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Abstract

Transcriptome measurements of individual cells reflect unexplored biological diversity, but are 

also affected by technical noise and bias. This raises the need to model and account for the 

resulting uncertainty in any downstream analysis. Here, we introduce Single-cell Variational 

Inference (scVI), a scalable framework for probabilistic representation and analysis of gene 

expression in single cells. scVI uses stochastic optimization and deep neural networks to aggregate 

information across similar cells and genes and approximate the distributions that underlie the 

observed expression values, while accounting for batch effects and limited sensitivity. We utilize 

scVI for a range of fundamental analysis tasks – including batch correction, visualization, 

clustering and differential expression – and demonstrate its accuracy and scalability in comparison 

to the state-of-the-art in each task. scVI is publicly available and can be readily used as a 

principled and inclusive solution for analyzing single-cell transcriptomes.

Introduction

The ability to map single cell transcriptomes en-mass with single-cell RNA sequencing 

(scRNA-seq) provides a powerful tool, which is beginning to make important contributions 

to diverse research areas such as development [1], autoimmunity [2], and cancer [3]. 

Interpreting scRNA-seq remains challenging, however, as the data is confounded by 

nuisance factors such as limited [4] and variable [5] sensitivity, batch effects [6] and 

transcriptional noise [7].
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The challenge of modeling bias and uncertainty in single-cell data has been explored in 

several recent studies, where a common theme is treating each data point (cell × gene) as a 

random variable for which a probabilistic model is fit [8, 9, 10]. The parameters of these 

models are determined by a combination of cell- and gene-level coefficients (and in some 

cases additional metadata such as library depth [10]), thus providing a representation of the 

data in a lower and potentially less noisy dimension. Once these models have been fit, they 

can then in principle be used for various tasks such as clustering [11], imputation [12] or 

differential expression [13]. A complementary line of studies focuses on only one of these 

tasks, in some cases without explicit probabilistic modeling.

While these methods helped gain new insights into the meaning of biological variation 

between cells, several limitations remain. First, the existing distributional modeling methods 

assume that a low-dimensional manifold underlies the data, and that the mapping into this 

manifold can be captured by a generalized linear model. While the notion of a restricted 

dimensionality is plausible (e.g., reflecting common regulatory mechanisms among genes or 

common states among cells), it is difficult to justify the assumption of linearity. Second, 

different existing methods utilize their models to perform different subsets of tasks (e.g., 

imputation and clustering, but not differential expression [8]). Ideally, one would have a 

single distributional model that can be used for a range of downstream tasks, thus help 

ensuring consistency and interpretability. Finally, computational scalability is increasingly 

important. While most existing methods can be applied to no more than tens of thousands of 

cells, the next generation of tools must scale to the size of recent data sets that consist of 

hundreds of thousands of cells or more [14].

To address these limitations, we developed a fully probabilistic approach for normalization 

and downstream analysis of scRNA-seq data, which we refer to as Single-cell Variational 

Inference (scVI). scVI is based on a hierarchical Bayesian model [15] with conditional 

distributions specified by deep neural networks, which can be trained very efficiently even 

for very large datasets. The transcriptome of each cell is encoded through a non-linear 

transformation into a low-dimensional latent vector of normal random variables. This latent 

representation is then decoded by another non-linear transformation to generate a posterior 

estimate of the distributional parameters of each gene in each cell, assuming a zero-inflated 

negative binomial distribution, which accounts for the observed over-dispersion and limited 

sensitivity [10, 16, 17]. Independent of our work, several recent manuscripts have also 

demonstrated the utility of using neural networks to embed scRNA-seq datasets in a scalable 

manner [18, 19, 20, 21]. scVI stands out from these methods in two important ways (Online 

Methods, Supplementary Note 1, Supplementary Table 1). First, it is the only method that 

explicitly models the two key nuisance factors in scRNA-seq data, namely library size [8, 

22] and batch effects [10, 23]. Second, scVI is the only method that offers readily available 

solutions for a range of analysis tasks using the same generative model. In the following, we 

demonstrate this property, focusing on batch removal and normalization, dimensionality 

reduction and clustering, and differential expression. For each of these tasks, we show that 

scVI compares favorably to the current state-of-the-art methods.
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Results

The scVI model: definition and preliminary evaluation

We model the observed expression xng of each gene g in each cell n as a sample drawn from 

a conditional distribution that has a zero-inflated negative binomial (ZINB) form [10, 16, 17] 

(Online Methods). The distribution is conditioned on the batch annotation bn of each cell (if 

available), as well as two additional, unobserved random variables. The first variable ℓn is a 

one-dimensional Gaussian that represents nuisance variation due to differences in capture 

efficiency and sequencing depth, serving as a cell-specific scaling factor. The second 

variable zn is a low dimensional vector of Gaussians (set here to 10 dimensions; see 

Supplementary Figure 1) representing the remaining variation, which should better reflect 

biological differences between cells [24]. We use it to represent each cell as a point in a low 

dimensional latent space, serving for visualization and clustering. We learn the distribution 

of these latent variables q(zn,logℓn|xn,sn), by training a neural network that approximates 

their posterior using variational inference and a scalable stochastic optimization procedure 

[25, 26, 27] (Figure 1a, NN1–4). The second part of our model consists of another neural 

network that generates a posterior ZINB distribution of the data p(xng|zn,sn,ℓn) from the 

latent variables (Figure 1a, NN5–6). This generative scheme consists of intermediate values 

ρg
n, which provide a batch-corrected, normalized estimate of the percentage of transcripts in 

each cell n that originate from each gene g. We use the matrix ρ for differential expression 

analysis and its scaled version (multiplying ρg
n by the estimated library size ℓn) for 

imputation. In the following sections we evaluate scVI using a collection of published 

datasets, spanning a range of technical and biological characteristics. These datasets are 

listed in Supplementary Table 2 and described in the Online Methods section.

To evaluate the scalability of our training procedure, we use a data set of 1.3 million mouse 

brain cells provided by 10x [28] (BRAIN-LARGE) and record the time required to fit the 

model for increasing numbers of randomly sampled cells. To facilitate comparison to state-

of-the-art algorithms for probabilistic modeling and dimensionality reduction of single cell 

data [8, 9, 10, 11, 12] which may be less scalable, we limited this analysis to the 720 genes 

with largest standard deviation across all cells and report results in Figure 1b. We find that 

most methods are capable of processing up to 50K cells before running out of memory 

(using 32Gb RAM). Conversely, we find that scVI is generally faster and capable of scaling 

to the full range of our tests (1M cells), thanks to its reliance on iterative stochastic 

optimization, where one only uses a fixed number of cells at each iteration (Online 

Methods). We also observe similar levels of scalability with DCA [20] a denoising auto-

encoder, which also uses stochastic optimization. Notably, as the dataset size reaches one 

million cells, fewer training iterations (or epochs) are needed and heuristics for stopping the 

learning process may save time. Indeed, we observe that the standard scVI (which uses a 

fixed number of epochs) is slower than DCA (which uses the stopping heuristic by default) 

in this case, however, turning the early- stopping option on makes scVI substantially faster 

(trained in less than an hour), and fit the data as well a run with no early stopping 

(Supplementary Figure 2).
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Next, we evaluated the extent to which scVI and the benchmark methods fit the data by 

assessing their ability to accurately impute missing data. We used five data sets of different 

sizes (3– 27k cells; see Supplementary Table 2; [28, 29, 30, 31, 32]; BRAIN-LARGE, 

CORTEX, PBMC, RETINA, HEMATO), where in each case we set 9% of the non-zero 

entries (chosen entirely randomly in Supplementary Figures 3 and 4, or preferring low 

values in Supplementary Figures 5 and 6) to zero and then test the ability of each benchmark 

method to recapitulate their values. Overall, we observe that in most cases methods that are 

based on a ZINB distribution, namely scVI, DCA and ZINB-WaVE (when it scales to the 

dataset size) perform better than ones that use alternative strategies [8, 12] (e.g., log normal 

[9] in ZIFA), thus supporting the notion that ZINB is appropriate for current scRNA-seq 

datasets. One important exception where MAGIC [12] (which imputes using propagation in 

a cell-cell similarity graph) outperformed scVI occurred with a dataset of hematopoietic 

differentiation [32] (HEMATO), in which the number of cells (4,016) is smaller than the 

number of genes (7,397). In such cases, scVI is expected to under-fit the data, potentially 

leading to worse imputation accuracy. However, additional gene filtering (to the top 700 

variable genes) helped regaining a more accurate imputation (Supplementary Figure 3c). An 

alternative way to evaluate model fit is by testing the likelihood of data that was held-out 

during training. Using this procedure yields consistent results as above (Supplementary 

Figure 7, Supplementary Table 3). Furthermore, scVI, like ZIFA and FA, can also be used to 

generate unseen data by sampling from the latent space. As evidence of the validity of this 

procedure, we sampled from the posterior distribution given the perturbed training data and 

observed that the samples are largely consistent with the unperturbed data (Supplementary 

Figure 8).

Capturing biological structure in a latent low-dimensional space

We next turned to evaluate the extent to which the latent space inferred by scVI reflects 

biological variability between cells. One way to assess this is to rely on prior stratification of 

the cells into biologically meaningful sub-populations, which is normally done by 

unsupervised clustering followed by manual inspection and annotation [29, 30]. We evaluate 

the accuracy with respect to these stratifications (available in two of our reference data sets 

[29, 30]; CORTEX, PBMC) by either applying k-means clustering on the latent space and 

testing for the overlap with the annotated sub-populations (using the same k as in the 

annotated data), or by comparing between the proximity of cells in the same sub-population 

to the proximity of cells from different sub-populations (Online Methods). A data set 

provided by Stoeckius et al. [33] (CBMC), which includes single- cell protein measurements 

in addition to mRNA provides an alternative way for using computationally- derived 

annotations as a gold standard. Here, we evaluate the extent to which the similarity between 

cells in the mRNA latent space resembles their similarity at the protein level (Online 

Methods).

Overall in these tests, we find that scVI is capable of grouping together cells that are from 

the same annotated sub-population or that express similar proteins and that it compares 

favorably to other methods that aim to infer a biologically meaningful latent space (namely, 

ZIFA [9], ZINB-WaVE [10], DCA [20] and factor analysis; Supplementary Figure 9). 

Notably, we also included in this test a simpler version of scVI that does not explicitly 
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models the library size. We observed that this simpler variant does not perform as well as the 

standard scVI, thus supporting our modeling choice.

Next, we benchmark scVI with SIMLR [11], a method that couples clustering with learning 

a cell-cell similarity matrix and a respective low dimensional (latent) representation. We 

observed that SIMLR provides a tighter representation of the computationally annotated 

subpopulations and that it outperforms scVI in this test. This result is expected since SIMLR 

explicitly aims to produce a tight representation of the data in a target number of clusters. 

However, as a consequence, SIMLR may not capture structural properties of the cell-cell 

similarity map that are of higher resolution. Indeed, in the protein vs. mRNA metric 

similarity test, scVI and DCA are the best performing methods, albeit by a small margin 

(Supplementary Figure 9c). Another example is the possibility of a hierarchical structure 

among cell subsets, such as the one reported for cortical cells by Zeisel and colleagues [29] 

(CORTEX). In this case, we find that overall scVI captures this hierarchy more accurately, 

whereby cells from related sub-populations tend to be closer to each other in its latent space 

(Supplementary Figure 9efg). An additional important case occurs when the variation 

between cells has a continuous, rather than discrete, form. An example for this case was 

studied by Tusi and colleagues who profiled a set of hematopoietic cells, spanning various 

stages of differentiation [32] (HEMATO). Here we find that SIMLR identifies several 

discrete clusters, and does not reflect the continuous nature of this system as well as scVI or 

PCA (Figure 2, Supplementary Figure 10). Finally, there may be the case of lack of 

structure, where the data is almost entirely dominated by noise. To explore this scenario, we 

generated a noise dataset, sampled at random from a vector of zero-inflated negative 

binomial distributions. In this case, SIMLR erroneously reports eleven distinct clusters, 

which are not perceived by other methods (Supplementary Figure 11). Altogether, these 

results suggest that the latent space of scVI is flexible and describes the data well, either as a 

hierarchy of discrete clusters, as a continuum between cell state, or as structureless noise and 

is therefore better suited than SIMLR in scenarios where the data does not necessarily fit 

with a simple structure of discrete cell states.

Accounting for technical variability

scVI provides a parametric distribution designed to decouple the biological signal from the 

effects of sample- level categorial nuisance factors (e.g., representing batch annotations) and 

variation in sequencing depth. To evaluate the capacity of scVI to correct batch effects, we 

used a dataset of mouse retinal bipolar neurons that consists of two batches [31] (RETINA). 

We defined an entropy measure to evaluate the mixing of cells from different batches in any 

local neighborhood of the latent space (abstracted using k-nearest neighbor graph; see 

Online Methods). We compare our method to ComBat [34] - a standard pipeline of batch 

correction relying on linear models and empirical Bayes shrinkage, and a recent method 

based on matching mutual nearest neighbors [35] (Online Methods).

Our results (Figure 2, Supplementary Figures 9d and 12) demonstrate that in this dataset 

scVI aligns the batches significantly better than ComBat and MNNs, while still maintaining 

a tight representation of pre-annotated subpopulations. Considering algorithms that do not 

account for batch effects in their models we find, as expected, that the resulting mixing of 
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the batches is poor. Specifically, while SIMLR and DCA are capable of clustering the cells 

well within each batch, the respective clusters from each batch remain largely separated. 

Similar results were obtained when applying a simplified version of scVI with no batch 

variable, thus supporting our modeling choice.

Turning to confounding due to variation in sequencing depth, we find as expected, that in 

relatively homogenous populations (taking sub-populations of cortical cells [28], BRAIN-

SMALL or PBMC [30]) the library size factor inferred by scVI (ℓn) strongly correlates with 

the observed depth per cell (Supplementary Figure 13a). A related technical issue that can 

distort the simmilarity between cells in these sub-populations is the lack of sensitivity, due to 

limitations in mRNA capture efficiency and to a leser extent sequencing depth, resulting in 

an exacerbated amount of zero entries. Interestingly, we find that most of the zero entires in 

the data can be explained by the negative binomial component (Supplementary Figure 14ab) 

rather than the “inflation” of unexplained zeros added to it with a Bernoulli distribution. 

Consistently, we find that the occurence of zeros entries in is largely consistent with a 

random process of sampling genes from each cell in manner proportional to their expected 

frequency (as inferred in the the matrix ρ of our model, which is proportional to the negative 

binomial mean) and with no additional bias (Supplementary Figure 13b and Supplementary 

Note 2). Indeed, we show that the zero probability from the negative binomial distribution 

correlates more with cell-specific quality factors that are related to library size (e.g., number 

of reads per UMI) while the zero probabilities from the Bernouilli correlates more with 

quality factors indicative of alignment errors (Supplementary Figure 13cd and 14cd) , 

possibly indicative of contamination or mRNA degradation. Taken together, these results 

corroborate the idea that most zeros, at least in the datasets explored here, can be explained 

by low (or zero) “biological” abundance of the respective transcript, exacerbated by limited 

sampling.

Differential expression

With its probabilistic representation of the data, scVI provides a natural way of performing 

various types of hypotheses testing, while intrinsically controlling for nuisance factors. In 

the case of differential expression between two sets of cells, we can use the model to 

approximate the posterior probability of the alternative hypotheses (genes are different) and 

that of the null hypotheses by repeated sampling from our variational distribution, thus 

obtaining a low variance estimate of their ratio (i.e., Bayes factor [36, 37]; see Online 

Methods).

To evaluate scVI against other methods [13, 17, 20, 38] for differential expression, we used a 

dataset of 12,039 PBMCs from a healthy human donor [30] (PBMC) and looked for 

differentially expressed genes in two settings: comparing the clusters of B cells vs. dendritic 

cells, and similarly for the CD4+ vs. CD8+ T cell clusters. As ground truth, we used 

published bulk- level comparative analysis of similar cell subsets [39, 40]. For evaluation, 

we first defined genes as true positives if their BH-adjusted p-values in the bulk data was 

under 0.05 and then calculated the area under the ROC curve (AUROC) based on the Bayes 

factor (for scVI) or BH-corrected p-value (for the benchmark methods). Since defining true 

positives requires a somewhat arbitrary threshold, we also used a second score that evaluates 
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the reproducibility of gene ranking (bulk reference vs. single cell; considering all genes), 

using the irreproducible discovery rate (IDR) [41]. Considering the AUROC metric, scVI is 

the best performing method in the T cell comparison, while edgeR outperforms scVI by a 

smaller margin in the B vs. dendritic cell comparison. Considering the proportion of genes 

with reproducible rank as fitted by IDR, scVI is the best performing method in both 

comparisons (Figure 3, Supplementary Figure 15a-e). Interestingly, we see that the hybrid 

method of DCA followed by DESeq2 constitutes a solid improvement over a direct 

application of DESeq2, which was designed with bulk data in mind, thus supporting the 

need of using models adapted for single cell data. Furthermore, a simpler variant of scVI 

that does not include the library size factor shows extremely poor performance on the B vs. 

dendritic cell comparison, being the only model that does not explicitly handle 

normalization. This is evidence of the usefulness of explicitly including library size 

normalization in the scVI model.

Discussion

scVI was designed to address an important need in the rapidly evolving field of single cell 

transcriptomics – namely, accounting for measurement uncertainty and bias in tertiary 

analysis tasks through a common, scalable statistical model. As such, it provides a 

computationally efficient and “all-inclusive” tool that couples low-dimensional probabilistic 

representation of gene expression data with downstream analysis capabilities, comparing 

favorably to the state-of-the-art methods in each of a range of tasks, including batch-effect 

correction, imputation, clustering, and differential expression.

scVI takes raw count data as input and includes an effective normalization procedure that is 

integrated into its model. First, it learns a cell-specific scaling factor as a hidden variable, 

with the objective of maximizing the likelihood of the data [8, 10, 22], which is more 

justifiable than a posteriori correction of the observed counts [5]. Second, scVI explicitly 

accounts for batch annotations, via a mild assumption of conditional independence. We 

demonstrated that both of these components are essential for the method’s performance. 

Additional discussion, explaining these and other modeling choices is provided in the Online 

Methods section.

The deep learning architecture used in scVI is built on several canonical building blocks 

such as non-linearities, regularization and mean-field approximation to the posterior [25] 

(Online Methods). Exploring other, possibly better, architectures [42] and procedures for 

parameter and hyper-parameter tuning [43] may in some instances provide a better model fit 

and more suitable approximate inference. Notably, since our procedure has a random 

component, and since it optimizes a non-convex objective function, it may give alternative 

results with different initializations. To address this, we demonstrate the stability of scVI in 

terms of its objective function, as well as imputation and clustering (Supplementary Figure 

1). Another related issue is that, if there are few observations (cells) for each gene, the prior 

and the inductive bias of the neural network may keep us from fitting the data closely. 

Indeed, in cases where the number of cells is smaller than the number of genes, some 

procedure to pre-filter the genes may be warranted. A complementary approach would make 

use of techniques such as Bayesian shrinkage [17] or regularization and second order 
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optimization [10]. We do however show that for a range of datasets of varying sizes, scVI is 

able to fit the data well and capture relevant biological diversity between cells.

Looking ahead, scVI provides a general probabilistic representation of gene expression in 

single cells and can therefore enable other forms of scRNA-seq analysis that were not 

explored in this manuscript, such as lineage inference [1] or cell-state annotation [7, 44]. 

Furthermore, since it only requires the latent space and the specification of the model (which 

both have a low memory footprint) to generate any data point (cell × gene) of interest, scVI 

can be used as an effective baseline for scalable and interactive visualization tools [45, 46, 

47]. Finally, scVI can be extended to merge multiple datasets from a given tissue while 

integrating prior biological annotations of cell types. We therefore expect this work to be of 

immediate interest, especially in cases where dataset harmonization has to be done in a 

manner that is scalable and conducive to various forms of downstream analysis [14].

Online Methods

The scVI probabilistic model

First, we present in more detail the generative process for scVI. Altogether, each expression 

value xng is drawn independently through the following process:

zn ∼ Normal 0, I

ℓn ∼ LogNormal ℓμ, ℓσ
2

ρn = f w zn, sn

wng ∼ Gamma ρn
g, θ

yng ∼ Poisson ℓnwng

hng ∼ Bernoulli f h
g zn, sn

xng =
yng if hng = 0

0 otherwise .

A standard multivariate normal prior for z is commonly used in variational autoencoders 

since it can be reparametrized in a differentiable way into any arbitrary multivariate 

Gaussian random variable [25], which turns out to be extremely convenient in the inference 

process.

B denotes the number of batches and ℓμ, ℓσ ∈ ℝ+
B parameterize the prior for the scaling 

factor (on a log scale). ℓμ,ℓσ are set to be the empirical mean and variance of the log-library 

size per each batch. Let us note that the random variable ℓn is not the log-library size (scaling 

the sampled observation) itself but a scaling factor that is expected to correlate strongly with 

log-library size (hence the choice of the parameters). The parameter θ ∈ ℝ+
G denotes a gene-

specific inverse dispersion, estimated via variational Bayesian inference.

fw and fh are neural networks that map the latent space and batch annotation back to the full 

dimension of all genes: ℝd × {0,1}B → ℝG. We use superscript annotation (e.g., f w
g zn, sn ) 
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to refer to a single entry that corresponds to a specific gene g. Neural network fw is 

constrained during the inference to encode the mean proportion of transcripts expressed 

across all genes by using a softmax activation at the last layer. Namely, for each cell n the 

sum of f w
g zn, sn  values over all genes g is one. Neural network fh encodes whether a 

particular entry has been dropped out due to technical effects [9, 10]. These intermediate 

vectors can therefore be interpreted as expected frequencies. Importantly, let us note that 

neural networks allows us to go beyond the generalized linear model framework and provide 

a more flexible model of gene expression. All neural networks use dropout regularization 

and batch normalization. Each network has 1, 2, or 3 fully connected-layers, with 128 or 256 

nodes each. The activation functions between two hidden layers are all ReLU. We use a 

standard link function to parametrize the distribution parameters (exponential, logarithmic or 

softmax). Weights for some layers are shared between fw and fh.

Fast inference via stochastic optimization

The posterior distribution combines the prior knowledge with information acquired from the 

data matrix X. We cannot directly apply Bayes rule to determine the posterior because the 

denominator (the marginal distribution) p(xn|sn) is intractable. Making inference over the 

whole graphical model is not needed. We can integrate out the latent variables wng,hng and 

yng since p(xng|zn,ℓn,sn) has a closed-form density. Notably, the distribution p(xng|zn,sn,ℓn) is 

zero-inflated negative binomial (ZINB) [16] with mean ℓnρn
g, gene-specific dispersion θg 

and zero-inflation probability f h
g(zn, sn) (see Supplementary Note 3). We discuss numerical 

stability and parametrization of the ZINB distribution in Supplementary Note 4. Having 

simplified our model, we use variational inference [26] to approximate the posterior p(zn,ℓn|

xn,sn). Our variational distribution q(zn,ℓn|xn,sn) is mean-field:

q zn, ℓn xn, sn = q zn xn, sn q ℓn xn, sn

The variational distribution q(zn|xn,sn) is chosen to be Gaussian with a diagonal covariance 

matrix, mean and covariance given by an encoder network applied to (xn,sn), as in [25]. The 

variational distribution q(ℓn|xn,sn) is chosen to be log-normal with the scalar mean and 

variance also given by an encoder network applied to (xn,sn). The variational lower bound is

log p x s ≥ 𝔼q z, l x, s log p x z, l, s
− DKL q z x, s ∥ p z
− DKL q l x, s ∥ p l

(2)

In this objective function, the dispersion parameters θg for each gene are treated as global 

variables to optimize in a Variational Bayesian inference fashion.

To optimize the lower bound, we use the analytic expression for p(x|z,l,s) and use analytic 

expressions for the Kullback-Leibler divergences. We use the reparametrization trick to 

compute low-variance Monte-Carlo estimates of the expectations’ gradients. Analytic 
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closed-form for the Kullback-Leibler divergence and the reparametrization trick are only 

possible on certain distributions which multivariate Gaussians are a part of [25]. The 

reparametrization trick is a specific sampling scheme from the variational distribution which 

makes our objective function stochastic. Remarkably, this sampling step coupled with neural 

networks approximation to the posterior is what makes possible to go beyond restrictive 

“conditional conjugacy” properties often needed to perform sampling or variational 

inference. This allows us to efficiently perform inference with arbitrary models, including 

those with conditional distributions specified by neural networks [25].

A second level of stochasticity comes from sub-sampling from the training set (possible 

since the cells are identically independently distributed when conditioned on the latent 

variables). We then have an online optimization procedure that can handle massive datasets 

— used by scVI as well as other methods that exploit neural networks [18, 19, 20, 21]. At 

each iteration, we focus only on a small subset of the data randomly sampled (M = 128 data 

points) and do not need to go through the entire dataset. Therefore, there is no need to store 

the entire dataset in memory. Because the number of genes is in practice limited to a few 

tens of thousands, these mini-batches of cells fit easily into a GPU. Now, our objective 

function is continuous and end-to-end differentiable, which allows us to use automatic 

differentiation operators.

Throughout the paper, we use Adam (a first order stochastic optimizer) with ε = 0.01. As 

indicated in [27], we use deterministic warmup and batch normalization during learning to 

learn an expressive model. A complete list of hyperparameters is provided in Supplementary 

Table2. The hyperparameters were chosen using a small grid search that maximized held-out 

log likelihood—a common practice for training deep generative models. One of the strengths 

of scVI is that we have only three dataset-specific hyperparameters to set (learning rate, 

number of layers, and layer width). We optimize the objective function until convergence –

usually between 120 and 250 epochs, where each epoch is a complete pass through the 

dataset (let us note that bigger datasets require fewer epochs). For the larger subset of the 

BRAIN-LARGE dataset, we also ran with the early stopping criterion: the algorithm stops 

after 12 consecutive epochs with no improvement on the validation loss.

Since the encoder network q(z|x,s) might still produce output correlated with the bath s, one 

could use in principle a Maximum Mean Discrepancy (MMD) based penalty as in [24] to 

correct the variational distribution. For this paper, however, we did not explicitly enforce the 

MMD penalty and simply retained the conditional independence property, which has shown 

to be sufficiently efficient. This may be useful on other datasets though it explicitly assumes 

the exact same biological signal is present in the datasets.

Bayesian differential expression

For each gene g and pair of cells (za,zb) with observed gene expression (xa,xb) and batch ID 

(sa,sb), we can formulate two mutually exclusive hypotheses:

ℋ1
g: = 𝔼s f w

g za, s > 𝔼s f w
g zb, s vs ℋ2

g: = 𝔼s f w
g za, s ≤ 𝔼s f w

g zb, s
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where the expectation 𝔼s is taken with the empirical frequencies. Notably, we propose a 

hypothesis testing that do not to calibrate the data to one batch but will find genes that are 

consistently differentially expressed. Evaluating which hypothesis is more probable amounts 

to evaluating a Bayes factor [37] (Bayesian generalization of the p-value). Its sign indicates 

which of ℋ1
g and ℋ2

g is more likely. Its magnitude is a significance level and throughout the 

paper, we consider a Bayes factor as strong evidence in favor of a hypothesis if |K| > 3 [36] 

(equivalent to an odds ratio of exp(3) ≈ 20).

K = loge
p ℋ1

g xa, xb

p ℋ2
g xa, xb

where the posterior of these models can be approximated via the variational distribution

p(ℋ1
g | xa, xb) ≈ ∑s∬za, zb

p( f w
g (zx, s) ≤ f w

g (zx, s))p(s)dq(za | xa)dq(zb | xb)

where p(s) designated the relative abundance of cells in batch s and all of the measures are 

low-dimensional, so we can use naive Monte Carlo to compute these integrals. We can then 

use a Bayes factor for the test.

Since we assume that the cells are i.i.d., we can average the Bayes factors across a large set 

of randomly sampled cell pairs, one from each subpopulation. The average factor will 

provide an estimate of whether cells from one subpopulation tend to express g at a higher 

frequency.

We demonstrate the robustness of our method by repeating the entire evaluation process and 

comparing the results (Figure 3ab). We also ensure that our Bayes factor are well calibrated 

by running the differential expression analysis across cells from the same cluster and making 

sure no genes reach the significance threshold (Supplementary Figure 15f).

Modeling choices

In this section, we consider the extent to which each of a sequence of modeling choices in 

the design of scVI contributes to its performance. As a baseline approach, consider 

normalizing single-cell RNA sequencing data as in previous literature [9] and reducing the 

dimensionality of the data using a variational autoencoder with a Gaussian prior and a 

Gaussian conditional probability.

One way in which a model can be enhanced is by changing the Gaussian conditional 

probability to one of the many available count distributions, such as zero-inflated negative 

binomial (ZINB), negative binomial (NB), Poisson or others. Recent work by Eraslan and 

colleagues using simulated data shows that when the dropout effect drives the signal-to-

noise ratio to a less favorable regime, a denoising autoencoder with mean squared error (i.e., 

Gaussian conditional likelihood) cannot recover cell-types from expression data while an 

autoencoder with ZINB conditional likelihood can [20]. This results points to the importance 
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of at least modeling the sparsity of the data and is consistent with previous contributions [9, 

10].

The next question is which count distribution to use. In scVI we have chosen to use the zero-

inflated negative binomial, a choice motivated by previous literature (e.g., [10]). First, the 

choice of negative binomial is common in RNA-sequencing data, as it is over dispersed [17]. 

Furthermore, under some assumption this distribution captures the steady state form of the 

canonical two-state promoter activation model [16]. Finally, recent work by Grønbech and 

colleagues [21] proposes an analysis based on Bayesian model selection (held-out log-

likelihood as in this manuscript). In that analysis, the NB and ZINB distribution stand out 

with similarly high scores. We demonstrate that the addition of a zero-inflation (Bernoulli) 

component is important for explaining a subset of the zero values in the data (Supplementary 

Figure 14) and that it captures important aspects of technical variability which are not 

captured by the NB component (Supplementary Figure 13).

To enhance the model further, we added terms to account for library-size as a nuisance 

factor, which can be considered as a Bayesian approach to normalization as in [8, 22]. We 

showed how this contributes to our model by increasing clustering scores and differential 

expression analysis accuracy on the PBMC dataset.

As a further enhancement, we designed the generative model to explain data from different 

experimental batches. This is not a trivial task as there may exist a significant covariate shift 

between the observed transcript measurements. We showed how this modification to our 

model is crucial when dealing with batch effects in subsection on the RETINA dataset.

Datasets and preprocessing

Below we describe all of the datasets and the preprocessing steps used in the paper. We 

focus on relatively large datasets (3k cells and more) with unique molecular identifiers 

(UMIs), thus providing enough information during training and avoiding the problem of 

over- counting due to amplification. A star after the dataset name indicates we used it as an 

auxiliary dataset; these datasets were not used for general benchmarking, but rather to 

support specific points presented in the paper. The only case where we subsampled the data 

multiple times was the BRAIN-LARGE dataset. However, we simply used one instance of it 

to report all possible scores (further details in Supplementary Table 2).

CORTEX—The Mouse Cortex Cells dataset from [29] contains 3005 mouse cortex cells 

and gold-standard labels for seven distinct cell types. Each cell type corresponds to a cluster 

to recover (see Supplementary Table 4). We retain the top 558 genes ordered by variance as 

in [8].

PBMC—We considered scRNA-seq data from two batches of peripheral blood mononuclear 

cells (PBMCs) from a healthy donor (4K PBMCs and 8K PBMCs) [30]. We derived quality 

control metrics using the cellrangerRkit R package (v. 1.1.0). Quality metrics were extracted 

from CellRanger throughout the molecule-specific information file. After filtering as in [23], 

we extract 12,039 cells with 10,310 sampled genes and generate biologically meaningful 

Lopez et al. Page 12

Nat Methods. Author manuscript; available in PMC 2019 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clusters with the software Seurat (see Supplementary Table 5). We then filter genes that we 

could not match with the bulk data used for differential expression to be left with g = 3346.

BRAIN LARGE—This dataset contains 1.3 million brain cells from 10x Genomics [28]. 

We randomly shuffle the data to get a 1M subset of cells and order genes by variance to 

retain first 10,000 and then 720 sampled variable genes. This dataset is then sampled 

multiple times in cells for the runtime and goodness-of-fit analysis. We report imputation 

scores on the 10k cells and 720 gene samples only.

RETINA—After their original pipeline for filtering, the dataset of bipolar cells from [31] 

contains 27,499 cells and 13,166 genes from two batches. We use the cluster annotation 

from 15 cell-types from the author. We also extract their normalized data with Combat and 

use it for benchmarking.

HEMATO—This dataset with continuous gene expression variations from hematopoeitic 

progenitor cells [32] contains 4,016 cells and 7,397 genes. We removed the library basal-
bm1, which was of poor quality, based on authors recommendation. We use their population 

balance analysis result as a potential function for differentiation.

CBMC*—This dataset includes 8,617 cord blood mononuclear cells [33] profiled using 10x 

along with 13 well-characterized mononuclear antibodies for each cell. We kept the top 600 

genes by variance.

BRAIN SMALL*—This dataset, which consists of 9,128 mouse brain cells profiled using 

10x [28], is used as a complement to PBMC for our study of zero abundance and quality 

control metric correlation with our generative posterior parameters. We derived quality 

control metrics using the cellrangerRkit R package (v. 1.1.0). Quality metrics were extracted 

from CellRanger throughout the molecule-specific information file. We kept the top 3000 

genes by variance. We used the clusters provided by cellRanger for the correlation analysis 

of zero probabilities.

Statistics

Differential expression for bulk datasets—Specifically, we assembled a set of genes 

that are differentially expressed between human B cells and dendritic cells (microarrays, n = 

10 in each group [39], GSE29618) and between CD4+ and CD8+ T cells (microarrays, n = 

12 in each group [40], GSE8835). For GSE29618, we first loaded bulk human expression 

array data using the GEOquery package, selecting all B cell and myeloid dendritic cell 

(mDC) samples from the baseline (“Day0”) timepoint. We retained all expression features 

described by exactly one Gene Symbol, and regressed the expression of these expression 

measures on cell type covariate (B cell vs mDC) using lmFit linear modeling in limma. p-

values were derived from empirical Bayes moderated t-tests for difference between the two 

cell types, using eBayes in limma. We conducted a identical study on GSE8835 for the 

CD4+ and CD8+ T cells comparison. These p-values are then corrected using the standard 

Benjamini & Hochberg procedure.
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Differential expression for scRNA-seq datasets—We used the packages as detailed 

in the Methods section. These p-values are then corrected using the standard Benjamini & 

Hochberg procedure.

Capturing technical variability—We compute the average probability of zero from the 

negative binomial distribution and from the Bernouilli across all gene for a particular cell. 

We test for a correlation between these cell-specific zero probabilities and cell-specific 

quality control metrics using a Pearson-correlation test.

Evaluation

We describe below how we compute the metrics used in the manuscript. For a further details 

of the algorithms used for benchmarking in this study, refer to the Supplementary Note 5.

Log-likelihood on held-out data—We provide a multi-variate metric of goodness of fit 

on the data in Supplementary Note 6.

Corrupting the datasets for imputation benchmarking—In this paper we use two 

different approaches to measure the robustness of algorithms to noise in the data:

• Uniform zero introduction: We randomly select ten percent of the non-zero 

entries and multiply the entry n with a Ber(0.9) random variable.

• Binomial data corruption: We randomly select 10% of the matrix and replace an 

entry n with a Bin(n,0.2) random variable.

Accuracy of imputing missing data—As imputation tantamount to replace missing 

data by its mean conditioned on being observed, we use the median 𝕃1 distance between the 

original dataset and the imputed values for corrupted entries only. We now define what the 

imputed values are. For MAGIC, we use the output of their algorithm. For BISCUIT, we use 

the imputed counts. For ZIFA, we use the mean of the generative distribution conditioned on 

the non-zero event (mean of the factor analysis part) that we project back into count space. 

For scVI and ZINB-WaVE, we use the mean of the Negative Binomial distribution.

Silhouette width—The silhouette width requires either a similarity matrix or a latent 

space. We can define a silhouette score for each sample i with

s(i) = b i − a i
max a i , b i

where a(i) is the average distance of i to all data points in the same cluster ci and b(i) is the 

lowest average distance of i to all data points in the same cluster c among all clusters c. 

Clusters can be replaced with batches if we are estimating the silhouette width for assessing 

batch effects [23].

Clustering metrics—The following metrics require a clustering and not simply a 

similarity matrix. For these, we will use a k-means clustering on the given latent space of 

dimension 10 with T = 200 random initializations to achieve a stable score.

Lopez et al. Page 14

Nat Methods. Author manuscript; available in PMC 2019 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Adjusted Rand Index—This index requires a clustering. Most

ARI =
∑i j

ni j
2

− [∑i
ai
2

∑ j
b j
2

]/ n
2

1
2[∑i

ai
2

+ ∑ j
b j
2

] − [∑i
ai
2

∑ j
b j
2

]/ n
2

where nij,ai,bj are values from the contingency table.

Normalized Mutual Information—

NMI = I P; T
ℍ P ℍ T

where P,T designates empirical categorical distributions for the predicted and real clustering. 

I is the mutual entropy and ℍ is the Shannon entropy.

Entropy of batch mixing—Fix a similarity matrix for the cells and take U to be a 

uniform random variable on the population of cells. Take BU the empirical frequencies for 

the 50 nearest neighbors of cell U being a in batch b. Report the entropy of this categorical 

variable and average over T = 100 values of U.

Protein abundance / mRNA expression—Take the similarity matrix for the 

normalized protein abundance (centered log-ratio transformation, see [33]). Compute a 100 

nearest neighbors graph. Fix a similarity matrix for the cells and compute a 100 nearest 

neighbors graph. Report the Spearman correlation of the flattened matrices and the fold 

enrichment.

Let A be the set of edges in the protein NN graph, B the set of edges in the cell NN graph 

and C the entire set of possible edges. The fold enrichment is defined as

|A ∩ B | × |C|
|A | |B|

Differential expression metrics—We used 100 cells from each cluster. In scVI, we 

draw 200 samples from the variational posterior; subsampling ensures that our results are 

stable.

Area under the curve—We assign each gene with a label of DE or non-DE based on 

their p-values from the reference data (genes with a BH corrected p-values under 0.05 are 

positive and the rest are negative); then these labels to compute AUROC

Irreproducible Discovery Rate—The IDR is computed using the corresponding R 

package. We adjust the prior for the mixture weight to be the fraction of genes detected in 

the micro-array data.

Lopez et al. Page 15

Nat Methods. Author manuscript; available in PMC 2019 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Software Availability

An open-source software implementation of scVI is available on Github (https://github.com/

YosefLab/scVI). All code for reproducing results and figures in this manuscript is deposited 

at https://zenodo.org/badge/latestdoi/125294792 and included as Supplementary Software.

Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary.

Data availability

All of the datasets analyzed in this manuscript are public and referenced at https://

github.com/romain-lopez/scVI-reproducibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Overview of scVI. Given a gene-expression matrix with batch annotations as input, scVI 

learns a non-linear embedding of the cells that can be used for multiple analysis tasks. (a) 

The computational trees (neural networks) used to compute the embedding as well as the 

distribution of gene expression. (b) Comparison of running times (y-axis) on the BRAIN-

LARGE data with a limited set of 720 genes, and with increasing input sizes (x-axis; cells in 

each input set are sampled randomly from the complete dataset). All the algorithms were 

tested on a machine with one eight-core Intel i7–6820HQ CPU addressing 32 GB RAM, and 

one NVIDIA Tesla K80 (GK210GL) GPU addressing 24 GB RAM. scVI is compared 

against existing methods for dimensionality reduction in the scRNA-seq literature. As a 

control, we also add basic matrix factorization with factor analysis (FA). For the one-

million-cell dataset only, we report the result of scVI with and without early stopping (ES).
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Figure 2: 
Biological signal retained by the latent space of scVI. scVI is applied to three datasets (from 

right to left: CORTEX n = 3,005 cells, HEMATO n = 4,016 cells and RETINA n = 27,499 

cells). For CORTEX and HEMATO, we compare scVI with SIMLR and show a distance 

matrix in the latent space, as well as a two-dimensional embedding of the cells. Distance 

matrices: the scales are in relative units from low to high similarity (over the range of values 

in the entire matrix). Cells in the matrices are grouped by their pre-annotated labels, 

provided by the original studies (for the CORTEX dataset, cell subsets were ordered using 

hierarchical clustering as in the original study). Embedding plots: each point represents a 

cell and the layout is determined either by tSNE for CORTEX or by a 5-nearest neighbors 

graph visualized using a Fruchterman-Reingold force-directed algorithm for HEMATO; see 

Supplementary Figure 10d for the original embedding for SIMLR. Color scheme in the 

embeddings is the same as in the distance matrices. For the RETINA dataset, we compare 

scVI with MNNs followed by PCA. Embedding plots were generated by applying tSNE on 

the respective latent space. On the left, the cells are colored by batch. On the right, cells are 

colored by the annotation of subpopulations, provided in the original study [31].
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Figure 3: 
Benchmark of differential expression analysis using the PBMC dataset (n = 12,039 cells), 

based on consistency with published bulk data. (a, b) Evaluation of consistency with the 

irreproducible discovery rate (IDR) [41] framework (blue) and using AUROC (green) is 

shown for comparisons of B cells vs Dendritic cells (a) and CD4 vs CD8 T cells (b). Error 

bars are obtained by sub-sampling a hundred cell from each clusters n = 20 times to show 

robustness. Box plots indicate the median (center lines), interquantile range (hinges) and 5–

95th percentiles (whiskers). (c,d,e,f): correlation of significance levels of differential 

expression of B cells vs Dendritic cells, comparing bulk data and single cell. Points are 

individual genes (n = 3,346). Bayes factors or BH-corrected p-values on scRNA-seq data are 

presented on the x-axis; microarray-based BH-corrected p-values are depicted on the y-axis. 

Horizontal bars denote significance threshold of 0.05 for corrected p-values. Vertical bars 

denote significance threshold for the Bayes factor of scVI (c) or 0.05 for corrected p-values 

for DESeq2 (d), edgeR (e), and MAST (f). We also report the median mixture weight for 

reproducibility p (higher is better).
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