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Abstract: Early recognition of pathologic cardiorespiratory stress and forecasting cardiorespiratory
decompensation in the critically ill is difficult even in highly monitored patients in the Intensive Care
Unit (ICU). Instability can be intuitively defined as the overt manifestation of the failure of the host
to adequately respond to cardiorespiratory stress. The enormous volume of patient data available
in ICU environments, both of high-frequency numeric and waveform data accessible from bedside
monitors, plus Electronic Health Record (EHR) data, presents a platform ripe for Artificial Intelligence
(AI) approaches for the detection and forecasting of instability, and data-driven intelligent clinical
decision support (CDS). Building unbiased, reliable, and usable AI-based systems across health care
sites is rapidly becoming a high priority, specifically as these systems relate to diagnostics, forecasting,
and bedside clinical decision support. The ICU environment is particularly well-positioned to
demonstrate the value of AI in saving lives. The goal is to create AI models embedded in a real-
time CDS for forecasting and mitigation of critical instability in ICU patients of sufficient readiness
to be deployed at the bedside. Such a system must leverage multi-source patient data, machine
learning, systems engineering, and human action expertise, the latter being key to successful CDS
implementation in the clinical workflow and evaluation of bias. We present one approach to create
an operationally relevant AI-based forecasting CDS system.

Keywords: database; machine learning; hemodynamic monitoring; predictive analytics

1. Introduction

There is a need for Artificial Intelligence (AI)-based tools in acute care environments to
aid in the early detection and assessment of cardiorespiratory insufficiency (CRI) because
the amount of information exceeds human capacity to process it, internalize the extracted
knowledge, and then act upon it consistently and appropriately. The new onset of CRI
is common in acutely ill hospitalized patients. Misdiagnosis and/or delayed treatment
leads to increased morbidity, mortality, and cost of care [1]. Instability manifests through
acute but frequently subtle changes in vital signs (VS) trends indicative of attempted
compensation and evolving decompensation. Decompensation and instability occur even
in highly monitored patient care environments such as in the Intensive Care Unit, and the
longer a patient is in such a decompensated state the more difficult it is to mitigate or reverse
resultant damage at the organ and cellular levels [2,3]. Being able to detect impending
instability, rather than detecting its presence at a late stage, could permit timely stabilization,
thereby reducing morbidity, mortality, and resource use. However, the technology needed
to forecast impending instability is not well developed. Many early alerting approaches,
once embedded in Electronic Health Record (EHR) systems, have subsequently been rolled
back for a variety of reasons, including unacceptable performance, lack of perceived clinical
usefulness, interference with existing workflows, and increased clinician documentation
burden [4,5]. There is a clear need for better performing, trustworthy models that can be
effectively melded into the clinical workflow. We and others have used machine learning
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(ML) to detect patterns predictive of impending instability before overt manifestations occur
from real-time physiologic monitoring, often linked to EHR data. Such advanced intelligent
clinical decision support (CDS) is only the first step towards developing AI-based systems
that provide trustworthy, personalized predictions and recommendations to preemptively
mitigate instability [6,7], hopefully leading to improved patient-centered outcomes.

Importantly, CRI usually develops over time and, therefore, it can potentially be
predicted. Many researchers have demonstrated the feasibility of forecasting its overt
onset. For instance, we have shown in animal models, step-down units, and ICUs that,
typically, hemodynamic and respiratory instability develops over a time scale where clinical
mitigations could be initiated in advance of the overt manifestations of instability [8–20].
However, creating AI tools with good performance is not enough. This perspective pa-
per describes one approach to creating an operationally relevant AI-based forecasting
CDS system.

2. Challenges of AI-Based CDS

AI-based tools must be deemed useful and trustworthy by end-users. There are two
primary and very different challenges associated with using AI-based CDS tools at the
bedside. The first is a lack of clinician trust in the system, a subject we and others have
studied [21]. The other, less well-recognized challenge relates to the over-reliance on AI-
based decision support [22–24]. CDS tools should be developed using sound human factor
engineering principles to minimize information overload, to operate cohesively within
the clinical workflow, and in support of an a priori expectation of incremental usefulness
if validated.

Regrettably, AI-based tools may be biased. Bias in AI algorithms has been known to
plague business applications for years. More recently, much emphasis has been put on
exploring sources of biases in healthcare AI, including algorithms based on EHR [25–29].
Several landmark papers demonstrated that the naïve application of ML models to data
may lead to erroneous conclusions or lack robustness across populations and subgroups
of interest [30]. Statisticians have developed sophisticated methods to deal with observed
and unobserved confounding, such as propensity-based methods [31,32]. Moreover, the
issue of fairness in machine learning has recently become a very active research area,
especially in healthcare applications [33]. Future predictive models should go beyond a
simple examination of the impact of sex, race, and age as biological variables on model
predictions. They should systematically explore data, algorithms, and results for the
presence of bias. Potentially, models drawn from high-frequency data (i.e., 1 Hz and
250 Hz), when available, may be less exposed to certain forms of bias. However, this
assumption needs to be validated across different clinical datasets to ensure their broad
and consistent applicability [34].

Hence, AI-based tools need to be robust across environments. External validation
of prediction algorithms and CDS tools is essential for the scalable impact of AI-based
solutions. Creating generalizable tools is a difficult problem, for which there exist several
non-mutually exclusive approaches. These approaches include: (1) external testing and
transfer learning; (2) learning from multi-site broadly representative datasets; (3) federated
approaches to learning. There are challenges and limitations to each of these methods.
The current cybersecurity and privacy protection climate around health care data severely
impedes the sharing of large datasets, including patient-level data. There is also a limit as
to the notion of the generalizability of models. After all, predictions need to be accurate
in a local environment, as trust is developed locally. When and how generally robust
models can enhance local performance at sites where they were not developed remains to
be explored [35].

Performing AI-based CDS in real time poses additional challenges. Although there are
a growing number of tools for real-time decision support, most are rule-based and focused
on detection (e.g., bedside alarms), rather than on personalized forecasting and therapeutics.
There are some recent inspiring examples of promising work towards automated EHR-
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based early warning systems [36–38] and the forecasting of hypotension [39], which have
impacted clinical workflow. However, current state of the art applications do not draw
from multi-resolution, multi-domain data, including unstructured EHR data and monitor-
derived waveform data. Furthermore, system architecture to build real-time AI-based
systems needs to be not only developed locally, but also to maintain inter-institutional
applicability. Such system requirements are not trivial to satisfy in practice.

3. Examples of Forecasting and Phenotyping Instability in the ICU

We have developed predictive models using controlled animal laboratory data and
historical ICU data that demonstrate good performance in predicting clinically relevant
tachycardia, hypotension, and bleeding. We also demonstrated the incremental benefit
of high-frequency data in increasing the reliability of these prediction models [8,17,39–41].
For instance, advanced signal processing predicted clinically relevant tachycardia and
hypotension in ICU patients [42,43]. To determine a clinically relevant tachycardia tar-
get in these studies, we first examined tachycardia’s impact upon outcomes from the
MIMIC-III database. We found that although increasing HR > 100/min was associated
with progressively increasing vasopressor use, morbidity, and mortality, a clear step-up
in the length of stay and mortality occurred with HR > 130/min. Those tachycardia pa-
tients with a HR > 130/min had increased vasopressor support, longer ICU stays, and
increased ICU mortality. Thus, we defined clinically relevant tachycardia as HR > 130/min,
lasting ≥ 5 min with >10% density of occurrence over this time interval. Using data sam-
pled at 1 Hz from 2809 subjects, classifiers were trained to create a risk score for future
tachycardia [44]. Risk trajectory was generated from time windows moving away from the
tachycardia event at 1-min increments. The classifiers performed generally well. The area
under receiver operating characteristic curve (AUROC) score ranged from 0.842 when a
regularized logistic regression model was used to 0.921 when a random forest (RF) clas-
sifier was used. Risk trajectory analysis showed average risks for the tachycardia group
of 0.78 just before the tachycardia episodes, while control group risks remained <0.3 and
with significant separation between subsequent tachycardia and control stable patients at
~75 min before the initial tachycardia event (Figure 1).

We also applied AI tools to predict hypotension, defined as systolic blood pres-
sure < 90 mmHg and a mean arterial pressure <60 mmHg for ≥5 measurements within
10 min [13]. We used an RF classifier to predict hypotension and performance was mea-
sured by AUROC and the area under the precision-recall curve (AUPRC). We identified
1307 cases and matched them to 1619 non-hypotensive controls. The RF model showed
AUROC of 0.93, 0.91, and 0.88 at 15, 30, and 60 min, respectively, before hypotension
and AUPRC of 0.77 at 60 min before hypotension. Mean risk trajectory showed a clear
separation from mean control risk trajectory >15 min before hypotension in 80% of cases.
Since alerts predicting impending hypotension may also cause alarm fatigue if they are
presented to the bedside clinicians too often, a second-level RF model analyzed the recent
shape of the risk trajectory, combined with the existence of prior alerts, to generate po-
tential alerts. We then imposed a lockout period of 15 min, where the system would not
re-alert, even if alert conditions persisted. The resulting alert system produced on average
0.79 alerts/subject/hour, with a positive predictive value (probability of developing hy-
potension) of 65% and sensitivity of 92.4%. Thus, using this strategy to minimize alarm
events and alarm fatigue did not materially impede the performance of this model.

We formally evaluated improvements in the performance of an instability model
attainable when moving from non-invasive monitoring (NIM) to adding central venous,
pulmonary artery, and arterial catheterization-derived variables and, as their sampling
frequency was increased, from simple metrics (SM), computed every minute, to heart-beat-
to-beat (B2B), to waveform (WF) with and without personalized stable baseline reference in
our porcine 20 mL/min bleed cohort [41]. RF classification was used to identify the onset
of bleeding. Model performance was evaluated using the AUROC curve, as well as the
activity monitoring operating characteristic (AMOC) curve. The AMOC curve displays the
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tradeoffs between an earlier time to detection (i.e., how early bleeding can be detected after
its onset) and increased false alarm rate (FPR). Referencing models to a personal stable
baseline before a bleed improved bleed detection, as did an increase in data granularity
from SM to B2B to WF. All invasive monitoring out-performed NIM (Figure 2). Thus, these
data demonstrate that using more invasive monitoring-related data, increasing sampling
frequency, and referencing to a personal baseline, cumulatively improve the detection of
bleeding onset.
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Figure 1. Model prediction of initial tachycardic episode using external control data matched for
every episode of tachycardia. Comparison of a model trained on MIMIC-II data to identify an initial
episode of tachycardia (heart rate (HR) > 130/min) in an external validation cohort from that same
database. Results are shown as risk score changes over time as the future tachycardic and non-future
tachycardic (control) groups move toward the event. The control group’s time series data were
time-matched to correspond to the future tachycardic group’s time in the ICU. Data derived from
Yoon et al. [43].

The limited availability of sufficiently large collections of clinically assessed reference
data is one of the major bottlenecks preventing the wider development and adoption of
robust AI-based CDS in practice. However, reviewing large amounts of clinical time series
data to identify CRI can be both time-consuming and fraught with inter-rater variability of
labeled events. To address these issues, we developed and applied an efficient protocol for
a multi-expert, multi-tier ground truth elicitation framework with application to artifact
classification for predicting patient instability [44], efficiently utilizing precious human
expertise, and yielding accurate downstream models with one-quarter of the amount of
time needed if conducted by the content experts manually. We also developed an active
learning algorithm that prioritized which instances of data should be labeled by humans to
maximally boost the eventual performance models, further reducing by half the need for
direct visualization reviews while maintaining human interpretability of resulting model
predictions [45,46]. In addition to being labor-intensive, the clinical expert data annotation
process is often prone to error and uncertainty, especially if the cases are to be assessed
individually. Our studies showed that more reliable labels of real versus artifact, or minor
versus clinically relevant instability, can be collected by asking other kinds of questions. For
instance, supplementing direct labeling of each data instance with qualitative comparisons
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such as: “Comparing patient A and B, who appears healthier?” [47,48]. Answering such
questions is often easier, yields more reliable labels, and requires less annotation effort to
achieve equivalent performance. We have also demonstrated how to completely avoid
the laborious process of pointillistic labeling of reference data for clinical applications of
AI using weak supervision [49]. By harvesting multiple labeling functions that a human
expert would use in their mind to assess each case at hand, one can automate the process
of data annotation. This is particularly appealing when facing large amounts of clinical
data needing annotation. In one such exercise, we have shown that a handful of labeling
functions derived from basic clinical knowledge can eliminate the need for manual data
annotation and yield predictive models of performance comparable to the equivalent
models trained on data point-by-point labeled by expert clinicians when evaluated on the
task of detecting arrhythmia in ECG signals [49].
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Figure 2. Activity monitoring operating characteristic analysis of models developed with increasingly
granular arterial pressure physiologic data, for models developed using a universal baseline (A),
and models developed using a personalized baseline (B) (see text for details). Displayed as the
time to detection of bleeding versus false-positive rate for arterial catheter data only for increasing
granularity levels: simple metrics (SM), beat-to-beat (B2B), and waveform (WF). Data displayed with
shading equal to 95% confidence range. Data derived from Pinsky et al. [41].

Finally, the importance of a usable and informative human–computer interface con-
tributes to user trust in a major way and is often overlooked. Unless a CDS works au-
tonomously, it requires a machine–human interface to allow the clinicians to both oper-
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ationalize the alerts and corresponding information and to audit its performance. Tra-
ditionally, such interfaces included a visual display from an electronic monitor, either a
bedside monitor or handheld device such as a tablet or smartphone. We and others have
proactively involved the end-users in graphical user interface (GUI) development [50].
We demonstrated that clinical end-users are usually eager to engage in GUI development
and readily provide useful feedback on issues related to both the GUI design and the
foundational CDS architecture. This feedback revealed specific items that bedside clinician
users found important, including a better trend evolution display and context of alert
relative to overall care. Unfortunately, bypassing input from clinical experts during the
early-stage development of a GUI CDS system is quite common [51,52].

4. Conclusions

AI-based CDS processes need to be highly iterative using multiple pathways and forms
of feedback involving both the modelers and the target clinicians, linked by in silico trials
of effectiveness and acceptance by end-users and using clear metrics of success. One can
never fully eliminate bias, but newer AI approaches may be able to mitigate several of the
sources of bias CDS systems contend with, yielding diagnostic, predictive, or prescriptive
tools that optimize accuracy and preserve the fairness of the recommended decisions across
subpopulations. Any AI-based CDS will have a finite lifecycle and will require periodic
reevaluation and refinement to adapt to changing patient demographics, data ecosystems,
bedside workflows, and evolution in clinical practices if they are to sustain effectiveness
and trustworthiness. Some of these needs can be automated or semi-automated with the
use of AI. For instance, efficient methods for acquiring training information for models
will likely be able to facilitate such adaptivity at operationally feasible costs. End-user
involvement in the design and evaluation of CDS systems across their lifecycle will also
promote trustworthiness, adoption into practice, and sustainability.

Future research needs to optimally leverage multi-institutional datasets to not only
develop clinically relevant predictive models, but also to establish effective and efficient
methodologies to plumb these databases within the context of health information security
and democratization. Such broad-based efforts are underway [53] and, hopefully, will
lead to novel and insightful ways of joining models and applications across groups of
investigators and across healthcare facilities, once developed.
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