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Review Article

Spike Glycoprotein Is Central to Coronavirus 
Pathogenesis-Parallel Between m-CoV and  
SARS-CoV-2

Fareeha Saadi1, Debnath Pal2 and Jayasri Das Sarma1,3

Abstract

Background: Coronaviruses (CoVs) are single-stranded, polyadenylated, enveloped RNA of positive polarity with a unique 
potential to alter host tropism. This has been exceptionally demonstrated by the emergence of deadly virus outbreaks of the 
past: Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 2012. 
Summary: The 2019 outbreak by the new cross-species transmission of SARS-CoV-2 has put the world on alert. CoV 
infection is triggered by receptor recognition, membrane fusion, and successive viral entry mediated by the surface Spike (S) 
glycoprotein. S protein is one of the major antigenic determinants and the target for neutralizing antibodies. It is a valuable target 
in antiviral therapies because of its central role in cell-cell fusion, viral antigen spread, and host immune responses leading to 
immunopathogenesis. The receptor-binding domain of S protein has received greater attention as it initiates host attachment 
and contains major antigenic determinants. However, investigating the therapeutic potential of fusion peptide as a part of 
the fusion core complex assembled by the heptad repeats 1 and 2 (HR1 and HR2) is also warranted. Along with receptor 
attachment and entry, fusion mechanisms should also be explored for designing inhibitors as a therapeutic intervention. 
Key message: In this article, we review the S protein function and its role in mediating membrane fusion, spread, tropism, 
and its associated pathogenesis with notable therapeutic strategies focusing on results obtained from studies on a murine 
β-Coronavirus (m-CoV) and its associated disease process.
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Introduction

The new coronavirus disease 2019 (COVID-19) is caused by 
a novel coronavirus, SARS-CoV-2. It is about 80% genetically 
identical to SARS-CoV and displays clinical symptoms 
similar to those reported in previous outbreaks of 
Coronaviruses (CoVs), namely, SARS-CoV and MERS-
CoV.1–8 The severity of CoV infections depends on virus-
mediated tissue damage as well as the antiviral immune 
inflammation, which are influenced by viral tropism, 
infectivity, virus spread, and specificity of host responses, all 
of which are majorly regulated by the CoV Spike (S) protein. 
S protein is a multidomain Class I viral fusion protein that 
exerts its effect stepwise, by a concerted action of individual 
domains.9–11 Considering the highly infectious nature of 
CoVs and their associated lethality and ability to emerge from 
zoonotic hosts, SARS-CoV-2 has once again conjured the 
entire scientific community in an urgency to develop effective 
therapeutics against CoVs.

The vast reservoir of research contributed by Corona 
virologists over the years where Mouse Hepatitis Virus 
(MHV), a group 2-β-CoV, has been an epicenter sheds light 
on the importance of S protein in controlling the pathogenic 
properties of CoV. Murine-CoV (m-CoV) infection in mice is 
the best-explored experimental animal model for studying 
respiratory, enteric, hepatic, as well as neurological illness 
because of their differential organ tropism like the distinct 
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tropism showed by the strains of human-CoVs 
(H-CoVs).10,12–21 However, it is difficult to explore the disease 
mechanisms in humans, and the generation of an animal 
model is necessary where the function of individual genes 
can be studied. In this context, discontinuous transcription 
process producing subgenomic mRNA in CoV, despite their 
enormous genome size, has proved advantageous for 
developing a reverse genetic system for CoVs wherein each 
protein could be targeted separately to understand their 
contribution to pathogenic properties.22–25 A battery of 
recombinant strains created by adopting a reverse genetics 
tool has largely demonstrated that the S protein is a major 
determinant of pathogenic properties associated with m-CoV.

S protein of SARS-CoV-2 and SARS-CoV share about 
74% to 76% amino acid identity in their receptor-binding 
domain (RBD). Still, they show significant differences in 
their ability to infect and transmit in humans.2,4,26,27 Both the 
SARS strains identify ACE2 receptor, SARS-CoV-2 binds to 
it with 10 to 20 folds more affinity.8,11,27–30 An interesting 
question that stems from this observation is, can S protein 
alone contribute to the higher virulence of SARS-CoV-2? A 
lack of a suitable animal model to study H-CoV pathology 
makes it challenging to answer this question. However, owing 
to the high similarity in recombination potential and 
replication kinetics of a fellow β -CoV, MHV, we can draw 
parallels between H-CoV and m-CoV S proteins to gain a 
better understanding of the unanswered questions related to 
virus entry, replication kinetics, pathogenesis, host immune 
responses, and virus persistence.5,31–33 This review presents 
insights into the contribution of S protein in the resultant 
immune inflammation and pathogenesis based on the notable 
contributions over the last three decades with particular 
emphasis on the presence of two consecutive prolines in the 
fusion peptide of m-CoV Spike. Coronavirus induced cell-
cell fusion mechanism offers a potential target for antiviral 
therapy. This review will discuss how knowledge from 
m-CoV studies holds lessons to understand SARS-CoV 
pathogenesis.

CoV Virions and Genome

The family name Corona is because of the outward radial 
projection of S protein, which gives the virion a crown-like 
structure. CoV virions can be spherical or pleiomorphic, with 
typical sizes ranging from 60 to 200 nm.20,34,35 Their genome 
is an internal 5' capped single strand of helical RNA with a 
length of 26 to 32 kb, complexed with Nucleocapsid (N) 
protein encoded by gene seven in MHV and nine in SARS. 
The genome comprises six to ten open reading frames (ORFs) 
where the ORF1 forms 2/3rd of the genome coding for 
nonstructural polyproteins with helicase, polymerase, and 
replicase functions. The latter one-third of the genome 
encodes structural proteins in the order Hemagglutinin 
Esterase (HE), S, the envelope protein (E), transmembrane 
glycoprotein (M), and nucleocapsid phosphoprotein (N). 

ORF2 may or may not be functional in all strains of CoVs; in 
certain MHV strains it encodes a 65 kD HE protein that forms 
smaller spikes on the surface, but their function in the life 
cycle is not well understood. The genome is packaged within 
a lipid envelope containing S, E, and M encoded by genes 3, 
5, and 6, respectively.20,34,35 The M and E proteins are essential 
for virus assembly and S protein functions in virus entry. 
Some CoV strains also have an Internal protein (I) of unknown 
function.36 Figure 1A and B depict an overview of the virion 
structure and genome organization.

Figure 1. CoV Virion, Genome Organization and Functional 
Domains of Spike Protein. (A) Pictorial Representation of the 
Generalized Structure of the CoV virion. CoV is Somewhat 
Pleomorphic Containing an Internal Helical Positive-Stranded 
RNA Genome Complexed with Nucleocapsid Phosphoprotein 
(N), Surrounded by the Viral Envelope Containing Spike (S), 
Envelope (E) and Membrane (M) Proteins as Specified in the Text. 
(B) Schematic Organization of the Genes in the m-CoV and SARS-
CoV. The CoV Single-Stranded Genome Encodes for Several 
Nonstructural Proteins (yellow), and Four Structural Proteins: 
Spike (S; Blue), Envelope (E; Orange), Membrane (M; Green), 
and Nucleocapsid (N; Purple). Some MHV Strains Also Encode 
a Hemagglutinin Esterase Protein (HE; Grey). (C) and (D) Line 
Diagram Showing the Spike Protein Organized into Two Subunits 
S1 and S2 Post Cleavage Between the Domain Linker Regions. 
Each Functionally Important Domain of the Protein is Marked 
and Numbered as per MHV-A59 and MHV-2 (C); SARS-CoV-2 
and SARS-CoV Spike Sequence Location (D). The Percentage 
Identity and Similarity Between the Two Proteins are Indicated 
for Different Segments. 

Source: Figure Designed by Fareeha Saadi and Debnath Pal.
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Spike Function in Attachment, Fusion, and Entry 
into the Host Cell

S protein is a large, multifunctional, highly glycosylated type 
I transmembrane protein incorporating 21 to 35 
N-glycosylation sites.37–40 They assemble into trimers on the 
viral surface to form the characteristic “corona” and mediate 
virus-host attachment through the ectodomain. The 
ectodomain of all CoV S proteins share the same two domains: 
An N-terminal S1 domain responsible for binding the receptor 
on the host surface and a C-terminal S2 domain responsible 
for fusion of their envelope with the host cell membrane to 
deliver their nucleocapsid.41 As a Class-I fusion protein, S 
protein has the typical α-helical secondary structure and 
contains characteristic two heptad repeats comprising of 
repetitive heptapeptide with hydrophobic residues in the S2 
subunit that aid the formation of coiled-coil structure to 
participate in the fusion process.9 The characteristic postfusion 
structures of the HR have been solved for SARS-CoV and 
m-CoV, they form the characteristic six-helix bundle. Their 
functional roles in MHV and SARS-CoV were confirmed by 
mutating key residues and by inhibition experiments using 
HR2 peptides.42–45

The S1 contains two subdomains, an N-terminal domain 
(NTD) and a C-terminal domain (CTD), both of which can 
function as receptor binding domains (RBDs) in different 
strains of CoVs.4,8,46–53 For example, MHV uses the S1 NTD 
as the RBD to bind to the carcinoembryonic antigen-related 
cell adhesion molecule 1 (CEACAM1) in contrast to its close 
relatives SARS-CoVs and MERS-CoV who have the RBD in 
their S1 CTDs.8,54–57 After the binding of the spike with the 
receptor, S2 triggers the fusion process either by entering the 
host cell directly or after internalization through 
endocytosis.58 Additionally, S protein is known to become 
fusion competent by cleavage.58,59 Some β- and all γ-CoVs 
spike have a furin cleavage site between the S1 and S2 
domains, which is typically recognized and cleaved by a 
Golgi-resident host protease, Furin.7,60,61 Interestingly, within 
the β-genera, two closely related m-CoV species, MHV-2 
and MHV-A59, display different cleavage requirements for 
infectivity.62 MHV-A59 strain shows pH-dependent and 
independent fusion processes.63 Whereas, in MHV-2, the 
entry is shown to be dependent on the endosomal proteases, 
Cathepsin B, and L that are activated at low pH.64 In SARS-
CoV also, the fusion process is dependent on Cathepsin L 
and the proteolytic processing of the spike in sequential 
cleavage events.65 The requirement of endosomal proteases 
for efficient entry by MHV-2 and SARS-CoV could be 
attributed to their uncleaved spike.

Kathryn Holmes and Larry Sturman,66 in very early 
studies, showed that MHV-A59 S protein is proteolytically 
cleaved by furin into S1 and S2 subunits at RRAHR (Arginine-
Arginine-Alanine-Histidine-Arginine) during the virus 
attachment to the host membrane. This cleavage property was 
later shown to be essential for cell-cell fusion in MHV-A59 

infection. Recent studies have shown that SARS-CoV-2 S 
protein also contains a furin recognition site between S1 and 
S2 subunits, which was absent in SARS-CoV.11 However, 
SARS-CoV shows trypsin mediated sequential cleavage of 
Spike at two discrete locations.67 The first cleavage (R667) 
takes place at the S1/S2 boundary by Cathepsin.64,67 Later, 
another cleavage site (S2’) was recognized within the S2 
domain as a second cleavage event at R797 that exposed the 
fusion peptide required for entry. Reports also suggest that a 
cleavage mediated by Elastase at T795, next to the fusion 
peptide, can significantly alter the cleavage activation in 
SARS-CoV.68 Additionally, the S proteins of SARS-CoV use 
the transmembrane protease/serine subfamily member 2 
(TMPRSS2) colocalized with ACE2 on the cell surface to 
enter the host cell.69,70 TMPRSS2 family proteases are 
majorly found in the respiratory tract and lungs which can 
explain their tropism in the lung tissues. It is recently shown 
that SARS-CoV-2 entry also employs the TMPRSS2 activity 
and hence the similarity in tropism.4 The two cleavage events, 
one by furin and second by TMPRSS2 might increase the 
infectivity of SARS-CoV-2.26

Overview of m-CoVs and H-CoVs Belonging to the 
Genera β-Coronavirus

m-CoV, SARS-CoV, MERS-CoV, and SARS-CoV-2 belong 
to the family Coronaviridae, order Nidovirales, and genus 
β-coronavirus. The other three genera in the family 
Coronaviridae are α-coronavirus, γ-coronavirus, and 
δ-coronavirus. Among the four genera, α and β-coronaviruses 
have majorly emerged to cause several gastrointestinal, 
respiratory, hepatic, and CNS illness in mammals. Whereas 
γ-coronaviruses are known to infect only avian species, and 
δ-coronaviruses infect both mammalian and avian species.10

Five naturally occurring strains of m-CoV have been 
identified and thoroughly studied. MHV infects many 
vertebrate hosts and induces several diseases oscillating in 
severity. MHV-1 causes respiratory disease. MHV-2 is purely 
hepatotropic and causes severe hepatitis and lethality, whereas 
MHV-3 is a neurotropic strain that results in hepatitis, 
vasculitis, initial ependymitis, meningitis, and encephalitis 
but not white matter lesions.15,19,71 Temperature-sensitive 
JHM strain causes severe encephalitis and demyelination but 
is unable to infect the liver and is highly lethal. It infects 
nonneuronal cells and has a special affinity toward 
astrocytes.21,72 MHV-A59 is dual hepato-neurotropic.12,19,73

So far, seven humans CoVs have been identified. NL63 
and 229E (α-CoVs) and OC43, HKU1 (β-CoVs) cause mild 
common cold symptoms whereas, SARS-CoV, MERS-
CoV(β-CoVs) are known to cause acute respiratory syndrome 
and the newly emerged SARS-CoV-2 (β-CoV) with its high 
zoonotic potential causes severe acute respiratory syndrome 
associated with heightened lethality.1,10 The periodical 
emergence of the new CoVs among humans can be attributed 
to their great genetic diversity, high pervasiveness, and 
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recurrent genetic recombination. The risk of cross-species 
transmission increases further because of the increase in the 
human-animal interaction, thus enabling the viruses to select 
the most favorable receptors in the host. While m-CoVs are 
known to infect cells in the hepatic and central nervous 
system primarily, SARS-CoV2, SARS-CoV, and MERS-CoV 
primarily target the respiratory system and present with 
diffuse alveolar damage.3,35,74 Major clinical manifestations 
of SARS-CoV-2 causing COVID-19 are like the previous 
outbreaks, including cough, pneumonia, RNAemia, 
respiratory distress, cardiac injury, and the serious ground-
glass opacities in both lungs preceding death.75,76 Interestingly, 
SARS-CoV-2 rapidly translocates to the lower respiratory 
tract and other organs, including the liver, gastrointestinal 
tract, kidney, CNS, and cardiac muscles leading to multiorgan 
failure, all of which can be attributed to the appropriate choice 
of vastly expressed host receptor by the virus.4,8,30,77

Comparison of S Protein Between m-CoV; 
MHV-A59 and MHV-2 and H-CoV; SARS-CoV 
and SARS-CoV-2

MHV-A59 (gene bank accession number 9629812, RefSeq: 
NC_001846.1) and MHV-2 (gene bank accession number: 
AF201929) show 94% to 98% sequence homology in their 
replicase genes, 83% to 95% sequence homology of genes 2a, 
3, 5b, 6, and 7. However, considering the significant 
differences in their cleavage and fusion properties, both of 
which rely on S protein, the S gene identities were compared 
(Figure 1). As discussed above, the major difference between 
the two strains is cleavability and fusogenicty. MHV-2 lacks 
the furin cleavage site, unlike MHV-A59, and their cleavage 
depends on Cathepsins. Both strains’ cleavage signals showed 
a 64.3% sequence identity. Their fusion peptides are 83.3% 
identical. Like MHV-2, SARS-CoV (NCBI Accession: 
NP_828851.1) also depends on Cathepsins for their spike 
cleavage into S1 and S2. When compared with SARS-CoV-2 
(NCBI Accession: QIK02964.1, RefSeq: YP_009724390.1), 
which shares a furin cleavage site similar to MHV-A59, they 
were 61.5% identical in their cleavage signals and 78.9% 
identical in the fusion peptide. We also compared the RBD, 
HR1, HR2, and TM domains; their respective identities and 
sequence similarities are denoted in Figure 1.

Corollary Between SARS-CoV-2 and m-CoV 
Disease Kinetics

Intracranial (i.c.) inoculation of MHV-A59 and RSA59 in 
mice is used as extensively studied prototypic animal model 
to study virus-induced inflammation of the brain, spinal cord, 
optic nerve, and retinal ganglionic cells of the eye. Acute 
disease symptoms during three to seven days postinfection 
(p.i.) are characterized by robust host immune responses 
accompanied by pathological consequences including 

meningitis, encephalitis, and myelitis with or without 
hepatitis. Infectious viral particles are cleared within the first 
10 to 14 days; however, at this time, mice begin to develop 
demyelination, either clinical or accompanied by chronic 
hind limb paralysis. Demyelination and consecutive axonal 
loss reach its peak at day 30 p.i. when the infectious particle 
is completely cleared, and innate immune inflammation is 
majorly resolved, this represents the second or chronic disease 
phase. On day 30 p.i., only viral RNA persists at a low level 
in the spinal cord.18,19,78 An intermediate stage may be present, 
which is governed by the continuous infiltrating T cells into 
the CNS and helps connect the acute host-inflammatory 
responses with the chronic anti-inflammatory responses. This 
phase, however, is less explored.

Likewise, SARS-CoV-2 infection is divided into three 
phases.79 The first phase is represented by the initial infection 
of the mucosal membranes and respiratory tract and 
dissemination of virus into the peripheral blood. During the 
second pneumonia phase, the virus replicates profusely and 
causes an upregulation of host-inflammatory responses. If the 
antiviral immune response is proficiently active, and the virus 
replication is reduced, the patient enters the final recovery 
phase; otherwise, the uncontrolled cytokine storm results in 
lethality.28,80 Results from case reports have shown that the 
timely detection of virus RNA is crucial as the viral titer lies 
within the detection limit only for a short duration of time, 
i.e., in between the first two phases and drops down drastically 
by the second week.79,80 Figure 2 depicts the characteristic 
neuroinflammatory pathology induced by m-CoV MHV-A59, 
and a comparative schematic of viral replication with disease 
kinetics of m-CoV and SARS-CoV-2.

The studies we have at our disposal about SARS-CoV-2 
infection mostly tell us about the disease kinetics extending 
up to 21 days. However, m-CoV has significantly shed light 
on the fact that major disabling chronic pathology of 
demyelination and axonal loss associated with MHV-A59 
and RSA59 reaches its peak rather silently when the infectious 
viral particles go below the detection limit, acute inflammation 
is resolved, and only viral RNA persists at a low level.81 So, 
the question is, do the same phenomena exist in the patients 
recovered from COVID-19? Though it is too early to comment 
on cases of COVID-19 patients, mounting evidence indicates 
a possibility. A study showed that patients affected with 
SARS-CoV-2 presented with neurological symptoms like 
headache (8%) and confusion (9%).82 Also, several studies 
have shown that SARS-CoV and MERS-CoV can infect and 
replicate in the CNS of both humans and animal models, 
especially the brainstem.3,74,83–86 While many animal models 
of SARS-CoV were tested, none were able to mimic the 
disease symptoms like humans, but MHV-1 produced a 
SARS-CoV like lethal disease in mouse and has provided few 
insights into the host cytokine responses against the virus.87 
Still, there is a shortage of studies directly correlating the 
replication of the virus with the resultant pathology as the 
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recombination, where distinct mutations could be linked to 
altered pathologies, if any, in a measure to understand the role 
of distinct spike domains in the disease outcome.88 Paul 
Masters and group developed the first reverse genetic system 
for MHV using RNA recombination.25,89 This has been 
extensively used to exchange specifically the structural and 
nonstructural genes among the MHV strains and to introduce 
single amino acid substitutions.90 The large genome size of 
the CoVs made it difficult to use the reverse genetics approach 
as a tool to design the whole genome infectious cDNA clone. 
Still, in the last few years, full-length infectious clones for 
many coronaviruses, including MHV, TGEV (transmissible 
gastroenteritis coronavirus), NL63, and SARS-CoV have 
been developed.91–94 Very recently, a complete genome clone 
of SARS-CoV-2 and a SARS-CoV-2 mNeonGreen reporter 
virus has been generated.95

Using targeted RNA recombination, two isogenic 
recombinants of MHV, RSA59, and RSMHV2 (background 
is from demyelinating strain MHV-A59) that differed only in 
the S gene were generated. RSA59 had the spike from MHV-
A59, and RSMHV2 had the spike from the parental 
nondemyelinating MHV-2 strain.96,97 The replication, 
virulence, and spread of the recombinants were like the 
parental spike strains (Figure 3).81,96,98 These recombinant 
viruses have served as suitable tools to study the role of Spike 
mediated pathogenesis which has been thoroughly reviewed 
previously.18,19 From the perspective of neuropathogenesis, 
the major highlights from the comparative studies are that 
spike gene mediated entry in the brain or the induction of 
encephalitis may not be the restricting factors for causing 
demyelination as both strains induced acute stage 
neuroinflammation but only RSA59 caused chronic stage 
demyelination. Other functions of spike like cell tropism, 
virus transport along the axons associated with virus spread, 
fusion, and persistence may attribute to the differential 
chronic stage pathologies between the two strains. RSA59 
takes advantage of the synaptically linked neuronal and glial 
cells circuits to travel from the neuronal body centripetally 
along the axons to spread from brain to the brainstem during 
day 3 p.i. It reaches the spinal cord grey matter by day 5 upon 
releasing at the nerve endings and quickly translocate to the 
white matter microglia and oligodendrocytes by day 7 p.i. as 
a function of its cell-cell fusion (Figure 4).99,100,101,102 RSA59 
was also capable of retrograde axonal transport from the optic 
nerve into the retinal ganglionic cells and caused optic nerve 
inflammation and demyelination. Additionally, RSA59 
induces a persistent activation of CD11b+ microglia/
macrophages in the demyelinating regions which showed a 
mechanism of macrophage-mediated myelin stripping in 
RSA59 infection (Figure 4).99,19 RSMHV2 and RSA59 also 
differ in their cleavage signal site. As mentioned before, 
RSA59 S is cleaved posttranslationally into S1 and S2 
subunits, but RSMHV2 S protein does not and is unable to 
cause fusion in vitro.103,104 Penn 97-1, a recombinant strain 
with S1 from demyelinating strain MHV-A59 and S2 domain 

Figure 2. Disease Kinetics and Pathological Manifestations of 
m-CoV MHVA59 and Its Corollary with SARS-COV-2 (A) Shows 
the Kinetics of MHV-A59 Viral RNA, Infectious Particles, and Acute 
Stage Neuroinflammation with the Onset of Demyelination and 
Chronic Stage Peak of Demyelination Disease Following Intracranial 
Inoculation. (B) Shows the Proposed Kinetics of SARS-CoV-2 Viral 
RNA, Infectious Particles, and Disease Course with the Evidence of 
Cytokine Release Syndrome. Infected Humans Succumb on 21 Days 
p.i. Upon Inefficient Anti-inflammatory Responses (red dash line) or 
Enter the Recovery Phase Upon the Development of Herd Immunity. 

Source: Figure designed by Fareeha Saadi.

disease caused by both SARS-CoV in humans and MHV-1 in 
mice are milder than SARS-CoV-2. Moreover, the 
neurological manifestations of SARS-CoV-2 infection is 
finding more relevance by the day and therefore the 
consequences of SARS-CoV-2 infection can be analyzed 
from the eye of m-CoV, MHV-A59 to uncover aspects of 
disease pathology that may be instrumental in designing 
therapeutic strategies.

Spike Controls m-CoV Pathogenesis

While a vast range of studies was identifying and emphasizing 
on the spike function in infection and associated pathology, 
less was clear about the role of S protein in CoVviral antigen 
spread, cell-cell spread, and associated pathogenesis. The 
study on natural recombinants obtained by co-infection of 
MHV-2 and LA-7 strains opened avenues for RNA 
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from MHV-2 was nonfusogenic and did not induce 
demyelination, demonstrating the role of S2 domain in the 
fusogenic property of MHV-A59.16,105 Thus, variable regions 
of the S2 domain or differences in the cleavage signal site and 
fusion domain between RSA59 and RSMHV2 could be 
candidates to explain the differential axonal transport and 
demyelination potential.

Delineating the Minimum Essential Motif in the 
S2 Domain of Spike Protein Responsible for 
Fusogenicity and Demyelination

The strategy for inhibiting the fusion of CoV S2 domain is 
based on the current understanding of the conformational 
transition that takes place during the fusion event.34 The basis 
for this transition is the formation of the six-helix bundle viral 
fusion core driven by hydrophobic interactions between HR1 
and HR2.9 Thus, all efforts of researchers have been directed 
in disrupting the formation of the fusion core, and this has 
been facilitated by the fact that HR regions are the better-
conserved regions of the S protein and more amenable for 
peptide design. The identification of the double-proline site 
opens a new possibility of mimetic peptide design with the 
potential to disrupt Spike fusogenicity.

In 1990, for the first time, it was indicated that MHV-A59 
contains an internal FP (929–944) that could be the fusion 
domain considering its hydrophobicity and location adjacent 
to the heptad repeat domains.106 Previous studies had shown 
that substitution of 936 methionine residue with lysine 
(M936K) or leucine (M936L) in the fusion domain did not 
affect fusion, but the substitution of 938 proline with lysine 
(P938K) partially impaired the fusogenicity.107 The fusion 
domain of MHV-A59 contains two consecutive central 
proline (938, 939), but that of the MHV-2 (nonfusogenic and 
nondemyelinating) strain contains only one proline (976). A 
series of 3-dimensional in silico and biophysical nuclear 
magnetic resonance (NMR) studies were carried out on 
MHV-2 and MHV-A59 Spike fusion domains in their wild-
type and mutant states which revealed that the fusion peptide 
might contribute in a significant way toward the fusogenicity 
of MHV-A59(Figure 5).62 The double proline fusion peptides 
were found to be markedly rigid than single proline. The 
presence of two proline in the Spike of MERS-CoV, SARS-
CoV and HCoV-HKU1 were also shown to stabilize the S 
protein in the prefusion state.108 Recently, as a proof of 
concept for the use of S-2P as a vaccine for SARS-CoV-2 it 
was shown that an mRNA vaccine expressing the MERS 
S-2P elicits a protective response in mice. Similarly, SARS-
CoV-2 S-2P expressing mRNA served as a potent immunogen 
inducing both neutralizing activity and CD8 T cell responses 
in mice. It protects mice from both upper and lower airway 
SARS-CoV-2 infections. The mRNA vaccine has shown 
promising results in phase II clinical trials and is soon 
expected to be in the phase III efficacy evaluation phase.109 
The S-2P design has been used in several vaccine strategies 
including the

Figure 3. Differential Neuropathological Outcomes of m-CoV 
Spike Protein Recombinants, Demyelinating Strain RSA59 and 
Nondemyelinating Strain RSMHV2. Serial 5 μm Thick Brain Sagittal 
Sections From RSA59 (C, E, G) and RSMHV2 (D, F, H) Infected Mice 
at Day 7 p.i. Immunostained for leukocyte common antigen (LCA) or 
CD45 (C-F) or CD11b (G, H) are Shown. LCA Staining Shows Acute 
Encephalitis in RSA59 (C, E) and RSMHV2 (D, F) Infected Mouse 
Brain Characterized by the Presence of Inflammatory Infiltrates 
Throughout the Parenchyma. Serial 5 μm Thick Cross-Sections 
From RSA59 and RSMHV2 Infected Mouse Spinal Cord at Day 30 p.i. 
(Peak of Demyelination) were Stained with luxol fast blue (LFB) for 
Myelin (I, J) or LCA (K, L). Schematic of the Genomic Organization 
Depicts That RSA59/DM Strain (A) and RSMHV2/NDM Strain (B) are 
Isogenic Except for the Spike Gene but Show Significant Differences 
in the Chronic Stage Pathology. DM Contains the Spike Gene From 
Parental Demyelinating Strain MHV-A59, and NDM Contains the 
Spike Gene From Parental Nondemyelinating Strain MHV-2, Both 
Strains Contain Heterologous Enhanced Green Fluorescent Protein 
(EGFP). The Expression of EGFP Helps to Trace the Virus Particle in 
Real-Time in Situ. The Majority of LCA+ Inflammatory Cells Stained 
Positive for the Macrophage/Microglia Marker CD11b in Both RSA59 
(G) and RSMHV2 (H) Infected Mouse Brain, Which is Characteristic 
of Neuroinflammation and Encephalitis. Large Demyelinating Lesions 
(I) with LCA+ Cells (K) were Observed in RSA59 Infected Mouse 
Spinal Cord White Matter. In Contrast, Normal Myelin Staining (J) 
was Observed in RSMHV2 Infected Mouse Spinal Cord with Only 
Rare Scattered LCA+ Cells in the Grey Matter (L). C and D are 
Laser-scanned (Aperio) Images of Glass Slides. Original Magnifications 
for E–H are 100x. Original Magnification for I–L is 40x. 

Source: Figure adapted from Das Sarma et al.99
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Figure 4. Spike Regulates the Trafficking of RSA59 in the White Matter and Subsequent Neuropathology. Infected Mouse Spinal Cord at 
Day 6/7 p.i. were analyzed for the Spread of the Virus. EGFP Fluorescence (Green) Identifies Virus-infected Cells of Infected Mice Spinal 
Cords. Immunolabeling With Neuronal Cytoskeletal Markers Shows the Co-localization of RSA59-EGFP with NFM in (A) and Synaptophysin 
in (E). Insets Show Proof of Transport of RSA59 Along the Neuronal Cytoskeleton to Get Released at the Nerve End (Synaptophysin, E) to 
Infect the Oligodendrocytes in the White Matter. RSA59 Infected Spinal Cord, Showed the Viral Antigen Translocation Denoted by EGFP 
Expression From Grey to White Matter (B). The Area of EGFP-positive Cells From A is Marked in a Corresponding LFB-stained Section 
(C). In Contrast, RSMHV2 is Predominantly Restricted to the Grey Matter and Grey-white Matter Junction, as Shown by EGFP-positive 
Cells (F). The Area of EGFP-positive Cells From D is Marked in the Corresponding LFB-stained Section (G). Ventral Horn White Matter 
(D) Reveal Olig2 Positive Nuclei Surrounded by EGFP Positive Cytoplasm (Arrows) Demonstrating RSA59 Infection of White Matter 
Oligodendrocytes. (H) Demonstrates EGFP Fluorescence in the Axonal Pattern with Surrounding Co-localization of PLP in the Myelin 
Sheaths Showing Axonal Transport of RSA59. Thirty days p.i. Spinal Cords were Stained for Toluidine Blue (1 μm Thick) to Delineate the 
Preservation of Myelin, Axons, and Axon-myelin Coherence (I, J, P, and Q). Sections Showed That Axon-Myelin Coherence is Disrupted 
in Demyelinated Plaques of RSA59 Infected Mouse Spinal Cord (I, J). In RSMHV2 Infected Mouse Spinal Cord, Myelin Remains Relatively 
Preserved with Rare Examples of Early Axonal Degeneration Characterized by Loss of the Central Axon and Collapse of the Myelin Sheath 
(P, Q). Representative Foci of Demyelination and Axonal Injury were Selected From the Toluidine Blue-stained Sections and Processed 
for Ultrastructural Studies by High-resolution TEM. Demyelinating Plaque in RSA59 Infected Mouse Spinal Cord (K–M), Showed Activated 
Macrophages, Complete Axonal Degeneration with Only Residual Empty Vacuoles, Extensive Loss of Myelin, Hypomyelination, Naked 
Axons with No Myelin Sheath at all. In Contrast, RSMHV2 Infected Mouse Spinal Cords Show Only Rare Examples of Early Axonal 
Degeneration with Collapsed Myelin (R). K is Magnified Further in M and N. (M) Shows a Macrophage (Upper Portion of the Figure) is 
Observed Surrounding an Intact Axon (Lower Portion of the Figure) with Uncompacted Myelin. Myelin Figures are Observed Within 
the Cytoplasm of this Macrophage Indicative of Prior Engulfment of Myelin. (O) Shows a Higher Magnification Image Demonstrating 
Close Apposition of the Macrophage Cell Membrane and an Outer Layer of Uncompacted Myelin where the Macrophage has Formed a 
Pseudopodium Showing Evidence of Myelin Stripping. The Axoplasm and Axolemma are Intact, and the Adjacent Myelin Shows Vesiculation 
Indicative of Myelin Degeneration. These Images Demonstrate a Macrophage-mediated Myelin Stripping as a Mechanism of Demyelination 
in RSA59 Infection. Mechanistically, the Role of the Presence of Activated Microglia/Macrophage within the Demyelinating Plaques of 
RSA59 Infected Spinal Cords, as Shown in Figure 3, is Clarified Here. Original Magnification for A, D, E is 630x, B is 40×, C and G is 20×, 
F, I, P is 100×, H is 200×, J and Q is 1000×, M is 3000×, K is 5000×, L and R is 6000x, N is 15000x and O is 40000x. 

Source: Figure Adapted From (Das Sarma et al., 2009; Das Sarma et al., 2008; Kenyon et al. 2015).99,100,101
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95% effective, BNT162b2 by BioNTech/Pfizerand 94% 
effective mRNA1273 by Moderna/NIAID, the first two 
vaccines approved by the FDA upon exercising their 
emergency authority protocols.110–112

In earlier studies, the role of two Proline infusogenicity 
was demonstrated by generating a mutant by targeted RNA 
recombination, RSA59 (P), which had one deleted proline. 
RSA59 (PP), i.e., the wild-type recombinant MHV-A59 strain 
and RSA59 (P), were compared in a series of in vitro and in 
vivo experiments. RSA59(P) had significantly reduced fusion 
and syncytia formation.62 Both the PP ad P mutants have the 
same cytoplasmic tail which has the retention signal for 
controlling protein trafficking, therefore, RSA59 (P) slower 
replication and syncytia formation could not be only linked to 
the movement of S Protein to the cell surface but a 
combinatorial outcome of low replication, destabilized S 
protein structure and inefficient trafficking (Figure 5).62,113 
RSA59 (P) showed limited ability to spread across the brain 
parenchyma; viral antigen staining was mostly restricted to 
the site of infection and in the meninges and it induced 
significantly low demyelination pathology compared to the 
wild-type. Additionally, RSA59(P) showed significantly less 
inflammation of the optic nerve and induced no damage to the 
RGC. The virus did transport retrogradely, but its reduced 
ability toward cell-cell fusion did not allow it to move until 
the retina and infect RGCs.114 The proline thus plays an 
essential role in fusion, which further affects the replication, 
spread across the brain and spinal cord, retrograde transport 
to the optic nerve and RGC, and the ability to cause 
demyelination.

These reports, for the first-time, unraveled the role of two 
proline in the backbone of S protein fusion peptide in m-CoV 
pathogenesis. M-CoV fusion mechanism offers a potential 
therapeutic target. Dissecting the minimum essential required 
for fusogenicity is a significant advancement for designing a 
mimetic peptide to restrict CoV infection.

S2 and Not S1 Domain of Spike Can Serve as 
Better Pan-CoV Drug Target

Despite considerable progress in the understanding of spike 
protein functions, it may still be limited in our ability to 
predict the effect of mutations that Spike, and the virus 
genome might acquire. Therefore, insights from decade-long 
studies on other CoVs and understandings from them hold a 
compelling case for improving our understanding of the 
current COVID-19 pandemic and assess its pathology and 
course of evolution.

Given the rapid expected evolution of the SARS-CoV-2, it 
is imperative to ask which of its two domains, S1 or S2, is 
likely to evolve faster. This can be answered from sequence 
comparisons with other existing members of the 
β-coronaviruses. The receptor-binding domain is most 
variable across the CoVs, and this has also been corroborated 
by the limited success we have achieved in drugs’ discovery 

Figure 5. Two Consecutive Prolines in the Centre of the Fusion 
Peptide of m-CoV Regulate Fusogenicity. (A) Diagram Showing 
the Illustration of MHV-2 and MHV-A59 Spike Fusion Domain 
Structures in the Trimeric Quaternary State. Frames From a 1μS 
Long Molecular Dynamics Simulation Trajectory were Randomly 
Drawn to Depict the Shown Structures. The Fusion Peptides are 
Marked in Brown. The Single Proline Containing Fusion Peptides 
Showed more Flexibility than the Double Proline Cases in the 
Trajectory. (B) Shows the Illustration of Spike of RSA59 (PP) 
Wildtype Recombinant and RSA59 (P) Single Proline Mutant of 
RSA59. Only RSA59(PP) can Form Syncytia (C, D). Spike Alone 
can Traffic to the Cell Surface and Cause Syncytia Formation was 
Shown by the Transient Overexpression of Spike of MHV-A59 
(S-MHV-A59 [PP]) in HeLa Cells (E) by YFP.

against the receptor-binding domain as target.10,11 Antibodies 
capable of recognizing the SARS-CoV receptor binding 
domain have failed to recognize the SARS-CoV-2 receptor 
binding domain, although they share >74% identity, thereby 
showing low cross-reactivity.30 In comparison, the fusion 
domain (S2) has more conserved regions, and studies in 
m-CoV have demonstrated the importance of specific 
residues, including our illustration of the high significance of 
two prolines in the fusion peptide and Spike associated 
disease pathology.62,114–116 The fusion domain thus promises 
to be a better cross-functional success as the potential pan-
coronavirus therapeutic target. However, the receptor-binding 
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domain contains most antigenic determinants because of its 
larger surface exposure in the prefusion state. Another aspect 
of Spike that strengthens our premise for S2 as a therapeutic 
target is based on the profound structural and functional 
similarities it shares within all class I viral membrane fusion 
proteins. In all cases, S2 is in a metastable state that exists in 
prefusion and postfusion conformations. The prefusion 
structures are similarly triggered for state change through 
comparable conformational rearrangement, folding to a 
highly similar six-helix bundle post-fusion structure with 
exposed fusion peptides. The complexity and intricacy of the 
fusion mechanism appear to be specialized and inherited, 
although its independent evolution in viruses cannot be 
completely ruled out. Spike evolution is justifiable; therefore, 
an intriguing question because a Spike from neurotropic 
strain MHV-JHM exists that can mediate receptor-independent 
virus entry into cells that do not express its receptor.117 This 
suggests that receptor binding need not be essential for a virus 
to fuse, infect, and replicate, and its sole purpose is cell-
recognition. However, such a Spike with S2 alone may be 
inefficient for the fusion.

It has been shown that the HR1/HR2 regions of class I 
viral fusion proteins of enveloped viruses like HIV, respiratory 
syncytial virus (RSV),21 Ebola virus,100 paramyxoviruses 
SV5,101 Nipah virus,22 and murine hepatitis virus (MHV)23 
serve as efficient drug targets. Likewise, the heptad region in 
the spike S2 domain is highly conserved and peptide 
sequences based on these segments have been most tested for 
inhibiting CoVs. During SARS-CoV 2003 outbreak, three 
independently developed peptides based on the heptad repeat 
two region were found to inhibit CoV fusion.118–120 Later 
another three peptides based on the same region were 
specifically found to block the six-helix bundle formation.121 
SARS-CoV-2 not only binds to the ACE2 receptor with 
higher affinity, but it also displays a significantly higher 
capability of membrane fusion compared to SARS-CoV 
which is elucidated by the formation of syncytium in culture. 
Thus, suggesting that the fusion machinery of SARS-CoV-2 
can serve as an important drug target. This could be partly 
attributed to the presence of few alterations in the SARS-
CoV-2 HR1 region. The HR2 peptide sequence is identical in 
both SARS-CoV and SARS-CoV-2 and the mutations in HR1 
might have resulted in rendering the virus fusogenic. Recent 
study showed that peptides targeted against the HR1 domain 
were effective against SARS-CoV-2 and other H-CoVs.29 
Nonheptad repeats regions-based peptides have also been 
developed for fusion inhibition study, albeit to a limited 
degree. Two designed peptides upstream of the S1/S2 and S2’ 
cleavage sites have elicited anti-fusogenic activity likely 
because of interference with S1/S2 cleavage and 
conformational restriction for fusion.121 Our discovery of 
surface-exposed double proline containing rigid segments in 
the S2 domain could offer a new premise for structure-based 
peptide design for CoV fusion inhibition. These segments 
could also be presented as antigens to raise antibodies and, 

therefore, also suitable for vaccine design. There is a need to 
do clinical tests using few peptides discovered – for proof of 
pan-COVID utility.

m-CoV Spike in Inflammation and Immunity

The integration of reverse genetics, molecular biology, and 
pathology has significantly contributed toward the 
understanding of S protein function in CoV biology, to the 
extent of deciphering a minimum essential motif required for 
entry and fusogenicity. However, Spike function is not 
limited to mediating entry into the cell, and it is known to 
regulate immunopathogenesis, which is the critical regulator 
of virus infection.18,19,26 In fact, the interaction between the 
virus and the innate immune system determines the outcome 
of the disease. While the early control of virus replication 
elicits a strong pro-inflammatory, Type I interferon response, 
it also helps promote the development of an anti-inflammatory 
response.122–124 The balance between these two contrasting 
yet complementary states of immunity is central for 
reinstating tissue homeostasis.125,126 A shift toward either 
side can be detrimental and result in immune pathology and 
tissue damage.

MHV infection causes neuroinflammation as a result of 
pronounced activation of CNS resident immune cells, 
microglia, and astrocytes.72,127 Microglia, upon activation, 
take the characteristic activated phenotype and start expressing 
microglia/macrophage-specific protein Iba1(ionized calcium-
binding adaptor molecule 1), which promotes ruffling and 
phagocytosis.99,19,128,129 Both RSA59 and RSMHV2 trigger 
innate immune responses predominated by chemokines like 
CXCL10, CXCL9, CCL5, and CCL12 and CD molecules 
during the acute stage. Antiviral host responses are associated 
with perforins and genes involved in interferon (IFN) gamma 
signaling. The inflammatory responses gradually decline in 
RSMHV2 infection after virus clearance. However, RSA59 
chronic disease is represented with persistent CD11b+ 
microglia within the demyelinating lesions, and the production 
of microglia-associated inflammatory mediators. These 
differences could be attributed to the ability of RSA59 to 
translocate through the axons and evade the robust immune 
responses targeted to clear the virus completely. However, 
parallelly, regulatory, and anti-inflammatory cytokine IL-10 
significantly controls the enlargement of tissue lesions in an 
attempt to reduce the chronic pathology.130–133 IFN responses 
can promote phagolysosomes maturation and autophagy in the 
persistently activated microglia/macrophages, which can 
engulf the myelin sheath, leading to demyelination.99

Further, virus-specific T cell effector functions are 
essential to eliminate the infectious virus load during most 
acute infections.134–136 Control of m-CoV spread requires 
the functioning of both CD4 and CD8 T cells, were CD8 T 
cells are the primary effectors but require support functions 
from CD4 T cells.20,137 A recent study in CD4-/- mice 
showed impaired virus clearance, despite the presence of 
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functional CD8 T cells, demonstrating the importance of 
CD4 T cells for the efficient functioning of CD8 T 
responses.138 While T cells are the helpers for the 
development of intact adaptive responses, their functions 
are acutely regulated by CNS resident immune cells to 
reduce their cytolytic effects.139 However, a deviation from 
the optimum control of CNS cells can significantly dampen 
the T cell functions that may sometimes result in the 
establishment of persistent virus infection.139 In a recent 
study, we have shown a critical role of CD4 T cells in 
RSA59 clearance and resultant pathology. The demyelination 
pathology is significantly more severe in the CD4-/- mice 
where phagocytic M2 phenotypic microglia/macrophages 
are found in abundance in the demyelinating plaques.

The studies on Spike mutants have served as a valuable 
tool in the elucidation of the Spike mediated mechanisms of 
intracellular spread and the processes that specifically allow 
CoVs to evade the immune system to establish successful 
disease pathologies. Figure 6 presents an illustration of the 
kinetics of immune cell infiltration and pathogenesis upon 
RSA59 infection.

Insights From m-CoV Help to Understand the 
Underlying Mechanisms of Immune Inflammation 
in SARS-CoV-2

As the infection kinetics of MHV-A59 and SARS-CoV-2 are 
quite similar, it is not surprising to note that the immune 
induction is also similar in the two strains based on the current 
literature.140,141 SARS-CoV-2 infection initially replicates in 
the airway epithelium and induces virus-associated pyroptosis 
in the infected cells.1,140–142 This highly inflammatory type of 
cell death program triggers a whole chain of pro-inflammatory 
responses like m-CoV, starting with IL1β and other 
chemokines secretion, which is followed by the infiltration of 
activated macrophages and establishment of a local 
inflammatory niche.28,77,141 Many cytokines and chemokines, 
mostly of the TH1 response, are identified in the plasma of the 
patients suffering COVID-19 during the acute infection, 
including, but not limited to, IL6, IFNγ, MCP1, and 
IP-10.141,143 In most individuals, these innate immune 
responses clear the virus, and patients recover. But 
dysregulation of these tightly controlled host responses can 
trigger a cytokine release storm (CRS) which is represented 
by increasing levels of IL-6, IL-2, IL-7, IL-10, granulocyte 
colony-stimulating factor (G-CSF), IP-10, MCP1, 
macrophage inflammatory protein 1α (MIP1α), and tumor 
necrosis factor (TNF).28 Inflammatory monocytes derived 
activated macrophages persist in the lung tissues like the 
activated glial cell persistence in RSA59 infection that secrete 
significant levels of cytokines like MCP1, IP-10, and 
MIP1α.144

Interestingly, the adaptive immune system, including CD4 
T cells and B cell responses, occurs concomitantly after the 
first stage of the infection, i.e., after the first week in 

Figure 6. Encephalitic and Demyelinating m-CoV Infection and 
Kinetics of Immune Cell Infiltration and Pathogenesis. Following 
Intracranial Inoculation of MHV-RSA59, into C57BL/6 Mice the 
Virus Migrates into the Brain Parenchyma and Infects the CNS 
Resident Cells, Namely, Astrocytes, Microglia, Oligodendrocytes, 
and Neurons. The First Seven Days are Marked by Rapid 
Replication of Virus and Heightened Innate Immune Response 
with Characteristic Neuroinflammation and the Production of 
Proinflammatory Signals Such as TNF-α, IL-6, CCl5 and CXCL10 
Released by Activated Glial Cells Causing a Cytokine Storm. These 
Proinflammatory Signals Cause a Surge of Peripheral Innate Immune 
cells into the CNS, Majorly, Neutrophils, Macrophages and Natural 
Killer (NK) Cells. The Levels Of Neutrophils Decline as Early as 
Day 5, However, Enhanced Proinflammatory Signals Lead to a Shift 
in the Adaptive Response Wherein the Virus-specific CD4+ and 
CD8+ T Cells That Secrete IFN-γ, Infiltrate and Accumulate in 
the CNS. The T Cells Migrate in Response to Widespread Virus 
Replication Throughout the Brain Parenchyma and Its Transport to 
the Brain Stem and the Spinal Cord White Matter (Indicated in Grey 
Shaded Rectangle) Upon Crossing the Grey-white Matter Junction. 
Further, During Early Chronic Infection Stage (Days 10–15 Post 
Infection) the Infectious Virus Particles Start to Decline Particularly 
in Response to CXCL10, CCl5 and IFN-γ, and Goes Below the 
Detection Limit. As the Virus is Cleared From the Glial Cells, 
CD8+ T Cells Population Declines Drastically. CD4+ T Cells are 
Present in Significant Numbers Even Beyond Day 16 Showing Their 
Probable Association with Anti-inflammatory Response in Consort 
with the Microglia. Activated Microglia are Still Present in Large 
Numbers Around the Dead and Sick Neurons in the Demyelinating 
Regions at the Peak of Demyelination and Axonal Loss (Day 30). 

Source: Figure Designed by Fareeha Saadi.
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SARS-CoV-2, as is also seen in m-CoV.145,146 While CD8 T 
cells are required for direct killing of the virus, CD4 T cells 
are essential for activating both CD8 and B cells as well as 
cytokine production. Not much is known about the role of 
CD4 T cells in the COVID-19 pathology. Still, there are 
pieces of evidence from case reports which show the presence 
of T cells in the lungs and lymphopenia, indicating their 
putative role in the attempt to prevent tissue damage.141,147–149

The main reason behind the extreme morbidity associated 
with COVID-19 is the imbalance between this see-saw where 
proinflammation is so high it outweighs the protective anti-
inflammatory response. It has been demonstrated in SARS-
CoV that virus infection downregulates the expression of 
ACE2, which has shown to play essential roles in lung injury 
and the regulation of the renin-angiotensin system (RAS).75,150 
RAS dysregulation disturbs the blood pressure and fluid/
electrolyte balance and induces a heightened inflammatory 
response along with increased vascular permeability. Now, 
SARS-CoV-2's binding to the receptor is 10 to 20 folds 
higher, and it is not unlikely to hypothesize that it causes a 
much more significant downregulation in ACE2, which 
results in the inefficiency of RAS and dysregulation between 
the pro and anti-inflammatory responses which results in a 
cytokine storm.27–30 This highly pro-inflammatory 
microenvironment and permeable vasculature invite an ever-
increasing number of inflammatory cells into the lungs, 
which ultimately clogs the airways resulting in lethality. 
SARS-CoV emerged, caused a few hundred deaths, and 
disappeared, but it seems that SARS-CoV-2 is here to stay. 
The efficiency of human-human transmission and an 
enormous virus load is still beyond the control and scope of 
the current database of knowledge that has been generated in 
years. JHMV, a highly neurovirulent CoV, shows similar 
uncontrolled acute inflammation state, whereas less as 10PFU 
of virus creates havoc in the CNS of the mice so much so that 
results in the death of mice at ten days p.i.5,151,152 Though this 
virus and its recombinant strains have generated enormous 
amounts of results to understand CoV biology, it is considered 
unsuitable for the study of virus persistence. MHV-2, on the 
other hand, triggers a robust innate immunity in the acute 
stage, which helps clear the virus and bring back 
homeostasis.129 It does not cause any kind of progressive 
illness. MHV-A59, because of its mild nature has proven to 
be an appropriate model to study the development of a 
protective host response that efficiently balances the innate 
antiviral responses at the same time, the virus persists in the 
spinal cord, silently causing chronic pathology without any 
visible symptoms. SARS-CoV was reported to infect the 
brains of patients, especially the neurons, and upon intranasal 
inoculation in animal models could also infect the thalamus 
and the brain stem regions of the brain.3,153–156 In fact, another 
study showed MERS-CoV tropism only in the brainstem 
upon low dose intranasal inoculation, indicating that the 
infection in the brain and not lungs led to significant morbidity 
in mice.157 The mechanism of the CNS invasion is not clear, 
but they probably take the synaptic route, as shown in other 

CoVs.101,86 A neurotropic propensity is common to many 
CoVs.155,158,159 Furthermore, some CoVs can spread trans-
synaptically to the brain from the mechanoreceptors and 
chemoreceptors in the lung and lower respiratory airways.160 
As SARS-CoV and SARS-CoV-2, are quite similar and 
specific neurological symptoms have been demonstrated in 
COVID-19 patients, the potential invasion of SARS-CoV2 in 
the brain might probably lead to the acute respiratory failure 
of patients.160–165

COVID induced by m-CoV and H-CoV share similarities 
in disease, including acute immune responses, virus 
persistence, and the development of adaptive protective 
immunity. Their comparative study to investigate therapeutics 
is an open forum.

Discussion and Conclusions

SARS-CoV-2 has infected millions of people worldwide to 
date, implying that it has presented itself with a golden 
opportunity to diversify further.166 With a low fidelity of the 
virally encoded RNA-dependent-RNA-polymerase,167 its 
large size of genome and replication strategy is a boon for 
frequent homologous recombination. This process enables 
the exchange of genetic material during co-infection. 
Persistent infection can further lead to the accumulation of 
adaptive mutations. Therefore, there is a high possibility of 
the virus becoming more lethal and jump to more species and 
cause more devastation. In such a scenario arresting Spike 
mediated fusion, either during virus-host attachment or cell-
cell spread, can be the key to early containment of infection. 
Else because of the significant role of the spike in tissue 
tropism, its modification through evolution would mean 
altered cell and tissue tropism, and additional association 
with other viral and host factors may accelerate the alteration 
of virus pathogenicity. Such rapid change may overwhelm 
our capacity for surveillance. Recent studies showed that 
SARS-CoV-2 is actively evolving. D614 G mutation within 
the viral spike protein (S1 CTD) has rendered the virus more 
infective than the wild-type virus, though virus’s response to 
antibodies was unaltered.168–171 While this ensures that 
vaccines currently under development can be effective against 
the new strain, it also raises serious concern to address the 
COVID-19 pandemic and future coronaviruses, by 
investigating their entry and fusion mechanisms in consort, 
which can guide new therapeutic efforts. Many other aspects 
of the viral fusion reaction are also potential targets for 
modulation. These include the inhibition of the proteases that 
cleave the Spike, small molecules, or lipids that alter the lipid 
composition or ionic environment and antibodies that 
recognize the S domains. The research community is poised 
to see what novel therapeutics can address CoV infections.

Several treatment options for COVID-19 are emerging at 
an accelerated rate. Many vaccines candidates have been 
developed. Some have even cleared the trials and approved 
by the FDA. The first two mRNA vaccines delivered by 
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nanoparticle showed exceptional results so far.171 A third 
adenovirus-based vaccine172 from United Kingdom also made 
to the market and is showing 91% effectivity. While vaccine 
development is the need of the hour to control COVID-19 
pandemic and return to the prepandemic normal state, our 
long-term goal should be addressing the pan-COVID question 
and that demands the development of effective broad-
spectrum therapeutics which cannot be achieved without 
considering in detail the host immune response. It is becoming 
increasingly evident from the current data on SARS-CoV-2 
that host responses contribute a great deal to the morbidity. 
Therefore, we need to consider the host responses alongside 
Spike functions to be fully prepared for future outbreaks. 
Cellular factors like the production of reactive oxygen species 
have been associated with many virus infections, including 
CoVs. An imbalance between reactive oxygen species and 
antioxidants’ generation leads to a dysregulation of oxidative 
stress, endoplasmic reticulum stress and unfolded protein 
response pathways.173 Deprivation of antioxidant mechanisms 
and oxidative damage to the tissues is relevant to the aging 
process, which could be one of the reasons for making the 
aged more susceptible to SARS-CoV-2 infection.2,4,77,160,174,175 
Also, nonstructural proteins have shown to affect tropism and 
pathogenesis by regulating the rate of virus replication either 
by interacting with cell type-specific factors or with 
components of the immune response.176–181 But Spike alone 
can as well alter fusion, entry, cell-cell fusion, pathogenesis, 
host immune response, and virus persistence. This was 
corroborated from an excellent mouse model system of 
RSA59/RSMHV2 infection, demonstrating demyelination 
pathology because of either pathogenic immune outcome, 
direct virus-induced cytopathic effects, or their combined 
outcome for RSA59, and weak effect for RSMHV2, the 
strains differing only in their Spike. When immunity clears 
the virus and prevents subsequent pathology, it also supports 
a paradigm where cell-mediated immunity affects pathology 
indicated by microglia-mediated myelin stripping and the 
inability of T cell effector functions to completely clear the 
virus which results in persistently active immune 
responses.18,19,138,182 This establishes that inflammation is a 
double-edged sword and provides useful clues for 
hypothesizing SAR-CoV-2 immune response. The unique 
nature of S glycoprotein suggests a need to focus on 
identifying the domains of Spike that interact with the specific 
host cellular pathways and use the information for therapeutic 
intervention. Health threats from CoVs are constant and 
understanding the antiviral host responses targeted against 
Spike is essential for controlling the virus with a specific goal 
to preserve global health and establish economic stability.
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