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THE BIGGER PICTURE Description, prediction, and explanation are traditionally acknowledged as central
aims of science. In the field of materials informatics, the second objective receives themost attention, while
the understanding of the resulting structure-property relationships is less emphasized. In this study, we
reconcile large-scale language models and human-readable descriptions of crystal structure to facilitate
materials design insights. The presented approach surpasses the state of the art in property prediction
and provides transparency in the machinery of artificial-intelligence algorithms, thereby possibly improving
the trust of materials scientists. In addition, the clarity of text-based representation and maturity of associ-
ated explainability methods make the approach appealing for educational uses.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Property prediction accuracy has long been a key parameter of machine learning in materials informatics.
Accordingly, advanced models showing state-of-the-art performance turn into highly parameterized black
boxes missing interpretability. Here, we present an elegant way to make their reasoning transparent. Hu-
man-readable text-based descriptions automatically generated within a suite of open-source tools are pro-
posed as materials representation. Transformer language models pretrained on 2 million peer-reviewed ar-
ticles take as input well-known terms such as chemical composition, crystal symmetry, and site geometry.
Our approach outperforms crystal graph networks by classifying four out of five analyzed properties if one
considers all available reference data. Moreover, fine-tuned text-based models show high accuracy in the
ultra-small data limit. Explanations of their internal machinery are produced using local interpretability tech-
niques and are faithful and consistent with domain expert rationales. This language-centric frameworkmakes
accurate property predictions accessible to people without artificial-intelligence expertise.
INTRODUCTION

Artificial intelligence (AI) is increasingly perceived as the fourth

pillar of modern science1 rather than a tool complementary to

the previous three, namely experiment, theory, and simulation.

In the materials science realm, a data-driven approach has

been successfully employed to capture complex structure-prop-

erty relationships. In particular, AI techniques have pushed the

frontiers of high-throughput computational screening,2–5 inverse

materials design,6–9 interatomic potential development,10–12 and

crystal structure prediction.13–15 Users demand that supervised

machine-learning (ML)models involved in the above tasks be ac-

curate first. Driven by this demand, AI practitioners amongmate-
This is an open access article under the CC BY-N
rials scientists have developed increasingly complex models by

elaborating data representations. A retrospective view of the

evolution of graph neural networks in the field16 should serve

as a definitive example: the models that hold global state attri-

butes17 and many-body interactions18 have shown growing

improvement in performance relative to neural networks trained

on a compact set of node and edge features.19 The state-of-the-

art architectures aimed at materials property predictions may

contain many thousands or millions of trainable weights (in other

tasks, billions20 and trillions21), making a good understanding of

internal machinery intractable for human beings. Unsurprisingly,

the explainability problem gives rise to distrust and hinders wider

applications of ML algorithms. It should be noted that there are
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special scenarios where the use of uninterpretable black boxes

may be appropriate.22 Nevertheless, the explanation of model

reasoning (‘‘Why is it the answer?’’) is a desideratum of effective

AI in general23 and specific24 contexts.

Explainable AI25,26 (XAI) is an umbrella term for algorithms

intended to make their decisions transparent by providing

human-understandable explanations. Following the proposed

taxonomies,27–29 one can differentiate XAI methods based on

multifaceted but nonorthogonal dualities: model-specific vs.

model-agnostic, intrinsic vs. post hoc, and local vs. global ex-

plainers. Despite the impressive diversity, only a few XAI ap-

proaches are applied in materials science actively. The most

remarkable techniques are examined below; for more details,

please refer to recent reviews.30–33 First, wewould like to highlight

supervisedML algorithms that have inherent transparency. Linear

regression models and their extension, generalized additive

models,34,35 provide weight coefficients as an importance metric

of relevant features.36–39 Decision trees40 are another method

that has shownoff-the-shelf transparency. For example, probabil-

ity values in terminal nodes of classification models reveal the

combinations of splitting criteria leading to preferable output.41–43

The next approach involves the derivation of analytical expres-

sions of structure-property relationships. Symbol regression44

and compressed sensing methods such as least absolute

shrinkage and selection operator45 (LASSO) and sure indepen-

dence screening and sparsifying operator46 (SISSO) make it

possible to access sets of solutions competitive in terms of accu-

racy and complexity.47–53 Finally, there are post hoc local ex-

plainers that quantify feature importance levels when analyzing

opaqueMLmodels. Among suchXAI schemes, the Shapley Addi-

tive Explanations54 (SHAP) suite seems to be dominant in mate-

rials science applications.55–66

The common thread in most of the explainability-aware studies

mentioned above relates to employing low-dimensional hand-

crafted featuresas input toa trainingmodel.Besides thenotorious

tradeoff between accuracy and explainability of ML algorithms,67

a similar compromise is seen in materials representations. Going

beyond simplistic physicochemical descriptors, more advanced

featurization schemes (for instance, physics-inspired schemes68)

can hardly be interpreted in terms familiar to domain specialists.

Nonetheless, there is an alternative to tabular-like representa-

tions; as a consequence, other XAI techniques may come into

play. Graph neural networks rooted in deep geometric

learning69,70 successfully cope with data irregularities. In partic-

ular, periodic atomistic systems can be processed in a natural

way if the concept of a crystal graph17–19,71–75 is introduced.

The propagation and aggregation of information contained in

node and edge attributes viamessage passing and pooling oper-

ators are aimed at describing pairwise and higher-order interac-

tions. To date, graph neural networks have archived state-of-

the-art performance in predicting a plethora of structure-property

relationships.16,76 Theuncoveringof suchblack-boxmodels in or-

der to gain chemical insights is addressed by the development of

graph-specific XAI techniques77–79 and by the adaptation of

methods from other domains.80–82 The field is in its infancy, and

therefore explainability-aware studies exploring graph neural net-

works in materials science are sparse and few.83–85

There is no community consensus on defining explainability

owing to the diversity in XAI approaches and problems being
2 Patterns 4, 100803, October 13, 2023
solved. Nevertheless, attempts to specify the term23,86–88 are

united by the idea that the perceiver (domain expert) is as impor-

tant as the explainer (XAI algorithm). Moreover, cognitive abilities

of the former limit model understanding,89 which is the primary

reason why researchers are forced to consider simple features

in supervised ML if model reasoning is simple in the first place.

We stress that natural language representation of materials is

an optimal way to archive interpretability by human beings.

The corresponding AI field, natural language processing,90 has

already found successful applications in materials science

such as named entity recognition91–93 and paragraph classifica-

tion.92,94,95 At the same time, the potential of natural language

features in materials property prediction is fully unexplored to

the best of our knowledge.

In this study, we present a language-centric framework able to

reconcile high accuracy and interpretability of the prediction of

materials properties. Attention-based neural networks trained on

text descriptions are thoroughly compared with graph neural net-

works, including compositional and structure-aware architec-

tures. A classic ML algorithm, random forest, built on force-field-

inspired descriptors is included in the benchmark as well. We

demonstrate remarkable scalability of the language models that

allow state-of-the-art performance to be achieved in a small-

data regime. In certain cases, transformers trained on human-

readable features surpass graph neural networks despite

training-dataset size. The interpretability of our approach is esti-

mated in terms of faithfulness and plausibility. As the analysis

showed, XAI approaches can generate sufficient and comprehen-

sible explanations that areconsistentwithexpert decisionmaking.

RESULTS

General workflow
Thegeneralworkflowof thestudy ispresented inFigure1. Thefirst

three stages are the preparation of the main supervisedML com-

ponents96: an input dataset, feature representation, and a predic-

tive algorithm. We start by considering the crystal structures and

corresponding property values taken from the Joint Automated

Repository for Various Integrated Simulations97 (JARVIS). The

following diverse set of endpoints is taken into account: energy

above the convex hull, the magnetic moment, a band gap, spec-

troscopic limited maximum efficiency (SLME), and topological

spin-orbit spillage. All the datawere originally obtained at the den-

sity functional theory (DFT) level in accordance with standardized

calculation procedures. High-throughput computational data-

bases98–100 such as JARVIS-DFT help investigators to focus on

ML tasks (e.g., feature and algorithm benchmarking and model

fine-tuning) and to simplify data preprocessing. At the second

step,we for thefirst time implementhuman-readable text descrip-

tions as materials representation for supervised ML. We use the

Robocrystallographer library101 toautomatically generate thepro-

posed representation for thousands of crystal structures, but a

similar contentwrittenbyahumancrystallographer isalsoaccept-

able. At the third step, advanced languagemodels, namely trans-

formers,93,102,103 are utilized to extract structure-property rela-

tionships based on text descriptions generated at the previous

step. All the prediction tasks are examined in the classification

mode. Specifically, initially continuous quantities are converted

into binary labels based on specific threshold values (see the
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Figure 1. An overview of the language-

centric approach

(A) Initial data are taken from an open computational

database containing crystal structures and a diverse

set of physical properties calculated at the level of

density functional theory (DFT).

(B) Proceeding from crystal structures, we generate

text-based descriptions via an automatic toolkit.

Local, semilocal, and global environment features

are taken into account.

(C) Neural networks capable of handling a natural

language are trained on the text-based descriptions

to classify materials.

(D) Post hoc explainability techniques help to ratio-

nalize algorithm decisions at the level of tokens.
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section experimental procedures) to simplify further XAI analysis

and comparison with human rationales, which are representable

in dualistic termsaswell. The last stepof ourworkflow is designed

to assess interpretability of the language-centric approach. The

trained models are processed within the suite of post hoc local

XAI techniques.104

Model performance
Aside from the input representation and network architecture,

several other factors directly influence language model perfor-

mance. First, various vocabularies can be applied during toke-

nization, which is a procedure of splitting text into elementary

bits of information. Second, the model can be optionally pre-

trained on a large text corpus before use in downstream

tasks. We present results of training of three models differing

in the above characteristics. The transformer models com-

bined with a general and domain-specific tokenizer without

pretraining are designated as Bidirectional Encoder Repre-

sentations from Transformers (BERT) and BERT-domain, after

the name of the base architecture.103 The transformer model

pretrained on the corpus of materials science papers93

(MatBERT) and combined with the domain-specific tokenizer

is tested as well. We would like to integrate the presented

models into the landscape of modern ML models predicting

materials properties. To do so, the following algorithms are

included in the benchmark for a comparison with the models

mentioned above. Random forest105 trained on classical

force-field-inspired descriptors 106 (RF-CFID) serves as a

representative classic ML algorithm built on tabular features.

A deep neural network designated as representation learning

from stoichiometry107 (Roost) typifies advanced models

trained on chemical compositions. Finally, Atomistic Line

Graph Neural Network18 (ALIGNN) is examined as a state-

of-the-art predictor of materials properties.
As a target metric, we calculate the Mat-

thews correlation coefficient (MCC). The

metric is recognized as a reliable statistical

measure and is preferable to other binary

classification metrics, including accuracy

and the F1 score.108MCCs for all the above

models and endpoints are provided in

Table 1. MatBERT works surprisingly well,

manifesting state-of-the-art performance
in four cases out of five. ALIGNN has the highest MCC only on

magnetic or nonmagnetic classification. The overall MCC across

all endpoints equals 0.74 and 0.72 for MatBERT and ALIGNN,

respectively. RF-CFID and Roost show worse performance

than ALIGNN, with one exception. Roost has the second-highest

MCC on energy above the convex hull. The same trends are

observed for accuracy (Table S1) and the F1 score (Table S2).

The relatively high efficiency of the structure-agnostic model

(Roost) contradicts previous results. Bartel et al. have demon-

strated significant improvement in stability predictions owing to

inclusion of crystal structure in representation.109 On the other

hand, it is important to note that another endpoint (decomposi-

tion energy) has been addressed by those researchers. The

interplay of model architecture and the thermodynamic stability

criterion seems to be a promising avenue of future work and is

beyond the scope of this study.

We can speculate that the superiority of the presented lan-

guage-centric approach over others rests on knowledge enrich-

ment rather than the model architecture. For instance, MatBERT

significantly outperforms BERT-domain (an overall MCCof 0.67),

whereas the only difference between them is pretraining of the

former. In particular, BERT-domain was trained on 1.6 million

to 10.1 million tokens depending on an endpoint. MatBERT

was trained on 8.8 billion93 plus 1.6 million to 10.1 million tokens,

taking into account the masked language modeling of the orig-

inal model. Therefore, the effective dataset size increases by

approximately three to four orders of magnitude via fine-tuning.

The approach applied herein—fine-tuning—belongs to the

transfer learning paradigm. Inmaterials science,models are usu-

ally pretrained on labeled data in a supervised manner.110,111 By

contrast, language models, such as transformers, provide a

great opportunity to capture domain knowledge within self-su-

pervised learning. The above-mentioned masked language

modeling is a vivid representative of such techniques. The
Patterns 4, 100803, October 13, 2023 3



Table 1. Model performance in terms of the MCC

Energy above hull Magnetic moment Band gap SLME Spin-orbit spillage

RF-CFID 0.791 ± 0.012 0.735 ± 0.012 0.800 ± 0.013 0.595 ± 0.018 0.492 ± 0.027

Roost 0.885 ± 0.005# 0.762 ± 0.009 0.794 ± 0.020 0.580 ± 0.019 0.482 ± 0.025

ALIGNN 0.878 ± 0.010 0.793 ± 0.009* 0.827 ± 0.011# 0.615 ± 0.027# 0.507 ± 0.026#

BERT 0.788 ± 0.011 0.674 ± 0.014 0.747 ± 0.014 0.446 ± 0.026 0.401 ± 0.027

BERT-domain 0.841 ± 0.013 0.727 ± 0.011 0.791 ± 0.011 0.52 ± 0.04 0.464 ± 0.026

MatBERT 0.901 ± 0.005* 0.788 ± 0.007# 0.845 ± 0.011* 0.629 ± 0.017* 0.519 ± 0.022*

The best coefficient for each endpoint is indicated by an asterisk; the second-best one is indicated by a superscript hash symbol.
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proposed language-centric approach allows us to profitably

incorporate a massive source of scientific knowledge (journal

publications) into a workflow intended for materials property pre-

dictions. Henceforth, domain-specific text corpora should be

seen as an alternative to high-throughput DFT databases97–100

containing thousands of crystal structures and calculated prop-

erties in the context of transfer learning. Moreover, predictors

based on a text description can benefit from processing of large

samples of papers even without the training of language models

on them. BERT-domain clearly surpasses BERT in terms of the

MCC, accuracy, and F1 score (Tables 1, S1, and S2) for all end-

points, exclusively due to the domain-specific tokenizer trained

on 2 million materials science articles. This result proves the

importance of using a domain-specific vocabulary because the

general-purpose BERT tokenizer is unable to meaningfully pro-

cess chemical formulas, space group symbols, and other data.

Another remarkable feature of such preprocessing is that vocab-

ulary construction, even on large corpora, takes negligible

computing time. By analogy with corpora of academic texts

and computational databases, we view domain-specific tokeni-

zation as a low-cost alternative to fine-tuning within a general-

purpose vocabulary.

It is well known that ML model performance depends on

training-dataset size.112 Moreover, predictive algorithms signifi-

cantly differ in sensitivity to the growth of available data.113,114

To clarify this issue for the considered endpoints, we retrain

two best-performing models, MatBERT and ALIGNN, on a part

of the original trainingdatasets. Figure 2 showsa strong linear de-

pendency (R2 > 0.99) for a logarithmic scale. MatBERT is more

accurate in the ultra-small data limit (it has a systematically higher

intercept value in the linear equations), in good agreement with

the hypothesis that fine-tuning affords an increase in effective da-

taset size. Assuming that the linear approximation holds true as

the training-dataset size grows, we identify limits of superiority

of MatBERT over ALIGNN (Figure 2F). ALIGNN has the highest

MCC with a training-dataset size exceeding 16,297, 12,974,

and 55,533 entities in the case of the magnetic moment, SLME,

and spillage, respectively. On the contrary, MatBERT dominates

in classification of energy above the convex hull and a band gap

regardless of data availability (it has simultaneously higher inter-

cept and slope values in the linear equations). This is a surprising

result because, generally, higher scalability of a graph neural

network is expected for the following reason. The ALIGNN archi-

tecture incorporates information-rich structure representation,

which is capable of absorbing subtle crystallographic features

in contrast to human-readable features implemented in

MatBERT. Consequently, each additional training point should
4 Patterns 4, 100803, October 13, 2023
potentially enrich the graph neural network more than the lan-

guage model. Regardless of whether the state-of-the-art perfor-

mance of the presented approach is confirmed on larger training

datasets, MatBERT shows unexpectedly good performance at

the scale of thousands of training samples. As outlined above,

input features for language models were generated with Roboc-

rystallographer in a high-throughput manner. Further attempts

may bemade to clarify how trainedmodels canwithstand unper-

ceivable changes (in text descriptions), which may occur when

input data are created by human experts. Mature techniques

for robustness evaluation of general-domain language models,

such as adversarial attacks,115 are applicable here.

Model explanation
Now we are going to evaluate interpretability of the language-

centric approach. According to the prominent framework intro-

duced in DeYoung et al.,116 two peculiar aspects are taken into

account. First, we examine the ability of XAI techniques to

correctly reflect internal machinery of a predictor (i.e., faithful-

ness). Second, the consistence of explainer output within human

reasoning, also called plausibility, is evaluated. We would like to

emphasize that the proposed materials representation (entity-

level input into a predictor) is a human-readable text description

separated into a sequence of tokens. To explain decisions of the

black-boxmodel at the level of distinct entities, localpost hocXAI

techniques are employed. The choice of feature importance

methods is explained by the resemblance between how such ap-

proaches representML reasoning and howhumanbeings tend to

perceive a natural language, by highlighting the most meaningful

parts of a text. Four techniques are implemented to identify to-

kens most impactful on the prediction: saliency map extraction

via computation of input gradients117 (hereinafter referred to as

saliency maps [SMs]), integrated gradients118 (IGs), local-inter-

pretable-model-agnostic explanations119 (LIMEs), and SHAP.54

We apply several explainers to achieve suboptimal results for a

specific task because there is no a priori knowledge about which

explainer shows state-of-the-art performance.

The faithfulness of XAI techniques is determined via an erasure

procedure,120 which comprises removing some tokens and iden-

tifying changes inmodel confidence.Weestimate two faithfulness

measures. Specifically, comprehensiveness as an evaluation

metric stands for model degradation caused by eliminating the

most influential tokens; a larger value is better. On the other

hand, sufficiencyhingesonmodel stability if only influential tokens

are taken into account; a smaller value is better. The tokens are

excluded within a ranking produced by the explainer being

analyzed. A more detailed description of both metrics is provided
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Figure 2. Scalability of ALIGNN andMatBERT

(A–E) Matthews correlation coefficients (MCCs) are

shown as a function of training-dataset size for the

following classification tasks: (A) energy above the

convex hull, (B) the magnetic moment, (C) a band

gap, (D) spectroscopic limited maximum efficiency

(SLME), and (E) topological spin-orbit spillage. The

solid lines denote linear fitting of the data; the

smallest dataset (499 entities) in the energy-above-

the-convex-hull task is not included in the analysis

because of a severe deviation from linear behavior.

The shaded areas are standard deviation across

10-fold cross-validation.

(F) Regions of dominance of two examined models

in terms of the MCC are marked by the corre-

sponding color.
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in the section experimental procedures. In the following explain-

ability analysis, we limit our attention to the MatBERT model

used in band gap classification (Figure 3). With comprehensive-

ness, most explainers result in a bimodal distribution with peaks

at zeroandone. Therefore, thereare twodistinctgroupsof test ex-

amples differing in the ability of the XAI methods to extract mean-

ingful rationales behind model reasoning. Entities with the score

close to one are almost comprehensively interpreted within the

correspondingexplainer; theopposite is true for thesecondgroup

of materials descriptions. LIME shows the largest proportion of

test examples with high comprehensiveness (>0.9): 49%. SHAP

has the second-highest ratio of 25%, whereas SM and IG yield

only 2%and8%, respectively. On theother hand, 8%of test sam-

ples exhibit low comprehensiveness (<0.1) across all imple-

mented explainers. This set is distinguished by a high percentage

ofmaterials with the Fm3m space group (60%); this percentage is

over twice that for the entire test set (26%). The low interpretability

of descriptions associated with cubic crystals may require further

analysis. In thecaseof sufficiency, the scoredistributions of all ex-

plainers have themain peak located at zero. Entitieswith a prefer-

able score value (<0.1) hold a share of 97% (LIME), 95% (SHAP),

86%(SM), and69%(IG). Lowsufficiencymeans thatonlya tiny set

of tokens actually affects model output. To sum up, LIME and

SHAP provide rationales that are (often) comprehensible and

(nearly always) sufficient to explain how a classifier in question

makesadecision. Thereareadditional factors to take intoaccount

for a holistic evaluation of language models beyond the faithful-

ness of XAI techniques. The high resource requirements of ex-

plainability evaluations make computation efficiency especially

relevant. For instance, computation time for inference per test

example is 12 ms, which is substantially less than the average

times of 1.7 and 10.4 s taken by explainers SHAP and LIME,

respectively. In the following analysis, the explainer with the high-

est rate of well-explained descriptions (LIME) is explored; other

options shouldbeconsidered in thescenarioswherecomputation

efficiency is a top priority.
The tokenshighly rankedby the explainer

with confirmed faithfulness may be helpful

for explaining how a language model pro-

cesses human-readable materials descrip-

tions. We select the top 5% of nonunique

tokens within the ranking given by LIME.
Two classes (metals vs. nonmetals) are considered separately.

Fifty most numerous unique tokens in both cases are finally

examined (Figure 4); the corresponding data for other classifica-

tion tasks are presented in Figures S1–S4. The visualized words

can be formally categorized into two groups. Namely, the former

consists of chemical-element symbols and associated subto-

kens ([##Bi], [##Ga], [##Sb], and [##Te]), while the latter contains

the tokens accompanied by crystal structure. Although the

MatBERT tokenizer was prepared on the in-domain corpus, it still

cannot properly handle a minor part of chemical formulas. For

instance, Rb2IrF6Hg decomposes into the following string of sub-

tokens: [Rb] [##2] [##Ir] [##F6] [##Hg]. Therefore, the high priority

of the [##F6] subtoken may indicate not only an influence of fluo-

rine on a target property but also the importance of specific stoi-

chiometry. The same conclusion is also true for similar subtokens

depicted in Figure 4: [##F3], [##O3], [##Te2], and others. Unam-

biguous identification of stoichiometry’s impact would require

further developments in tokenization of chemical formulas. The

MatBERT tokenizer does not ideally parse space group symbols

either. For this reason, tokens [Pm] and [3m] are present due to

incorrect processing of some space groups that inherit inversion

symmetry: R3m, Pm3m, Fm3m, and others. Token [mm] origi-

nates from splitting of space group symbols by a slash, e.g.,

P4=mmm is split into [P4] [/] [mm] [##m]. Here again, we cannot

differentiate the importance of a specific space group and that

of its inherent symmetry elements. Next, numbers as tokens

([one], [four], [six], [eight], and [12]) are related to the number of

nearest neighbors of a described site. Then, the set of tokens,

including [coplanar], [cubic], [cub] [##octa] [##hedral], [tetrahe-

dral], [octahedral], [pyramidal], [trigonal], [water] [-] [like], and

[hexagonal], serves to describe a coordination environment. It

partially overlaps with another set, which contains crystal sys-

tems: [cubic], [trigonal], [hexagonal], [tetragonal], and [ortho-

rhombic]. Tokens [Fluor] [##ite], [Hal] [##ite], and [Heusler] refer

to the eponymous structural types. Finally, tokens [distorted]

and [equivalent] help to characterize local (dis)order.
Patterns 4, 100803, October 13, 2023 5



0.0 0.5 1.0
comprehensiveness

fre
qu

en
cy

SHAP

0.0 0.5 1.0
comprehensiveness

LIME

0.0 0.5 1.0
comprehensiveness

SM

0.0 0.5 1.0
comprehensiveness

IG

0.0 0.5 1.0
sufficiency

fre
qu

en
cy

SHAP

0.0 0.5 1.0
sufficiency

LIME

0.0 0.5 1.0
sufficiency

SM

0.0 0.5 1.0
sufficiency

IG

A B C D

E F G H

Figure 3. Faithfulness metrics determined

within post hoc local explainability tech-

niques

(A–H)The MatBERT model for band gap classifica-

tion is examined. Each subplot contains a distribu-

tion of calculated metric values (comprehensive-

ness or sufficiency) and a respective cumulative

curve. The results are presented for the following

explainers: (A and E) Shapley additive explanations

(SHAPs), (B and F) local interpretable model-

agnostic explanations (LIMEs), (C and G) SMs, and

(D and H) integrated gradients (IGs). The preferable

directions for changing explainability measures are

marked by arrows.
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Word clouds displayed in Figure 4 provide a bird’s-eye view

of most general relations between a material’s features and its

electronic structure (the presence of a band gap). MatBERT

can reveal well-known patterns, such as the abundance of

tetrahedral structures among semiconductors (nonmetals in

our terminology) and dominance of intermetallic compounds

as metals. To gain more insights into the plausibility of the pre-

sented language-centric approach, we directly compare most

influential tokens extracted by a faithful explainer (LIME) with

rationales proposed by a domain expert. It should be

mentioned that the coauthor who highlighted meaningful to-

kens did not participate in ML model reasoning analysis. In

this way, we sought to avoid a bias in human decision making.

The domain expert operates under a discrete regime assigning

one of two scores to each token (Figure 5): insignificant (0) or

important (1). Then, his or her rationales are matched with

continuous importance measures identified by the XAI method.

Two plausibility metrics described in the section experimental

procedures are calculated for a subset of test examples (287

entities, band gap classification): the token level F1 score and

area under the precision-recall curve (AUPRC), which are equal

to 0.33 and 0.32, respectively. Due to the absence of relevant

XAI studies in the materials science field, we have to compare

the obtained values with the values available in other scientific

fields. In the Evaluating Rationales And Simple English

Reasoning116 (ERASER) benchmark study, seven datasets

covering diverse document types (from reports of clinical trials

to movie reviews) are analyzed to quantify interpretability of

several language models. Best-performing models have a to-

ken-level F1 score and AUPRC in the range of 0.134–0.812

and 0.244–0.606, respectively. Thus, the consistency of our

language model within domain expert reasoning is comparable

to the previously obtained ones. We hope the present study will

stimulate the creation of interpretability-aware benchmarks, re-

sulting in an understanding of how one can reach high inter-

pretability of ML algorithms in materials research. To facilitate

such efforts, open access to the first expert-annotated corpus

of materials descriptions for band gap predictions is provided.
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DISCUSSION

Referring to a recent perspective,121 the

presented language-centric XAI framework

interactswith twoof threedimensionsof AI-

assisted scientific understanding. On the
one hand, scientists are supposed to generalize insights gained

from a ‘‘computational microscope’’ without the need for com-

plete computation.Newdata representationswith inherent trans-

parency can promote advances in the field. Indeed, crystal struc-

ture descriptions placed in the context of supervised ML help us

to reducemodel reasoning to the concepts that arewell known to

materials scientists. On the other hand, the suggested approach

falls into the second category of AI contributions.We explicate in-

ternal machinery of language models within XAI techniques, and

this approach will enable researchers to obtain unexpected re-

sultsby inspectingoriginally black-boxedalgorithms in the future.

In the aforementioned dimensions, AI serves as a consultant for

human scientists. On the contrary, the algorithms belonging to

the third dimension121 are thought to be independent agents of

understanding capable of translating their vision. So far, there

are no algorithms that undoubtedly fall into this category. None-

theless, taking into account recent advances in large language

models such as ChatGPT,122 ultra-strong XAI approaches123

have a bright future.

To sum up, here we present a language-centric framework

aimed at accurately predicting materials properties and at

providingclearexplanationsof thecorresponding rationalessimul-

taneously. State-of-the-art performance is grounded in the incor-

poration of domain knowledge into advanced transformer models

throughpretrainingona largecorpusofpapers.On theother hand,

human-readable text-baseddescriptions asmaterials representa-

tion allow us to compare model reasoning and expert decisions

directly. The proposed approach offers an alternative to opaque

MLmodels, which are omnipresent inmaterials informatics at pre-

sent. At the concept level, our intention was to dispel the popular

belief that AI techniques are black boxes unable to stimulate new

insights into structure-property relationships.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Vadim Korolev (korolev@colloid.chem.msu.ru).

mailto:korolev@colloid.chem.msu.ru


Figure 4. Most influential tokens in band gap

classification provided by the post hoc local

explainer

Word clouds contain tokens that have the greatest

impact on the MatBERT model decision to classify a

material as a metal (left) or a nonmetal (right). The

font size reflects the amplitude of the influence,

whereas color differentiation helps to distinguish

adjacent tokens.

JVASP-2133 is classified as nonmetal
(tokens that support and surpress prediction)

AI rationales

[CLS] Hg ##O crystallizes in the orthorhombic Pn ##ma space group .
Hg ( 1 ) is bonded in a linear geometry to two equivalent O ( 1 )
atoms . There is one shorter ( 2 . 06 Å ) and one longer ( 2 . 07 Å )
Hg ( 1 ) - O ( 1 ) bond length . O ( 1 ) is bonded in a water - like
geometry to two equivalent Hg ( 1 ) atoms . [SEP]

human rationales

[CLS] Hg ##O crystallizes in the orthorhombic Pn ##ma space group .
Hg ( 1 ) is bonded in a linear geometry to two equivalent O ( 1 )
atoms . There is one shorter ( 2 . 06 Å ) and one longer ( 2 . 07 Å )
Hg ( 1 ) - O ( 1 ) bond length . O ( 1 ) is bonded in a water - like
geometry to two equivalent Hg ( 1 ) atoms . [SEP]

Figure 5. Token importance levels determined by a post hoc local

explainer and a domain expert

Distinct words are colored in accordance with their impact on model output;

color intensity denotes the amplitude, whereas the color (red vs. blue) means a

contribution to the predicted class (negative vs. positive).
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The expert-annotated dataset for band gap classification is available at Zen-

odo: https://doi.org/10.5281/zenodo.7750192. The trained MatBERT model

for band gap classification is available at Hugging Face Hub: https://

huggingface.co/korolewadim/matbert-bandgap and Zenodo: https://doi.org/

10.5281/zenodo.7992527. The source code and data accompanying this

work are publicly available at Zenodo: https://doi.org/10.5281/zenodo.

7992558.

Datasets

TheJARVIS-DFTdataset, a part of JARVIS,97was themain source of data in the

study. The vdW-DF-OptB88 van derWaals functional124 was used to calculate

most materials properties; the Tran-Blaha modified Becke-Johnson func-

tional125was selected to reproducebetter bandgaps126 and frequency-depen-

dent dielectric functions and hence SLME.127 The following classification tasks

were analyzed: energy above the convex hull (55,350 entities, a threshold of 0.1

eV/atom), the magnetic moment (52,205, 0.05 mB), a band gap (18,167, 0.01

eV), SLME (9,063, 10%), and topological spin-orbit spillage (11,376, 0.1).

Model training

k-Fold cross-validation (10-fold) was performed to estimate model perfor-

mance. In the case of attention-based neural networks trained on composition

and graph neural networks, one-ninth of training data were retained as a vali-

dation set for early stopping, thereby ensuring a training-validation-test ratio of

80:10:10. The data from the validation set were not used in the training of all

other models. We employed identical data splits for each prediction algorithm,

considering a specific dataset. The analyzed classification metrics (accuracy,

the F1 score, and MCC) were averaged over cross-validation subsets, while

standard deviation was regarded as a measure of prediction uncertainty. All

the deep learning models were developed within the PyTorch framework.128

Random forests on force-field-inspired descriptors

We trained random forest105 on CFIDs,106 including chemical, cell size, radial

charge, anddistribution (radial, angular, dihedral,andnearest-neighbor) features.

The scikit-learn implementation129 of the algorithm was chosen with default hy-

perparameter values. CFIDs were extracted using the JARVIS-Tools library.97

Attention-based neural networks on composition

A neural network referred to as the Roost framework107 was trained on mate-

rials compositions represented as dense weighted graphs between elements.

Node representations were updated through message passage by the soft-

attention mechanism. Fixed-length materials representations generated via

a soft-attention pooling operation were then passed as input to a feedforward

network that finally generated an endpoint value. The AdamW optimizer130

with parameters b1 = 0.9, b2 = 0.999, and a learning rate of 10�3 was employed.

The model was trained for 1,000 epochs with an early stopping at 100. The

batch size was set to 128.

Graph neural networks

We trained ALIGNN,18 which was intended to capture many-body interactions

explicitly. The ALIGNN architecture performed a series of edge-gated graph
convolutions on an atomistic and corresponding line graph. The resulting

atom representations were reduced by an average pooling operation and

transferred to a fully connected network to predict a target property. The

AdamW optimizer130 with parameters b1 = 0.9, b2 = 0.999, and a learning

rate of 10�3 was employed. The model was trained for 1,000 epochs with an

early stopping at 100. The batch size was set to 64. The original ALIGNN im-

plementation was used that heavily relies on the Deep Graph Library.131

Transformer language models

The human-readable descriptions of crystal structure were generated by means

of the Robocrystallographer library.101 The text information on the local (coordi-

nation number and geometry), semilocal (polyhedral connectivity and tilts an-

gles), and global (mineral type and crystal symmetry) environments was repre-

sented as a sequence of tokens. The BERT103 model was chosen as a basic

architecture. Taking into account weights’ initialization and tokenization proced-

ures, threemodelswere trained for eachdownstream task: a randomly initialized

BERTmodel using theoriginal tokenizer, a randomly initializedBERTmodel using

theMatBERT tokenizer, and theMatBERTmodel93using theMatBERT tokenizer.

Both case-sensitive tokenizers were based on the WordPiece algorithm.132 The

AdamW optimizer130 with parameters b1 = 0.9, b2 = 0.999, and a learning rate of

33 10�4 was utilized. Themodel was trained over 10 epochswith a batch size of

16. The HuggingFace Transformers library133 was extensively used to assess

pretrained models and to fine-tune them.
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Model explanation

Explanation algorithms

We took advantage of four XAI techniques. First, SMs117 of the predicted class

were generated. Themethodwas originally formulated for image-specific class

saliency visualization; here, elements of SM, i.e., feature importance levels,

were extracted at the token level as derivatives of predicted class probability

with respect to the corresponding token embedding. Second, IGs118 were

defined as path integrals of the gradients along the straight-line path from the

baseline (the padding token) to the considered token. Both SM and IG were

calculated using the Captum package.134 Third, the LIME119 approachwas im-

plemented to obtain token level importance scores. The predictors in question

were approximated by a transparent algorithm: Ridge regression. Then, the

surrogate model was optimized in such a way as to ensure both interpretability

and local fidelity. We employed the original implementation of the algorithm for

this purpose. Fourth, Shapley values135 from game theory were assigned in or-

der to quantify tokens’ contributions to the model outcome. To be precise, the

extended version of Shapley values, also called Owen values,136 was

computed to capture preferable input feature coalitions. Partition masking,

as implemented in the SHAP package,54 was applied for this purpose.

Evaluation metrics

Faithfulness of ML predictors was assessed via two metrics.116 Starting with

an original sequence of tokens xi , we constructed its contrast example by

removing subset of tokens ri. Comprehensiveness is defined as a difference

between probability assigned by model m to initial sequence of tokens xi
and probability derived by the same algorithm from sequence with removed

rationales xi\ri:

comprehensiveness = mðxiÞj � mðxi\riÞj

Sufficiency is oppositely defined as a difference between probability as-

signed by model m to initial sequence of tokens xi and probability derived

by the same algorithm from sequence of removed rationales ri :

sufficiency = mðxiÞj � mðriÞj

Both metrics were calculated for predicted class j (i.e., the class with the

highest probabilitymðxiÞj ). The arbitrariness of the choice of subset ri was over-

come as follows.We calculated faithfulnessmeasures assuming subsets of ra-

tionales rik that included k percent of most important tokens identified by an

explainer of interest. Then, an aggregate metric referred to as area over the

perturbation curve116 (AOPC) was calculated as

AOPC =
1

jBj+1

 XjBj

k = 0

mðxiÞj � mðxi\rikÞj
!

The set of percentilesB is f10%;20%;.;100%g. Throughout the main text,

by comprehensiveness and sufficiency we mean the corresponding AOPC

values.

Plausibility was estimated for discrete and soft explanations.116 For each

example, the subset of tokens selected by a domain expert was compared

with the subset of rationales that included k most influential tokens according

to explainer ranking. The value of k is set to the average rationale length pro-

posed by a human (10). The corresponding token level F1 score was regarded

as a plausibility measure. In addition, we estimated AUPRC to take into ac-

count tokens’ ranking.

All the explainability-related calculations were carried out within the ferret

package.104
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100803.
AUTHOR CONTRIBUTIONS

Conceptualization, methodology, software, writing – original draft, supervi-

sion, V.K.; investigation, writing – review and editing, V.K. and P.P.
8 Patterns 4, 100803, October 13, 2023
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 28, 2023

Revised: June 6, 2023

Accepted: July 4, 2023

Published: August 2, 2023
REFERENCES

1. von Lilienfeld, O.A. (2020). Introducing machine learning: science and

technology. Mach. Learn, Sci. Technol. 1, 010201. https://doi.org/10.

1088/2632-2153/ab6d5d.

2. Meredig, B., Agrawal, A., Kirklin, S., Saal, J.E., Doak, J.W., Thompson,

A., Zhang, K., Choudhary, A., and Wolverton, C. (2014). Combinatorial

screening for new materials in unconstrained composition space with

machine learning. Phys. Rev. B 89, 094104. https://doi.org/10.1103/

PhysRevB.89.094104.

3. Faber, F.A., Lindmaa, A., Von Lilienfeld, O.A., and Armiento, R. (2016).

Machine learning energies of 2 million elpasolite (A B C 2 D 6) crystals.

Phys. Rev. Lett. 117, 135502. https://doi.org/10.1103/PhysRevLett.

117.135502.

4. Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., and Tanaka, I.

(2017). Representation of compounds for machine-learning prediction

of physical properties. Phys. Rev. B 95, 144110. https://doi.org/10.

1103/PhysRevB.95.144110.

5. Bartel, C.J., Millican, S.L., Deml, A.M., Rumptz, J.R., Tumas,W.,Weimer,

A.W., Lany, S., Stevanovi�c, V., Musgrave, C.B., and Holder, A.M. (2018).

Physical descriptor for the Gibbs energy of inorganic crystalline solids

and temperature-dependent materials chemistry. Nat. Commun. 9,

4168. https://doi.org/10.1038/s41467-018-06682-4.

6. Noh, J., Kim, J., Stein, H.S., Sanchez-Lengeling, B., Gregoire, J.M.,

Aspuru-Guzik, A., and Jung, Y. (2019). Inverse design of solid-state ma-

terials via a continuous representation. Matter 1, 1370–1384. https://doi.

org/10.1016/j.matt.2019.08.017.

7. Korolev, V., Mitrofanov, A., Eliseev, A., and Tkachenko, V. (2020).

Machine-learning-assisted search for functional materials over extended

chemical space. Mater. Horiz. 7, 2710–2718. https://doi.org/10.1039/

D0MH00881H.

8. Yao, Z., Sánchez-Lengeling, B., Bobbitt, N.S., Bucior, B.J., Kumar,

S.G.H., Collins, S.P., Burns, T., Woo, T.K., Farha, O.K., Snurr, R.Q.,

and Aspuru-Guzik, A. (2021). Inverse design of nanoporous crystalline

reticular materials with deep generative models. Nat. Mach. Intell. 3,

76–86. https://doi.org/10.1038/s42256-020-00271-1.

9. Ren, Z., Tian, S.I.P., Noh, J., Oviedo, F., Xing, G., Li, J., Liang, Q., Zhu, R.,

Aberle, A.G., Sun, S., et al. (2022). An invertible crystallographic repre-

sentation for general inverse design of inorganic crystals with targeted

properties. Matter 5, 314–335. https://doi.org/10.1016/j.matt.2021.

11.032.

10. Chen, C., and Ong, S.P. (2022). A universal graph deep learning inter-

atomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728.

https://doi.org/10.1038/s43588-022-00349-3.
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