepared under the same conditions. The
compositions of mixtures are summarized in Table 1. The portions of masterbatch and
Luperox130 were related to the 100 g of LLDPE/PW mixtures (PW1, PW05) or to LLDPE
only (P1, P05). For example, the composition 70/30/10/1 means that LDPE/PW mixture
having the composition 70/30 w/w was prepared and then 10 wt.% of masterbatch and
1 wt.% of Luperox130 related to that mixture was added.

Table 1. Composition of prepared foams.

Sample Name LLDPE PW Blowing Agent Luperox130
wt.% wt.% wt.% wt.%
PW1 70 30 10 1
PWO05 70 30 10 0.5
P1 100 0 10 1
P05 100 0 10 0.5

2.1. Differential Scanning Calorimetry (DSC)

The DSC measurements were performed by a Perkin Elmer DSC 8500 (Acron, OH,
USA) differential scanning calorimeter. For measuring, the specific heat capacity common
three-step method using sapphire as a standard was employed. The sample was cooled
to 18 °C at a rate of 2 °C/min and held at this temperature for 3 min, then specimen
was heated to 60 °C and held at it for 3 min. Calibration was done to sapphire standard.
Nitrogen gas was passed through the instrument at a flow rate of 40 mL/min. DSC software
was used for calculation of cp values. All experiments were repeated at least three times,
and average values are presented.

In case of heating/cooling measurement cycling, temperature interval from 0 to
60 °C/min at rate 10 °C/min was employed.

The specific enthalpy of melting and crystallization, melting, and crystallization
temperatures were determined from the second run.



Polymers 2021, 13, 1987

50f 14

2.2. Thermal Conductivity

The thermal conductivity was determined by a Hot Disk thermal analyzer (Hot Disk
2500, Goteborg, Sweden) using the transient place source (TPS) method [32]. A disk-
shaped TPS sensor with diameter 3 mm was placed between two circular sample pieces.
The measurement power ranged from 5 to 15 mW and the time of the measurement varied
between 10 and 40 s. At least three measurements for each sample were performed at 25 °C
with an accuracy within 3%.

2.3. Internal Foam Structure Investigation

The porosity of samples was investigated at the cut disk (dimensions) using computer
micro-tomography (CT) on the SkyScan Unit (model 1174, Bruker, New York, NY, USA).
Device was equipped with an X-ray power source (20-50 kV and maximum power 40 W)
and X-ray detector (Bruker, New York, NY, USA). The CCD 1.3 Mpix unit was coupled
to a scintillator by a lens with 1:6 zoom range. Projection images were taken at angular
increment of 0.3° at a tube voltage of 3040 kV and current of 585-730 pA. Duration of
exposure was set to 15-30 s without the use of filter. 3D reconstructions were created via pre-
installed CT image analysis software (v1.16.4.1, Bruker, New York, NY, USA). Porosity and
corresponding standard deviation are calculated from three individual cylindrical sections.

2.4. Mechanical Investigation during Phase Change Cycling

In order to investigate the mechanical properties and their sustainability during phase
change transition, dynamic mechanical analyzer (DMA 1, Mettler Toledo, Columbus, OH,
USA) was used. The measurements were performed at 1 Hz in linear viscoelastic region,
when the deformation was set to 1%. The temperature sweeps from 10 to 65 °C in 10 cycles
were measured, and storage modulus and tan delta as a crucial parameter were elucidated
and discussed.

2.5. Capability of the Energy Transfer

The heat flux from the source of 45 °C was measured using (GreenTEG, Riimlang,
Switzerland, Ziirich) and energy transfer through the foams was calculated using
Equation (1):

15
45— Ts
where E is energy passed through the material, W is heat flux at investigated time period,
and Ts is surface temperature of the material before measurement.

E:/Wdtx )

3. Results
3.1. Internal Foam Structures Investigation

As can be seen from Figure 3 and Table 2, an overall amount of the closed pores, their
size, and homogenous distribution strongly depend on the amount of the cross-linker as
well as on the presence of the PW in the system, as was already investigated by other
authors [34,35]. With increasing amount of cross-linker porosity significantly increasing.
In Figure 3a-d, real structures of the foams are presented, since the samples were not
deformed during the cutting, and thus, the whole 3D structure is presented. All samples
exhibit very similar porous structure, with exception of the sample P1. The sample P1 with
1% of cross-linker without PW showed a significantly different structure, most probably
due to different viscosity (higher) during foaming step. On the other hand, the amount
of cross-linker has impact on the number of closed pores and the higher the content of
cross-linker is provided, the higher the number of closed pores is received. Moreover,
the presence of PW decreases the number of pores; this is in close connection with the
viscosity during the foaming step, and where the low the viscosity of the melt is reached,
the larger pores are obtained [36]. It has to be mentioned here, that the approach of the
computation tomography utilization applied in this article is very rare in the field of phase
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change materials of the polymer/graphite composites and PW; therefore, the comparison

of the results with other literature sources is rather limited.

Figure 3. Space cross section of the foam sample: (a) PW1; (b) PWO05; (c) P1; (d) P05.

Table 2. Results from 3D image analysis of foams.

o Samples’ Codes
Description Abbreviation Unit
PW1 PWO05 P1 P05
Total analyzed vV mm? 193 193 193 193
volume
Foam volume in vol. TV mm3 120 69 162 83
analyzed volume
Number of closed No. / 2422 11,19 325625 12985
pores
The volume portion of the pores was calculated from Equation (2):
Ppores (%) = 1 — L2 100% @)

Punfoamed
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where @pores is the volume portion of the pores and pfuumed/Ounfoamed are the specific densities
of the unfoamed and foamed materials. The pore sizes and the gel content of cross-linked
materials are listed in Table 3. It is evident that the gel portion of cross-linked LLDPE
is higher than the gel portion of the LLDPE/PW blend. This is due to a proportional
distribution of cross-linker within both the PW and LLDPE and W. This leads to the
lowering of an effective concentration of peroxide in LLDPE, and thus, the crosslinking
efficiency is lower. Crosslinking of low molecular weight PW is not possible at such low
crosslinker content due to its short chains, and therefore, it does not contribute to the final
gel content. The gel content is directly related to the crosslinking density of materials.

Table 3. The specific density, gel content, and volume portion of materials.

Densit ores Gel Portion
Sample (g/cmg (fgl.%) (Wt.%)
LLDPE 0.941 / 0
PW1 0.084 86.8 59.7 (0.1)
PW05 0.080 85.0 439 (0.8)
P1 0.143 83.6 84.1(0.4)
P05 0.128 84.1 76.0 (1.0)

In order to suppress the collapse of the pores, materials were crosslinked prior to
blowing. The volume portion of the pores within a foamed material was about 69 vol.%,
which is a significantly lower value in comparison to the volume portion of the pores in
original, neat LLDPE, which is about 92%. It indicates that only LLDPE phase is foamed,
because PW component is not cross-linked, and thus, it does not have a sufficient viscosity
to preserve pores.

3.2. Thermophysical Properties

The thermal conductivities of foamed samples are summarized in Table 4. Firstly,
unfoamed PE had a thermal conductivity of 0.38 W/m-K, and the addition of PW caused
its decrease to 0.33 W/m-K due to the lower thermal conductivity of PW, which is approxi-
mately 0.2 W/m-K. Secondly, all the foamed materials have significantly lower thermal
conductivity than neat polyethylene and its blends with PW. This is caused by high porosity
of materials in all cases due to very low thermal conductivity of air or gases in general.
Higher porosity results in lower thermal conductivity. The crosslinking is another effect
influencing thermal conductivity of semicrystalline materials, such are polyethylenes and
PWs because it reduces their degree of crystallinity. Crystalline phase has almost six times
higher thermal conductivity than the amorphous one. Eiermann [37] determined thermal
conductivities of amorphous and crystalline phase of polyethylene of 0.091 and 0.593 W /K,
respectively. Thus, higher crosslinking efficiency and higher porosity leads to the decreas-
ing in thermal conductivity of final system; however, crosslinking efficiency also influences
a formation of stabile pores, so these two phenomena are closely interconnected. As a
consequence of various parameters influencing the final thermal conductivity, the lowest
value of 0.066 W/m-K was determined for P05 sample.

Table 4. Thermal properties of foams.

Sample A, Wm-1K-1 k, mm?/s cp, J-g K1
PW1 0.066 0.269 2.92
PWO05 0.054 0.393 1.72

P1 0.086 0.459 1.31
P05 0.073 0.460 1.24

A: thermal conductivity; k: thermal diffusivity; cp. specific heat capacity.

DSC analysis of PW1, PWO05, P1, and P05 is summarized in Table 5. Samples PW1 and
PWO5 contain LLDPE and paraffin. PW melting/crystallization temperature was around
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42 or 38 °C, respectively, and the enthalpies ranged from 22.4 to 24.7 ] /g. LLDPE exhibited
melting temperature at 117 °C for PW1 and 121.6 °C for PW05 with enthalpies around

81]/g.

Table 5. DSC characterization of foams. The standard deviations are shown in brackets.

Heating Cooling
Paraffin LLDPE Paraffin LLDPE
Tm (°O) AHp (J/g) Tm (°C) AHp, (J/g) T (°O) AH¢ (J/g) T. (°O) AH, (J/g)
PW1 42.7 (0.4) 224 (1.1) 117.2 (0.5) 81.1 (4.0) 38.4(0.1) 23.3(0.1) 110.2 (0.6) 82.7 (3.8)
PWO05 429 (0.4) 25.1(1.1) 121.6 (0.6) 80.8 (3.4) 37.1(0.4) 24.7 (0.2) 112.4 (0.6) 80.9 (0.1)
P1 N/A N/A 126.8 (0.4) 114.4 (2.7) N/A N/A 114.4 (1.1) 115.0 (1.6)
P05 N/A N/A 128.2 (0.7) 113.1 (3.8) N/A N/A 116.5 (0.6) 116.8 (4.2)

Ti: melting temperature; AHy,: melting enthalpy; Te: crystallization temperature; AH,: crystallization enthalpy.

Weight loss of foams was studied for samples contain paraffin, PW1 and PWO05
(Figure 4). Both samples exhibited loss weight over time with achieved weight loss up to
8 wt.% of materials for PW05 sample. For PW1 sample, 7 wt.% weight loss was observed.
Material which was lost during the leakage is expected to be predominantly PW as was
previously reported for PCM samples with similar composition [38,39].

100‘.-

98 - 9

94 | *e " &

Weight loss (%)

92 - (

90 1 1 Il 1 1 1
0 200 400 600 800 1000 1200

Time (h)

Figure 4. Weight loss of PW1 (squares) and PWO05 (circles) samples over time.

Table 6 shows comparison of PW1 and PWO05 samples before and after leakage experi-
ment focused on PW region. Solid-liquid and liquid-solid transition temperature was only
slightly influenced by the leakage experiment. However, decreasing of both melting and
crystallization enthalpies after leakage experiment has been observed proportionally to
weight loss showed at Figure 4 indicating the leakage of PW.

Table 6. DSC analysis of PW1 and PWO05 foams before and after leakage.

Sample Heating Cooling
Ts-s (°C) AHs-s (J/g) Ts-1(°C) AHs-1 (J/g) Ts-s (°C) AHs-s (J/g) Ts-1(°C) AHs-1 (J/g)
PW1 N/A N/A 39.9 19.5 12.0 0.9 36.6 19.9
PW1lafterL 16.1 0.9 39.7 14.8 124 0.8 36.3 15.0
PWO05 N/A N/A 414 20.6 N/A N/A 36.7 19.7

PWO05afterL 16.6 0.8 40.1 14.0 13.0 0.6 36.9 13.5
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The reproducibility of the storage and the release of thermal energy over longer period
of time is crucial for applying PCMs in thermal management. Hence, thermal cycling
(10 heating and 10 cooling cycles) from 0 to 60 °C was performed (Figure 5), and good
reproducibility of storage and release of energy was observed. After first heating cycle,
where thermal history of specimen is eliminated, almost identical thermographs have been
observed for both PW1 and PWO05.

Heat flux (endo up)

2nd to 10th cycles—. 2nd to 10th cycles

1st cycle

1st cycle

Heat flux (endo up)

0 10 20 30 40 50 60

Temperature (XC) Temperature (YC)

(@) (b)

Figure 5. Thermal cycling for (a) PW1 and (b) PWO05 at temperature from 0 to 70 °C over 10 heating and 10 cooling cycles.

3.3. DMA

From the mechanical point of view, the samples without the PW show higher values
of the storage moduli indicating better mechanical properties after compression, and more
mechanical energy can be stored upon deformation. The values are very similar to those
obtained by other authors [40]. Interestingly, the higher amount of the cross-linker does not
provide significantly higher storage moduli, due to the fact the lower amount of the cross-
linking agent provides pores with higher volume and thus contributes to the mechanical
capability of the sample upon cyclic deformation over various temperature cycles. It can be
seen in Figure 6a,b, that samples without PW can overcome only nine cycles of deformation
while the temperature sweeps were 10 cycles. However, in both cases (with and without
PW), the mechanical sustainability of the fabricated systems is stable over all 10 cycles
performed. Therefore, the fabricated materials provide mechanical properties with storage
moduli from 10 MPa to 15 MPa without PW, while the presence of the PW decreases the
mechanical properties 5 times for 1% cross-linker and only 3 times for 0.5% cross-linker in
the system.

It can be clearly seen from Figure 7a,b that tan delta of the materials is very similar
and reaches values from 0.1 to 0.3 depending on the applied temperature. Moreover, due
to the absence of the PW, there is no response on the temperature change. However, in the
case of samples (Figure 7c,d) there is visible phase change transition since the tan delta
shows local maxima due to the PW melting. Beside this fact, they also not exceeded value
0.3 in all cases, and they are reversible in all 10 performed cycles; this behavior clearly
indicates that from the mechanical point of view, the fabricated samples show excellent
sustainability over time and temperature. The values of tan delta are around 0.3 indicating
the elastic behavior with low internal heat energy dissipation during mechanical cycling.
Our group in the former article obtained similar results regarding the dynamic mechanical
response of such foams [41]; however, in the absence of the graphite particles, those in this
amount just significantly influence the PW leaching capabilities as was investigated deeper
in this paper.
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Figure 7. DMA investigation of the (a) P1, (b) P05, (c) PW1, and (d) PWO05.

To show, how the fabricated materials can be applied in the real-life applications,
the heat flux investigations and calculated energies passing through the samples were
calculated. Schematic illustration and table with calculated energies is depicted in Figure 8.
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Figure 8. Schematic illustration describing the measurement principle (a) with calculated energies
passed through the investigated samples (b).

It can be seen that samples containing PW have significantly improved resistance
against energy transfer, indicating that these samples do not allow nearly 50% of the energy
in case of sample PWO05 in comparison to sample P1. Moreover, the height of the peak
is lower for the samples with PW (Figure 9), indicating that even though these samples
show lower thermal conductivity, the considerable heat consumption of the PW plays a
crucial role. In this respect, there is no visible peak of the PW phase change due to the
fact that measurements were performed upon constant heating of 45 °C and checking the
heat flow passing through the material and have different principle than that published by
Sobolciak et al. [42]. A combination of the capability to significantly reduce the amount
of the heat energy passing through the sample and further possibility to store this energy
within the sample structure provide a promising approach to the passive heat energy
storage systems with excellent mechanical properties.

200

X
—h
o
o

0 200 400 600 800 1000
Time (s)

Figure 9. Heat flux development over the period of time upon 40 °C stimulation. Sample P05 is black
line, P1 is red line, PW1 is blue line, and PWO05 is olive line.
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4. Conclusions

This work focused on the preparation of foamed phase-change materials using recy-
cled linear low-density polyethylene blended with 30 wt.% of PW. The blends were foamed
by 1,1’-azobiscarbamide and cross-linked by organic peroxide (Luperox 130) to suppress
the collapse of pores during foaming. The concentration of 30 wt.% of PW was selected
according to previous optimization to get materials with appropriate latent heat (given by
the specific enthalpy of melting), high porosity, low thermal conductivity, and acceptable
leakage of PW from final materials.

The porous structure of fabricated foams was analyzed using micro-computed tomog-
raphy and direct observation, and reconstruction of the internal structure was investigated.
The amount of the closed pores was investigated, and it was shown that major impact
lies on the amount of the cross-linker rather than PW. Overall porosity of FPCMs was
about 85-87 vol.%, and resulting thermal conductivity was 0.054-0.086 W/m-K, which
represents a significant decrease in thermal conductivity against pure PE (0.34 W/m-K).
Differential Scanning Calorimetry was employed to determine the specific enthalpies of
melting (22.4-25.1 ] /g), which is the latent heat of materials utilized during a heat ab-
sorption. These results are in line with the results published in literature for foamy phase
change materials. A reproducibility of the measurements during 10 heating/cooling cycles
was demonstrated.

Leaching test revealed a long-term release of PW from samples, which were long
term stored at temperatures over PW melting point. The amount of leached paraffin was
about 7% of its original content after keeping samples at 60 °C for 1000 h. This is the usual
problem concerning polymer/PW blends, and the most common, industrially feasible
solution is a lamination, for instance by aluminum foils, as used by some producers such
as Dupond.

The phase change capabilities were investigated also using the dynamic mechanical
analysis from 0° to 65 °C during the 10 cycles, where the mechanical stability of the system
and phase-change transition were clearly confirmed, and a decrease of the elastic modulus
5 times for samples without PW and 3 times with PW was presented. Moreover, the
measurement of the heat flow simulated the real conditions and showed that samples
containing PW decrease the energy passing through the sample from 68.56 to 34.88 kJ-m 2.

In this regard, newly developed foamy PCMs provide effective double functionality.
First, they serve as standard thermal insulators, and second, the PW acts as a phase change
component that absorbs thermal energy (the latent heat) during melting if the temperature
increases above its melting point, which ensures better heat protection of buildings, for
instance, against overheating and reduces temperature fluctuations within indoor spaces.
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