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Abstract: Rice (Oryza sativa) is an important staple food crop worldwide, especially in east and
southeast Asia. About one-third of rice cultivated area is under saline soil, either natural saline
soils or irrigation with brackish water. Salinity stress is among the devastating abiotic stresses that
not only affect rice growth and crop productivity but also limit its cultivation area globally. Plants
adopt multiple tolerance mechanisms at the morphological, physiological, and biochemical levels
to tackle salinity stress. To identify these tolerance mechanisms, this study was carried out under
both a controlled glass house as well as natural saline field conditions using 22 green super rice (GSR)
lines along with two local varieties (“IRRI 6 and Kissan Basmati”). Several morpho-physiological
and biochemical parameters along with stress-responsive genes were used as evaluation criteria
under normal and salinity stress conditions. Correlation and Principal Component Analysis (PCA)
suggested that shoot-related parameters and the salt susceptible index (SSI) can be used for the identi-
fication of salt-tolerant genotypes. Based on Agglomerative Hierarchical Cluster (AHC) analysis, two
saline-tolerant (“S19 and S20”) and saline-susceptible (“S3 and S24”) lines were selected for further
molecular evaluation. Quantitative RT-PCR was performed, and results showed that expression
of 1-5-phosphoribosyl -5-5-phosphoribosyl amino methylidene amino imidazole-4-carboxamide
isomerase, DNA repair protein recA, and peptide transporter PTR2 related genes were upregulated
in salt-tolerant genotypes, suggesting their potential role in salinity tolerance. However, additional
validation using reverse genetics approaches will further confirm their specific role in salt toler-
ance. Identified saline-tolerant lines in this study will be useful genetic resources for future salinity
breeding programs.
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1. Introduction

Salinity poses a worldwide problem to both irrigated and rainfed lands. Soil salinity
affects 20% of the cultivated lands in the world leading to alkalinity and waterlogging [1].
According to the Food and Agriculture Organization of the United Nations (FAO), salinity
has damaged 397 million hectares (M ha) of land area. Twenty percent of the 230 M ha of
land used for crop production is affected by salinity with a staggering cost of USD 11 billion
per year [2]. It is mostly caused by the natural climatic factors i.e., due to poor drainage
systems and flooding with salt-rich water increased the pollution of rivers, aquifers, and
seawater [3]. Sodium concentration of more than 4 dSm−1 or 40 mM, is primarily the
leading cause of soil and water salinity [4,5].

Rice is a very sensitive crop to salinity stress [5–7]. A salt level of 10 dSm−1 causes
the death of rice seedlings [8], while 3.5 dSm−1 salt level stress at the reproductive stage
leads to a high yield loss of up to 90% [9]. Heavy concentration of sodium ions in soil
lowers the capacity of plant roots to take up the water and minerals leading to retardation
of plant growth and yield [5,10]. It impacts plant morpho-physiological traits i.e., root
growth, plant growth, plant height, number of tillers, leaf features, panicle fertility, and
seed development. Salinity causes ionic and osmotic stress in plants. To combat this, plants
close their stomata for water conservation and limit transpiration, which is involved in
the movement of sodium ions from roots to the shoots of plants [11]. Few rice genotypes
using sophisticated physiological mechanisms including sodium (Na+) and potassium
(K+) compartmentalization into apoplasts, sequestration into older tissues, upregulation of
antioxidants, stomatal responsiveness and sodium exclusions have developed tolerance
against salinity [12–14].

In plants, selective membranes for sodium ions transportation have not yet been
discovered. Sodium ions are taken up into cells through nonselective cation channels i.e.,
Na+, K+, and Ca+ transporters [11,15]. Transporters are involved in salinity tolerance by
reducing the build-up of Na+ ions through ion exclusion [16]. One of the best-known
transporters involved in Na+/K+ homeostasis is high-affinity K+ transporters (HKT) includ-
ing: AtHKT1.1 [17] and OsHKT1;5 [14]. Secondly, compartmentalization of sodium ions in
vacuoles is one of the salinity tolerance mechanisms. Na+/H+ transporters (NHX, OsNHX1)
present in tonoplast perform the selective sequestration of sodium ions in vacuoles [16]. In
association with this process, there is an accumulation of potassium ions and other solutes
in the cytosol to stabilize the osmotic pressure in the vacuoles [5]. Some other cloned genes
in rice includes; OsSKC1 [14], OsMAPK33 [18], OsEATB [19], OsCCCl− [20], OsbZIP23 [21],
and OsHAK21/qSE3 [22], which plays key role in salt-tolerance by increasing sodium
ion uptake under salinity stress. Hence, identifying the salt-tolerant lines and evaluating
the novel genetic factors involved in salt tolerance has become one of the rice molecular
breeding goals.

In this regard, green super rice has been developed by pyramiding the genes that
could stand with biotic and abiotic stresses and high nutrient use efficiency [23,24]. Based
on yield performance, we selected 22 out of 552 green super rice (GSR) lines to evaluate
their morpho-physiological and molecular response in natural saline soil and glasshouse
experiments. In addition, expression patterns of novel DEGs (differential expressed genes)
were assessed among the salinity-tolerant and -sensitive lines to understand the genetic
mechanism underlying these novel genes in response to salinity tolerance. This study
identified the salinity tolerant GSR lines based on glasshouse and field experiments and
provided the knowledge about key morpho-physiological traits which can be used in the
future for salinity experiments and help to understand the genetic role of novel salinity
tolerance related genes.

2. Materials and Methods
2.1. Plant Material and Experiments

Twenty-two GSR lines reported previously [25] along with two local varieties (“IRRI
6 and Kissan Basmati”) were selected and screened for salinity tolerance under different
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conditions (Supplementary Table S1). For this purpose, three experiments i.e., glasshouse
screening, field evaluation, and molecular evaluation were performed to identify the salt-
tolerant and salt-susceptible GSR lines and understand the genetic mechanism underlying
the salt tolerance in rice.

2.2. Glasshouse Experiment
Seedling Evaluation at 200 mM NaCl

Seeds of 22 GSR lines along with two local varieties (“IRRI 6 and Kissan Basmati”)
were surface sterilized with 30% hydrogen peroxide solution for 10 min followed by
thorough washing with autoclaved distilled water. After sterilization, seeds were placed
in Petri dishes for 72 h in a growth chamber at 24–28 ◦C with 14 h light period and 10 h
dark period. Three days old uniform seedlings were transferred to plastic tubs containing
100 L nutrition medium (Yoshida medium). Plastic tubs were kept in a glasshouse under
controlled conditions with a light period of 14 h followed by a 10 h dark period, humidity
55% to 65%, and temperature 26–28 ◦C.

Previously, 200 mM salt concentration is reported for screening of rice genotypes [26].
Rice seedlings were normally grown for 14 days. After that one batch of eight seedlings
per genotype was left for normal growth (control), while the second batch consisting of
eight seedlings per genotype was treated with 200 mM salt concentration (commercial
grade NaCl) for 7 days, to evaluate the genotypes rigorously. For this purpose, commercial-
grade salt (solid) was dissolved in 2 liters of water to make the salt solution and this was
applied to the plants. A randomized complete block design with three replicates was
followed. After 7 days of salt stress, seedlings were evaluated for morpho-physiological
traits i.e., shoot length (SL, cm), root length (RL, cm), total plant length (TPL, cm), shoot
fresh weight (SFW, g), shoot dry weight (SDW, g), root fresh weight (RFW, g), and root
dry weight (RDW, g). For this purpose, five seedlings from each replicate were selected
randomly and lengths were measured with the help of a graduated ruler in centimeters.
Similarly, weights were also recorded with electronics balance (Compax, RS 232C). For
dry weights measurements, 3 days oven-dried (37 ◦C) seedlings were used. Rice seedlings
were screened (according to SES, IRRI) for the salt toxicity symptoms. Three replicates
of root and shoot-related tissues from each treatment were analyzed for sodium (Na+)
and potassium (K+) concentration. The root and shoot tissues were rinsed with distilled
water several times. The samples were kept in an oven for 72 h at 60 ◦C. After the samples
had dried, the sodium and potassium concentrations (SNC, SKC, RNC, and RKC) were
measured according to the already proposed method by using a flame photometer [27].
The concentration of Na+ and K+ in root and shoot tissues were summed to make the whole
plant Na+ and K+. The whole plant Na+/K+ ratio (NKR) was also calculated.

2.3. Field Experiment
2.3.1. Plant Growth and Field Conditions

The healthy seeds of 22 GSR lines and two local varieties (“IRRI 6 and Kissan Basmati”)
were sown in nursery trays during the month of June 2021. Nursery trays were filled
with a mixture of soil, peat moss, and sand in a ratio of 2:2:1. At the three-leaf seedling
stage about 30 days after sowing (DAS), transplantation to the control field and natural
saline conditions (Supplementary Table S2) were carried out at the Soil Salinity Research
Institute, Pindi Bhattian (31.472◦ N, 74.243◦ E), Pakistan. The experiment was designed
according to a split-plot randomized complete block design (RCBD) with three replicates
for each treatment.

2.3.2. Field Evaluation for Morphological Traits

At the maturity stage, plant height (PH), and the number of fertile tillers (TN) from
five randomly selected plants of each replication were recorded for studied genotypes.
After harvesting, grain yield per plant (GY, g), straw yield per plant (SY, g), seed length
(GL, mm), 1000 grain weight (TGW, g), harvest index (HI, %), and stress susceptibility
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index (SSI) were recorded. GL was measured with the help of a digital vernier caliper in
millimeters. At the same time, the GY, SY, and TGW were recorded with electronics balance
(Compax, RS 232C). SSI for grain yield was calculated by using the following equation.

SSI =
1 − Ys

Yp

D
(1)

Ys and Yp is the yield under stress and control field conditions, respectively, while D is a

stress intensity
(

1 − X
Xp

)
as described previously [25].

2.3.3. Selection Criteria of Tolerant and Susceptible Lines

Morpho-physiological notes from both the glasshouse experiment (SL, RL, TPL, SFW,
RFW, SDW, RDW, SNC, SKC, RNC, RKC, and NKR) and the field trial (PH, TN, GY, SY,
TGW, GL, and HI) was employed to evaluate the performance of 22 GSR lines and two local
varieties under salt stress treatments. Agglomerative Hierarchical Cluster (AHC) analysis
in XLSTAT was used for the characterization of rice genotypes [28]. For dissimilarities
calculation, the Euclidean distances were measured by applying Ward’s method [29].

2.4. Molecular Characterization
2.4.1. RNA Sampling, Extraction, cDNA Synthesis

The roots of the seedlings were thoroughly washed with distilled water. After root dis-
infection, the root tissues from the selected salt-tolerant (“S19 and S20”) and salt-susceptible
lines (“S3 and S24”) were immediately stored in liquid nitrogen. A sampling of lateral root
tissues was carried out from control and salt stress plants with three biological replicates.
The total RNA was extracted using the TRIzol method devised by [30]. RNA quantification
was performed using the nano drop (Biospec™ nano spectrophotometer for life sciences)
for sample normalization. Complementary DNA was synthesized as described by [31]. In
detail, Thermo Scientific Revert Aid reverse transcriptase-III, First Strand cDNA Synthesis
Kit (K1691) was used to synthesize cDNA from the extracted RNA.

2.4.2. Selection of Differentially Expressed Genes (DEGs) and Expression Analysis

The transcriptome data from two salt studies (EMBL ArrayExpress E-MTAB-10653
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10653/ (accessed on 1 March
2022) and NCBI GEO GSE60287 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE60287 (accessed on 1 March 2022) was acquired [32,33]. Five differentially expressed
genes (DEGs) (LOC_Os05g33260, LOC_Os03g43850, LOC_Os05g04830, LOC_Os01g04950
(PTR2), and LOC_Os08g34540) with higher log 2 foldchange values were selected, to
understand their role in salt tolerance. Gene-specific pairs of primers were designed
using freely available AmplifX (v.1.7.0) online software (https://amplifx.software.informer.
com/1.7/, accessed on 1 March 2022, Supplementary Table S3). The specificity of the
designed primers was tested by UCS-PCR at UCSC-In Silico PCR genome browser (https:
//genome.ucsc.edu/ (accessed on 1 March 2022)) [34]. To our knowledge, these selected
genes have not been evaluated before for salt tolerance. According to the rice genome
annotation project these selected genes are involved in different molecular functions,
biological processes, cellular components, and responses to different stresses through
transportation. In addition, we studied the already characterized three salt tolerance-
related genes OsSKC1 [14], OsHAK21/qSE3 [22], and OsbZIP23 [21] played a significant
role in salt stress tolerance in rice. Quantitative real time-PCR (qRT-PCR) was performed to
determine the relative expression pattern of selected genes on StepOne RT-PCR (Applied
Biosystems® 7900 HT Fast RT-PCR). OsActin1 was used as an internal reference gene
for data normalization [35]. The 2−∆∆CT method was employed to estimate the relative
expression pattern.

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10653/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60287
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60287
https://amplifx.software.informer.com/1.7/
https://amplifx.software.informer.com/1.7/
https://genome.ucsc.edu/
https://genome.ucsc.edu/
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2.5. Statistical Analysis

Analysis of variance (ANOVA) was employed to estimate the significant variance
of the traits and genotypes. Violin plot and Correlation among the traits were calculated
using “ggcorrplot2” (https://github.com/caijun/ggcorrplot2, accessed on 1 April 2022)
function in the R software (https://cran.r-project.org/bin/windows/base/, accessed on
1 April 2022). Heritability was also calculated by using the “heritability” package of
R [36,37]. XLSTAT was used for principal component analysis (PCA), to classify the various
morpho-physiological traits and genotypes [38]. For comparison, analysis t-test was used.

3. Results
3.1. Glasshouse Experiment
3.1.1. Response of Seedlings Growth under Glasshouse Conditions

Twenty-four GSR lines including two local varieties were screened in a greenhouse.
Collected data were subjected to analysis of variance (ANOVA) and mean squares for
shoot length (SL), root length (RL), total plant length (TPL), shoot fresh weight (SFW),
root fresh weight (RFW), shoot dry weight (SDW), root dry weight (RDW), shoot sodium
concentration (SNC), shoot potassium concentration (SKC), root sodium concentration
(RNC), root potassium concentration (RKC), and whole plant sodium/potassium ratio
(NKR) are presented in Table 1. Results revealed that genotypes (G) varied highly signifi-
cantly (p < 0.001) for all the parameters except for RL and RDW (Table 1). Similarly, the
treatments (T) were also highly significantly (p < 0.001) varied for all the parameters except
for RDW. We also studied the genotypes × treatments interactions. Results indicate that
SDW, SNC, SKC, RNC, RKC, and NKR showed highly significant differences (p < 0.001), SL
demonstrated significant differences (p < 0.05) for G × T, while the rest of the parameters
were non-significant (Table 1).

Table 1. Mean squares values from analysis of variance (ANOVA) for 12 seedling-related parameters
of rice.

SOV Genotype (G) Treatment (T) G × T Error Total Heritability (H2)

DF 23 1 23 92 143
SL 15.15 *** 80.27 *** 4.72 * 2.58 72.68
RL 7.77 ns 196.88 *** 5.11 ns 6.64 14.42

TPL 27.22 ** 528.6 *** 14.1 ns 13.07 50.09
SFW 0.0022 *** 0.2007 *** 0.0005 ns 0.008 65.60
RFW 0.0012 ** 0.2097 *** 0.0003 ns 0.006 52.69
SDW 0.0002 *** 0.0126 *** 0.0001 *** 0.000 72.39
RDW 0.7205 ns 0.0367 ns 0.7828 ns 0.7519 0.001
SNC 4.05 *** 665.64 *** 6.6 *** 0.0864 37.57
SKC 3.65 *** 108.16 *** 1.44 *** 0.1137 71.01
RNC 0.211 *** 15.34 *** 0.224 *** 0.0067 47.68
RKC 0.424 *** 5.46 *** 0.455 *** 0.0068 47.85
NKR 0.23 *** 38.74 *** 0.29 *** 0.0087 43.69

*** Highly significant (p < 0.001); ** Highly significant (p < 0.01); * significant (p < 0.05); ns = non-significant.
SOV = source of variation; DF = degree of freedom; G × T = Genotype (G) × Treatment (T) interaction; SL = shoot
length (cm); RL = root length (cm); TPL = total plant length (cm); SFW = shoot fresh weight (g); RFW = root fresh
weight (g); SDW = shoot dry weight (g); RDW = root dry weight (g); SNC = shoot sodium (Na+) concentration; SKC
= shoot potassium (K+) concentration; RNC = root Na+ concentration; RKC = root K+ concentration; NKR = whole
plant sodium/potassium (Na+/K+) ratio.

3.1.2. Mean Variability of Seedlings Parameters

Under control conditions, the SL changes significantly and showed a 5.65% reduction
in saline samples as compared to the control condition (Supplementary Table S4 and
Figure 1). The genotypes “S13” (29.91 cm) and “S1” (28.52 cm) showed higher SL (Table 2).
RL varied under both conditions. Overall, RL showed an 11.20% reduction as compared to
control (Supplementary Table S4). Under saline conditions, the genotypes “S5” (21.16 cm)
and “S3” (20.83 cm) were at maximum RL (Table 2). Both SL and RL combine and make TPL.

https://github.com/caijun/ggcorrplot2
https://cran.r-project.org/bin/windows/base/
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The overall mean was 8.10% reduced in saline conditions (Supplementary Table S4 and
Figure 1). Under saline conditions, the genotypes “S4” (49.35 cm) and “S5” (48.33 cm) were
at maximum TPL (Table 2). The mean of SFW and RFW in saline conditions decreased up
to 38.39% and 45.66%, respectively (Supplementary Table S4 and Figure 1). The genotypes
“S4” and “S5” followed by “S3” showed maximum SFW (Table 2). Similarly, the mean of
RDW under saline was reduced by 22.63% as compared to the control (Supplementary
Table S4 and Figure 1). The lines “S18” (2.23), “S10” (0.022), and “S24” (0.020) were the
outperformers for RDW (Table 2).
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Table 2. Performance of 24 rice genotypes under 200 mM salt stress condition in glasshouse.

Trait Salt-Tolerant Genotypes
Names and Mean Values

Salt-Susceptible Genotypes
Names and Mean Values

SL S13 (29.91), S1 (28.52), and S22 (27.14) S3 (20.34), S11(22.92), and S8 (22.97)
RL S5 (21.16), S3 (20.83), and S20 (20.41) S8 (14.81), S24 (15.7), and S9 (16.51)

TPL S4 (49.35), S5 (48.33), and S3 (47.6) S24 (36.86), S9 (37.73), and S19 (39.83)
SFW S4 (0.159), S5 (0.142), and S3 (0.141) S24 (0.080), S9 (0.088), and S19 (0.094)
RFW S12 (0.124), S24 (0.122), and S8 (0.113) S17 (0.064), S7 (0.065), and S21 (0.066)
SDW S5 (0.048), S2 (0.047), and S17 (0.045) S9 (0.026), S19 (0.028), and S21 (0.029)
RDW S18 (2.23), S10 (0.022), and S24 (0.020) S23 (0.012), S3 (0.012), and S1 (0.013)
SNC S21 (9.13), S5 (8.83), and S18 (8.63) S15 (2.93), S22 (3.53), and S11 (3.6)
SKC S24 (6.06), S15 (5.93), and S11 (5.46) S20 (2.43), S7 (2.60), and S12 (2.63)
RNC S17 (1.70), S22 (1.67), and S14 (1.62) S24 (0.85), S12 (0.85), and S16 (0.92)
RKC S10 (2.98), S1 (1.97), and S6 (1.91) S17 (0.85), S23 (0.95), and S22 (1.15)
NKR S15 (2.34), S10 (2.15), and S2 (2.12) S3 (0.76), S16 (0.83), and S4 (1.01)

SL = shoot length (cm); RL = root length (cm); TPL = total plant length (cm); SFW = shoot fresh weight (g);
RFW = root fresh weight (g); SDW = shoot dry weight (g); RDW = root dry weight (g); SNC = shoot sodium
(Na+) concentration; SKC = shoot potassium (K+) concentration; RNC = root Na+ concentration; RKC = root K+

concentration; NKR = whole plant sodium/potassium (Na+/K+) ratio.

Sodium (Na+) and potassium (K+) are very important parameters for the identification
of salt-tolerant lines. Under control and saline conditions, SNC and RNC change signif-
icantly. In saline conditions, the means of SNC and RNC were increased up to 219.42%
and 102%, respectively. In saline conditions, the genotypes “S17” (1.70), “S22” (1.67), and
“S14” (1.62) absorbed more sodium (Na) in their roots (Table 2). Similarly, we also checked
potassium (K) in the root samples. The overall mean of RKC was increased by 34.10% in
saline conditions as compared to the control mean, while the mean of SKC was reduced
by 30.54% as compared to the control (Supplementary Table S4 and Figure 1). The mean
of plants in saline conditions showed a 270% increase in NKR as compared to plants in
control conditions (Supplementary Table S4 and Figure 1). The genotypes “S15” (2.34),
“S10” (2.15), and “S2” (2.12) absorbed more Na+ and less K+ as compared to control plants.
These genotypes were declared as salt-tolerant genotypes for NKR. On the other hand,
the genotypes “S3” (0.76), “S16” (0.83), and “S4” (1.01) were in the opposite direction for
performance (Table 2).

3.1.3. Heritability (H2) of Seedlings Parameters

Heritability is believed to be a fundamental sign for the development of a further
developed populace. Determination of a single plant at the seedling stage can be demon-
strated as more functional for a quality that is profoundly heritable when contrasted with
less heritable characteristics. Heritability calculates under 200 mM salt stress were > 50%
(Table 1), for example: SL (72.68%), SDW (72.39%), SKC (71.01%), SFW (65.60%), RFW
(52.69%), and followed by TPL (50.09%). This indicates that over 50% of hereditary changes
transmitted to offspring were additive in nature. In this way, selection for these parameters
might be perceived as valuable during early generations.

3.1.4. Correlation among Seedlings Parameters

It is reported that tolerant genotypes showed longer roots and higher weights. To
study the relative importance of the different traits, a correlation was carried out. Pearson’s
correlation results implied that RL showed a very low correlation with all the studied
parameters except TPL, SFW, RFW, and SDW (Figure 2). RL is a very important trait because
it helps plants to absorb nutrients. Reduction in RL and root weights due to no production
of new roots indicates that this is a salt-sensitive trait, so in an assortment of salt-tolerant
genotypes, these traits cannot be used. SL showed highly significant (p-value < 0.001)
correlation with TPL (r = 0.86) and SDW (r = 0.71), significant (p-value < 0.01) with SFW
(r = 0.58) and RFW (r = 0.51), and significant (p-value < 0.05) with RNC (r = 0.40). TPL
also showed highly significant (p-value < 0.001) correlation with SDW (r = 0.74), SFW
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(r = 0.71), and RFW (r = 0.63). On the bases of these findings SL-related traits can be used
as a selection criterion.
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Figure 2. Correlation between 12 morpho-physiological traits of rice genotypes at seedlings stage.
Plants were evaluated in control (Con) and 200 mM salt stress (Salt). SL = shoot length (cm);
RL = root length (cm); TPL = total plant length (cm); SFW = shoot fresh weight (g); RFW = root fresh
weight (g); SDW = shoot dry weight (g); RDW = root dry weight (g); SNC = shoot sodium (Na+)
concentration; SKC = shoot potassium (K+) concentration; RNC = root Na+ concentration; RKC = root
K+ concentration; NKR = whole plant sodium/potassium (Na+/K+) ratio. *** Highly significant
(p < 0.001); ** Highly significant (p < 0.01); * significant (p < 0.05).

3.1.5. Principal Component Analysis of Seedlings Parameters

To evaluate the range of genotypes and association between rice seedlings parameters
under control and 200 mM salt stress conditions, PCA based on the correlation matrix was
used to study the variation pattern in 24 GSR lines. In this studied panel of genotypes,
under control conditions first, two PCs covered 52.1% of the total variation (Figure 3A). In
the control, environment PC1 accounted for 32.8% of the variance while the PC2 accounted
for 19.3%. Under 200 mM salt stress conditions first two PCs covered 58.3% of the total
variation (Figure 3B). PC1 and PC2 accounted for 39.8% and 18.5% of the variance under
200 mM salt stress conditions. Prognostication of characteristics on PC1 and PC2 in
control and 200 mM salt stress conditions showed that SL, RL, RFW, SFW, SDW, and
RFW were amazingly and emphatically connected with TPL. These outcomes are further
affirmation of the progressive bunch investigation (Figure 2). The genotypes “S13”, “S10”,
“S3”, “S22”, “S20”, and “S1” were inverse to genotypes “S24”, “S6”, “S18”, and “S12” in
control conditions. A clear difference was present between salt-tolerant and salt-susceptible
genotypes. The genotypes “S1”, “S19”, “S20”, “S23”, and “S13” were inverse to “S24”, and
“S3” under the 200 mM salt stress conditions.
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3.2. Field Experiment
3.2.1. Effects of Salinity on Yield Components under Field Conditions

Highly significant (p < 0.001) differences in plant height (PH), tillers number (TN),
grain yield (GY), straw yield (SY), 1000-grain weight (TGW), grain length (GL), and harvest
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index (HI) were observed between genotypes evaluated in this study (Table 3). Between
control and salinity stress, all the studied parameters differ highly significantly (p < 0.001)
except PH and GL (Table 3). The interaction between genotypes and treatment was non-
significant for all the parameters except for HI (Table 3).

Table 3. Mean squares values from Analysis of variance (ANOVA) for 7 maturity related parameters
of rice.

SOV Genotype (G) Treatment (T) G × T Error Total Heritability

DF 23 1 23 92 143
PH 282.9 *** 31.0 ns 14.0 ns 13.63 93.21
TN 28.3 ** 1614.7 *** 10.19 ns 12.10 57.23
GY 391.56 *** 104959.36 *** 151.45 ns 151.40 61.32
SY 861.98 ** 12886 *** 439 ns 339.18 54.35

TGW 39.21 *** 205.76 *** 3.73 ns 2.01 90.89
GL 4.30 *** 0.166 ns 0.155 ns 0.10 96.43
HI 0.0056 *** 0.8445 *** 0.0045 *** 0.001 48.10

*** Highly significant (p < 0.001); ** Highly significant (p < 0.01); ns = non-significant. SOV = source of variation;
DF = degree of freedom; G × T = Genotype (G) × Treatment (T) interaction; PH = plant height (cm); TN = tillers
number; GY = grain yield/plant (g); SY = straw yield (g); TGW = 1000-grain weight (g); GL = grain length (mm);
HI = harvest index (%).

There was a wide variation among the genotypes. PH was influenced by salinity
slightly and reduced by 0.92% (Supplementary Table S5) under 200 mM salt stress con-
ditions. The highest PH was recorded in genotypes “S3” (117.53), “S23” (114), and “S24”
(113.8) (Table 4). Tiller numbers were reduced by 27.02% in salt conditions (Figure 4 and
Supplementary Table S5). The genotypes “S9” (22.2), “S19” (22), and “S24” (21.8) performed
better (Table 4). Results from Table 3 showed that the GY was influenced by 200 mM salt
stress. The mean of GY under 200 mM salt stress was reduced by 59.16% as compared to
the mean of control (Supplementary Table S5). Table 4 showed that the genotypes “S9”
(51.46), “S8” (48.8), and “S22” (42.66) performed well under 200 mM salt stress and have
higher GY.

Table 4. Performance of 24 GSR lines under field conditions.

Trait Salt-Tolerant Genotypes
Names and Mean Values

Salt-Susceptible Genotypes
Names and Mean Values

PH S3 (117.53), S23 (114), and S24 (113.8) S18 (88.33), S8 (92.13), and S5 (93.33)
TN S9 (22.2), S19 (22), and S24 (21.8) S4 (14.33), S2 (14.73), and S6 (15)
GY S9 (51.46), S8 (48.8), and S22 (42.66) S1 (23.93), S6 (24.83), and S24 (27.2)
SY S1 (125.6), S20 (115.06), and S23 (108.93) S8 (43.6), S17 (64.26), and S19 (70.66)

TGW S1 (30.62), S20 (24.63), and S19 (24.12) S4 (17.43), S6 (17.63), and S12 (17.99)
GL S1 (12.18), S12 (11.14), and S15 (10.05) S2 (7.81), S10 (8.49), and S23 (8.81)
HI S12 (0.41), S14 (0.37), and S9 (0.36) S2 (0.15), S5 (0.20), and S1 (0.22)
SSI S19 (1.16), S18 (0.94), and S23 (0.94) S16 (0.743), S17 (0.746), and S2 (0.759)

PH = plant height (cm); TN = tillers number; GY = grain yield/plant (g); SY = straw yield (g); TGW = 1000-grain
weight (g); GL = grain length (mm); HI = harvest index (%); SSI = stress susceptibility index.

Under salt stress conditions, SY reduced up to 17.62% as compared to control condi-
tions (Supplementary Table S5). Grain yield was significantly reduced under 200 mM salt
stress. The mean of TGW was reduced by 10.45% under salinity (Table 4). Grain length,
(GL) a component of the physical quality of rice, was not affected by the salinity. The
overall mean of GL in salinity was slightly increased by 0.72% (Figure 4 and Supplementary
Table S5). The genotypes “S1” (12.18), “S12” (11.14), and “S15” (10.05) showed longer grains
as compared to the genotypes “S2” (7.81), “S10” (8.49), and “S23” (8.81) (Table 4). HI was
influenced by salinity and its means were reduced by 33.57% as compared to the control’s
mean (Figure 4 and Supplementary Table S5). Under salinity, the genotypes “S12” (0.41)
and “S14” (0.37) performed well (Table 4). SSI was also calculated and on the bases of SSI



Plants 2022, 11, 1461 11 of 19

the genotypes “S19” (1.16), “S18” (0.94), and “S23” (0.94) were recognized as salt-tolerant
(Table 4).
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Figure 4. Comparison of yield related parameters (A–G) of rice genotypes at maturity stage. Plants
were evaluated in control and 200 mM salt stress (salt) under field conditions. Circles with different
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3.2.2. Association among Yield Parameters under Field Conditions

Association between yield related parameters such as PH, TN, GN, SY, TGW, GL, HI,
and SSI were recorded under field conditions (Figure 5). Results showed that GL showed
highly significant (p < 0.001) correlation with PH (r = 0.65 ***) and TGW (r = 0.72 ***) under
salinity and control conditions. SY showed highly significant (p < 0.001) correlation with
GY (r = 0.87 ***) under control conditions. Under stress conditions, the sensitive genotypes
showed less SY, HI, and GY. In this study, HI also showed highly significant (p < 0.001)
correlation with GY (r = 0.56 **) and SY (r = −0.66 ***) under salinity and significant
(p < 0.05) with TN (r = 0.44 *) under control conditions (Figure 5). HI, SY, and GY can be
used as a selection criterion.

3.2.3. Assessment of Rice Genotypes Using Principal Component Analysis (PCA)

Principal Component Analysis (PCA) was performed to distinguish the main com-
ponents of yield-related parameters of rice genotypes that best depict the reaction to salt
pressure to recognize salt-resistant genotypes. Scree plots showed the variation percentage
in relation to each of the PCs. The initial two PCs represented 44.9% and 22.9% of the
total variance variety among rice genotypes (Figure 6A), individually all parameters were
plotted against the x-axis and y-axis. PC1 represented higher values for TGW, GL, and PH
which showed association among each other, while PC2 represented higher values for SY,
HI, GY, and TN under control conditions (Figure 6B).
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Figure 5. Correlation between seven morpho-physiological traits of rice genotypes at maturity stage.
Plants were evaluated in control (Con) and salt stress (Salt) under field conditions. PH = plant
height (cm); TN = tillers number; GY = grain yield/plant (g); SY = straw yield (g); TGW = 1000-grain
weight (g); GL = grain length (mm); HI = harvest index (%). *** Highly significant (p < 0.001);
** Highly significant (p < 0.01); * significant (p < 0.05).

Under saline conditions, scree plot (Figure 6C) and parameters (Figure 6D) were
shown. The first principal component (PC1) contributed to maximum variability (34.2%).
Parameters such as PH, TGW, and GL were positively loaded. The PC2 showed 21.5% of
the total variance. In PC2 the parameters HI, GY, and SSI were positively loaded. Results
showed that the genotypes are more diverse from each other. Environment vacillations
represent a significant danger to worldwide yield production, and genotypes might have
the option to endure the unfavorable conditions coming about because of environmental
change and subsequently, be valuable as possible guardians in rearing projects pointed
toward improving the salinity tolerance in rice.

3.2.4. Cluster Analysis of Rice Genotypes

Hierarchical clustering under saline conditions of the glasshouse as well as the field
was performed. On the bases of the performance of the rice genotypes under salinity stress,
24 genotypes were divided into four groups susceptible, moderate-susceptible, moderate-
tolerant, and tolerant (Figure 7). Out of 24 rice genotypes, only two genotypes fall in the
first group (susceptible); 11 genotypes in the second group (moderate-susceptible); four
genotypes in the third (moderate-tolerant) group; and the fourth (tolerant) group contains
seven rice genotypes.
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susceptible); light green (moderate-tolerant); and purple (tolerant) were created.
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3.3. Molecular Characterization
Expression Profiling Analysis in Salt-tolerant and Susceptible Genotypes

We analyzed the physiological behavior of rice seedlings under glasshouses as well
as in the field. On the bases of these findings, we characterized the rice genotypes as
salt-tolerant and salt-susceptible (Figure 8A–C). To understand the mechanism of salin-
ity tolerance in rice, five genes from the previously published RNA-seq data were se-
lected, and previously well know salt-tolerant genes LOC_Os01g20160 (OsSKC1/OsHKT8),
LOC_Os03g37930 (OsHAK21/qSE3), and LOC_Os02g52780 (OsbZIP23) also selected. Their
expression was checked in salt-tolerant and salt-susceptible genotypes (Figure 8D). The
genes LOC_Os05g33260, LOC_Os03g43850, LOC_Os05g04830, and LOC_Os01g04950 were
significantly up-regulated in salt-tolerant genotypes, while the gene LOC_Os08g34540 was
unchanged in the tolerant genotypes.
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Figure 8. Physiological response of rice tolerant (“S19”) and susceptible (“S3”) genotypes in response
to 200 mM salt stress. Comparison of S19 and S3 under salt stress (A), whole seedlings (B); and
roots (C). Bars = 1 cm. (D) Quantification RT-PCR analysis of selected genes expression in salt-
tolerant (“S19” and “S20”) and salt-susceptible (“S3” and “S24”) genotypes. OsActin1 was used
for normalization. Bars showing the mean ± SD of three different experiments. t-test was used;
** p < 0.01, * p < 0.05.

4. Discussion

Crops are frequently faced with different biotic and abiotic stresses that limit their de-
velopment, causing impressive decreases in farming production all over the world [25,39,40].
Plants are immobile and take essential nutrients, and water from the soil. In most of the
previous studies, salinity effects were studied at the seedling stage [11,41–43] and few
studies are reported under field conditions [44,45]. During the life cycle of plants, they face
different kinds of environmental stresses at every stage of growth, so it is very important
to understand each developmental stage. Salinity is the most drastic abiotic stress influ-
encing plant growth and development [46]. To balance the issues presented by expanding
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salinization of arable lands, there is a need to painstakingly consolidate salt-tolerant genes
into cultivated genotypes and new genotypes being delivered. In accordance with this, it is
vital to distinguish salt-tolerant germplasm phenotypically.

In this study, we screened rice genotypes at the seedling stage using glasshouse
conditions as well as in the field conditions. Rice is very sensitive to salt stress, however,
the sensitivity of rice to salt is subject to cultivar. There is a great amount of genetic
diversity amongst the different crops for salt tolerance. Analysis of variance (ANOVA) is
the best marker to check the response of crop plants to environmental stresses. Genotypes,
treatments, and their interactions are the components of stress assessment [47,48]. Present
findings demonstrated that genotype diversity significantly affected all parameters. The
genotype impact is at first evaluated to decide the viability of choice. Population variation is
the principal component in genotype determination [49]. The presence of variations among
the genotypes and the choice of screening methods are very important. The significant
impact of treatments on a parameter demonstrates that the choice of treatment is effective
to study the behavior of a genotype to a parameter [47,50]. The salinity resistance at the
seedling stage does not associate with resilience at other vegetative and reproductive
stages in rice [51]; nonetheless, it can reduce the crop yield by adversely influencing yield-
related parameters such as tiller number, plant biomass, time of flowering, and harvest
index [52–55]. So, this study was conducted at seedling as well as maturity stages, and the
molecular mechanism of salinity was also studied.

The rice plants under saline conditions showed significant inhibitory effects for all the
growth-related parameters of the seedling as well as the maturity stage. Salinity negatively
affects the shoot, root, and biomass which leads to the overall reduction in growth and pro-
duction [42]. The decrease in development might be brought about by the overabundance
of harmful NaCl amassing in the soil around the roots causing imbalanced supplement
take-up by the seedlings [56]. A decrease in leaf area is related to changes in the leaf life
cycle because of salt stress, bringing about a diminished pace of net photosynthesis [5,57].
This might be because of stomatal closer, an interior decrease of CO2, and diminished
movement of the protein RuBisCo [58]. Upkeep of photosynthesis is vital to keep up with
normal transpiration under salinity and is a significant mark of salt resistance [59]. In this
study, salt-tolerant genotypes showed higher biomass as compared to salt-susceptible geno-
types. Under salt stress Na+/K+ ratio increased significantly and after recovery minimum
Na+/K+ ratio is a good parameter for the identification of tolerant genotypes [60,61]. In
this study, under the salinity Na+ concentration significantly increased in shoot and roots
of all the genotypes as compared to control. The ratio of Na+/K+ was also increased under
salinity stress. These findings were in agreement with the previous research [5,61,62]. The
present study further explained that shoot-related parameters such as SL, SFW, SDW, and
SKC can be used for the selection of tolerant genotypes under glasshouse conditions.

Correlation examination can be utilized to recognize the best parameters. In this study,
the investigations were focused on yield as the main parameter. Results of glasshouse
evaluation showed that RL showed a very low correlation, so in an assortment of salt-
tolerant genotypes these traits cannot be used. SL showed a highly significant correlation
with TPL, SDW, SFW, RFW, and RNC. TPL also showed a highly significant correlation with
SDW, SFW, and RFW. Association between yield-related parameters under field conditions
showed that GL had a highly significant correlation with PH and TGW under salinity and
control conditions. Similarly, SY showed a highly significant correlation with GY under
control conditions. HI also showed a highly significant correlation with GY and SY under
salinity and significant with TN under control conditions. These findings provide a basis
for in-depth analysis and are also in agreement with the previous studies [63,64].

In different agricultural crops such as Brassica napus L. [65], Zea mays L. [66], Glycine
max [67], Triticum aestivum [10], and Oryza sativa [29,68], principal component analysis
(PCA) has been utilized to identify salt-tolerant lines. In this study, PCA results indicate
that shoot-related parameters cluster together showing a strong correlation among them.
In the field evaluation, the salt susceptible index (SSI) for each genotype was calculated for
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grain yield. The low values of SSI for genotypes performed better under salt stress. The
genotypes “S16”, “S17”, “S18”, “S19”, “S20”, and “S6” were salt-tolerant on the basis of SSI.
SSI was also used previously to calculate the stress susceptible index [69,70]. Previously it
is reported that S3 is a drought-sensitive genotype [25]. In this study, we also found that S3
and S24 are salt-susceptible genotypes.

Many transcriptomic studies have been carried out to address the impact of salinity
on rice. All of those studies differ from each other i.e., with the different mediums being
used for growth, different plant stage, and different stress exposure time. Selected genes
were novel, and their expression showed up-regulation in salt-tolerant genotypes. The
most important adaptation for the plant to combat salinity is to block the transport and
accumulation of Na+ ions in the leaves [5]. Expression of OsHKT1;5 is correlated to the salt
tolerance of a rice genotype. OsSKC1 (OsHKT1;5) is expressed in plant roots, where it helps
the retrieval of Na+ ions into xylem parenchyma cells from the xylem prior to its transport
in shoots [5,14]. Our results are also consistent with [71] as an increased expression is
observed for the salt-tolerant lines. These findings indicate that these genes have a role in
the adaptation of rice genotypes to harsh environments.

5. Conclusions

We tested the rice genotypes under salt stress in glasshouse and field conditions. In
the glasshouse evaluation, the shoot-related parameters, while in field conditions, the grain
yield and salt susceptible index can be used as a selection criterion. We additionally presume
that the two investigation strategies (glasshouse and field) are similarly solid and can be
utilized for tests yet work better together to affirm the exactness of test results. Based on
current findings, the genotypes “S19” and “S20” were recognized as salt-tolerant while the
genotypes “S3” and “S24” were salt-susceptible. Furthermore, the genes LOC_Os05g33260,
LOC_Os03g43850, LOC_Os05g04830, and LOC_Os01g04950 have a significant role in salt
tolerance. Information from this study can assist rice growers and different researchers
as they screen and select salt-tolerant rice genotypes for varietal improvement. Further
examinations will be required for the functional confirmation of these genes.
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