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Abstract: Mitochondrial proteins are physiologically active in different compartments, and
their abnormal location will trigger the pathogenesis of human mitochondrial pathologies.
Correctly identifying submitochondrial locations can provide information for disease pathogenesis
and drug design. A mitochondrion has four submitochondrial compartments, the matrix,
the outer membrane, the inner membrane, and the intermembrane space, but various existing studies
ignored the intermembrane space. The majority of researchers used traditional machine learning
methods for predicting mitochondrial protein localization. Those predictors required expert-level
knowledge of biology to be encoded as features rather than allowing the underlying predictor
to extract features through a data-driven procedure. Besides, few researchers have considered
the imbalance in datasets. In this paper, we propose a novel end-to-end predictor employing
deep neural networks, DeepPred-SubMito, for protein submitochondrial location prediction. First,
we utilize random over-sampling to decrease the influence caused by unbalanced datasets. Next,
we train a multi-channel bilayer convolutional neural network for multiple subsequences to learn
high-level features. Third, the prediction result is outputted through the fully connected layer.
The performance of the predictor is measured by 10-fold cross-validation and 5-fold cross-validation
on the SM424-18 dataset and the SubMitoPred dataset, respectively. Experimental results show that
the predictor outperforms state-of-the-art predictors. In addition, the prediction of results in the M983
dataset also confirmed its effectiveness in predicting submitochondrial locations.

Keywords: mitochondria; deep learning; imbalance data; mitochondrial intermembrane space

1. Introduction

Mitochondria are present in almost all eukaryotic organisms. They are usually enclosed by
membranes, and their biogenesis is a result of delicate coordination between nuclear and mitochondrial
genomes [1]. The mitochondrial intermembrane space is located among two mitochondrial membranes.
The mitochondrial matrix is surrounded by the mitochondrial inner membrane [2]. Mitochondria are
not only the energy metabolism center of the body, but they also participate in many important cellular
pathological processes [3,4], such as electron transfer, adenosine triphosphate synthesis, tricarboxylic
acid cycle, fatty acid oxidation, amino acid degradation, and other complex biological processes.
Theoretically, for normal cell function, it is critical to have the proteins appear at the right location at
the correct time for forming appropriate interactions with correct molecular partners. Mislocalization
will make the proteins inaccessible, and thereby not be integrated into the proper functional biological
networks or pathways. Dysfunctional mitochondria lead to energy metabolism disorders that cause a
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series of interacting states of injury. A number of diseases are associated with mitochondria, such as
the commonly seen polygenic disorder [5], Parkinson’s disease, diabetes mellitus, etc. Therefore,
understanding the protein submitochondrial location can further understand the function of proteins
and provide help for the design of auxiliary drugs for diseases caused by mitochondrial defects.
Unfortunately, experimental methods to obtain information about the protein submitochondrial
location are expensive and time-consuming. It is vital to develop some effective computational
methods to assist researchers in solving this problem.

Protein subcellular localization is a significant research area for proteomics, and researchers
have acquired some remarkable achievements in recent years. The exploitation of research at the
sub-subcellular level is slow, because it is more complicated than that at protein subcellular localization.
However, with the increasing amount of sequence data, computational methods suitable for predicting
protein submitochondrial location have emerged. Over the last decade, several effective methods
achieved distinct achievement in predicting protein submitochondrial location. For example,
Mei et al. [6] presented a marked nuclear transfer learning model (MK-TLM) method. Lin et al. [7]
employed the Over-Represented Tetrapeptides to predict the submitochondrial location and established
the M495 dataset. Kumar et al. [8] put forward a method that could predict the mitochondrial
protein location and submitochondrial location. Qiu et al. [9] used pseudo-amino acid composition
and pseudo-position-specific scoring matrix to extract features. Yu et al. [10] predicted protein
submitochondrial localization by eXtreme gradient boosting. Recently, Savojardo et al. [11] adopted
deep learning to predict the four submitochondrial locations.

The prediction of protein submitochondrial localization is a multi-label multi-class problem. It is
hard to train a multi-label predictor due to the limitation of the number of proteins with multi-label.
In previous multi-class studies, the mitochondrial intermembrane space proteins were always excluded.
However, the amount of mitochondrial intermembrane space proteins has increased, and those proteins
should be considered in the following research [12]. Among the existing methods, only the methods
of Kumar et al. and Savojardo et al. allow the discrimination of four different locations. Thus,
it is urgent to propose a novel method to predict the submitochondrial localization including the
intermembrane space.

Currently, predicting protein submitochondrial localization methods are mainly based on machine
learning algorithms. The traditional machine learning method first requires researchers to extract
diverse features from protein sequences, including amino acid composition [13] and pseudo-amino acid
composition [14]. After features are transformed into suitable vectors, the vectors are classified [15].
Although those methods have achieved good performance, there still are some essential drawbacks;
for example, such manually designed features are very likely to be a suboptimal feature representation.
Hence, the performance of models is limited. Compared with machine learning methods that require
manual feature extraction, deep learning is a feature learning method that can learn from the original
data and classify the abstract features with strong correlation and at a higher level through algorithms.
It eliminates the noise of manual intervention. Deep learning has been proven to be a very powerful
method that has been successfully applied to various biological applications, including genomics,
transcriptome, proteomics, structural biology, and chemistry [15–17]. A prediction tool “DeepLoc” [18]
based on deep learning was proposed for protein subcellular locations. However, the model considers
only one possible label for each protein, whereas the protein subcellular location belongs to a multi-label
multi-class problem in general. Long et al. [19] proposed a model combining CNN and XGBoost to
solve the problem. Manaz et al. [20] used the CNN model to predict the subcellular localization of
endometrial system and secretory pathway proteins. To handle the issue for RNA-protein sequence and
structure binding preferences, Pan et al. [21] proposed a model based on convolutional and recurrent
neural networks. All of this demonstrates that CNN is an effective deep learning method and widely
used in this field.

No predictor is an end-to-end way to predict submitochondrial location. Although Savojardo et al. [11]
employed deep learning to predict the submitochondrial location, it also relied on artificial
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feature extraction. Another problem remains at the subcellular prediction. Rare researchers viewed
the matter of skewed data before categorization, which will cause bias for some categories [22,23].
Hence, it is imperative to figure out the classification issue of imbalanced datasets. Convolutional
neural networks (CNN) can find motifs in protein sequences, which is very important information for
subcellular localization. Therefore, it is very effective to use CNN to capture features in sequences.
Unfortunately, CNN cannot capture the effects of past and future states at the current state. To solve
this dilemma, we use multi-channel CNN to consider the entire protein sequence.

This paper proposes an end-to-end predictor based on deep learning, namely DeepPred-SubMito.
First, it utilizes random over-sampling methods to handle datasets for ensuring the balance among
submitochondrial protein classes. Then, it transforms the protein sequence into a one-hot matrix.
Finally, it applies multi-channel convolution neural networks to grasp features from protein sequences
and output the consequence. We use a cross-validation method to evaluate the performance of our
proposed predictor on two datasets containing four submitochondrial locations and compare them
with state-of-the-art methods. To further verify the ability of our proposed predictor on a dataset
containing only three submitochondrial locations except for the intermembrane space location, we use
the M983 dataset to evaluate the performance of our proposed predictor and compare with the
state-of-the-art predictors.

The rest of this paper is established as follows. Section 2 discusses the experimental results
of DeepPred-SubMito. Section 3 introduces two datasets, random over-sampling, convolutional
neural networks, and an evaluation index. Section 4 summarizes this paper.

2. Results and Discussion

In this section, we implement the DeepPred-SubMito using Keras [24]. The performance of the
proposed predictor was evaluated by testing two submitochondrial datasets, including the SM424-18
and the SubMitoPred. First, we discuss the impact of unbalanced datasets and various deep learning
models on performance prediction. Next, performance of the predictor is compared with some excellent
methods in the aforementioned datasets.

2.1. Parameter Optimization

To validate the effect of random over-sampling on performance prediction, we used the Receiver
Operating Characteristic (ROC) curve to estimate our predictor, as shown in Figure 1. Figure 1a shows
the multi-class ROC cove of the 5 repeated experiments in imbalanced data. Figure 1b shows the
multi-class ROC cove of using the over-sampling method in the dataset. It can observe that the ROC
score is significantly improved after using the over-sampling method. The results confirm that the
over-sampling approach performs better than without the over-sampling approach.

We set a maximum epoch of 150 and batch size of 64 to explore the effect parameters on the
performance of the DeepPred-SubMito predictor. At each stage of the training procedure, we monitor
the performance of the training model on the validation dataset. By setting the checkpoint, learning rate,
and early stop, the training process will be stopped in advance if the results meet the set prerequisites.
Details of hyper-parameter space are summarized in Table 1.

Table 1. DeepPred-SubMito structure parameters.

Parameter List of Values Evaluated

Sliding window size (W) 80, 130, 180, 230, 280
Max-pooling 2
Number of convolutional motifs (F) 32, 64, 128
Kernel size (k) 3, 5, 7, 9
Droup (D) 0.25
Optimization Adam



Int. J. Mol. Sci. 2020, 21, 5710 4 of 13

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 13 

 

the matter of skewed data before categorization, which will cause bias for some categories [22,23]. 
Hence, it is imperative to figure out the classification issue of imbalanced datasets. Convolutional 
neural networks (CNN) can find motifs in protein sequences, which is very important information 
for subcellular localization. Therefore, it is very effective to use CNN to capture features in sequences. 
Unfortunately, CNN cannot capture the effects of past and future states at the current state. To solve 
this dilemma, we use multi-channel CNN to consider the entire protein sequence. 

This paper proposes an end-to-end predictor based on deep learning, namely DeepPred-
SubMito. First, it utilizes random over-sampling methods to handle datasets for ensuring the balance 
among submitochondrial protein classes. Then, it transforms the protein sequence into a one-hot 
matrix. Finally, it applies multi-channel convolution neural networks to grasp features from protein 
sequences and output the consequence. We use a cross-validation method to evaluate the 
performance of our proposed predictor on two datasets containing four submitochondrial locations 
and compare them with state-of-the-art methods. To further verify the ability of our proposed 
predictor on a dataset containing only three submitochondrial locations except for the intermembrane 
space location, we use the M983 dataset to evaluate the performance of our proposed predictor and 
compare with the state-of-the-art predictors. 

The rest of this paper is established as follows. Section 2 discusses the experimental results of 
DeepPred-SubMito. Section 3 introduces two datasets, random over-sampling, convolutional neural 
networks, and an evaluation index. Section 4 summarizes this paper. 

2. Results and Discussion 

In this section, we implement the DeepPred-SubMito using Keras [24]. The performance of the 
proposed predictor was evaluated by testing two submitochondrial datasets, including the SM424-
18 and the SubMitoPred. First, we discuss the impact of unbalanced datasets and various deep 
learning models on performance prediction. Next, performance of the predictor is compared with 
some excellent methods in the aforementioned datasets. 

2.1. Parameter Optimization 

To validate the effect of random over-sampling on performance prediction, we used the Receiver 
Operating Characteristic (ROC) curve to estimate our predictor, as shown in Figure 1. Figure 1a 
shows the multi-class ROC cove of the 5 repeated experiments in imbalanced data. Figure 1b shows 
the multi-class ROC cove of using the over-sampling method in the dataset. It can observe that the 
ROC score is significantly improved after using the over-sampling method. The results confirm that 
the over-sampling approach performs better than without the over-sampling approach. 

  

(a) Imbalance Data ROC (b) Balance Data ROC 

Figure 1. Receiver Operating Characteristic (ROC) curve of our proposed predictor performance in
imbalanced data and balanced data. (a) Imbalance Data ROC; (b) Balance Data ROC.

Considering that the larger the window size W, the lower the number of subsequences, thus,
the dataset in such a case is more time consuming. We perform five models to select the optimum
parameters for window size W. Table 2 describes five different CNN model structures. As shown in
Figure 2, the five predictors perform well when the window size is 180. Therefore, 180 is chosen as the
size of sliding window.

Table 2. CNN structure.

Name Architecture

1 layer32 32 Convolution kernels
1 layer64 64 Convolution kernels
1 layer128 128 Convolution kernels
2 layer 64/128 Convolution kernels
3 layer 64/64/128 Convolution kernels
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Figure 2. Accuracy of the different sliding window under different convolutional neural networks
(CNN) structures on the dataset SubMitoPred.

In general, the convolution kernel size affects feature extraction. To further research the effect of
the kernel size on predictor efficiency, we employ predictors with different kernel sizes. Figure 3 shows
the accuracy with different kernel sizes. We observe that the kernel size under different models affects
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the performance of the model differently. The performance of a layer64 model in different convolution
sizes is almost the same. When the size of the convolution kernel increases to 7, the performance of
a 3-layer model deteriorates. Boosting several kernel sizes does not help much in the five models.
When the kernel size is set to 5, the results are the best among the five models. This may be because
only part of the features is related to subcellular location.

The research shows that multi-layer CNN can obtain higher-level features [25]. However, with the
increase in CNN layers, the computation complexity is higher. To explore the impact of different CNN
layers on model performance, we combined different CNN layers with different kernel numbers to
process models.
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Figure 3. Performance comparison of DeepPred-SubMito with different numbers of CNN structures
and kernel sizes in the SubMitoPred dataset.

In Figure 4, it is indicated that increasing the kernel numbers can improve model performance.
Furthermore, the model performance does not improve with increasing convolution layers. When the
DeepPred-SubMito predictor has two convolution layers, the performance is the best. Therefore,
we did not construct a too complicated model.
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2.2. Comparing with Other State-of-the-Art

It is difficult to conduct a uniform comparison of different methods for predicting protein
submitochondrial locations because previous studies mainly focused on three positions and rarely
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considered four positions. Moreover, different methods used different datasets for assessment,
many researchers did not provide datasets, and the predictors could not run on their corresponding
web servers. For these reasons, this paper only compares the DeepPred-SubMito with DeepMito [11] and
SubMitoPred [8] for predicting four protein submitochondria locations. To evaluate the performance
of the DeepPred-SubMito predictor for predicting three submitochondrial locations except for the
intermembrane space location, we compare it with state-of-the-art predictors on dataset M983.

The DeepMito [11] estimation used the 10-fold cross-validation in the SM424-18 dataset and 5-fold
cross-validation in the SubMitoPred datasets. K-fold cross-validation is to divide the mitochondrial
protein dataset into k subsets, in which one subset of data is used as the testing set and the rest of the
k-1 subsets of data are used as the training sets. This process is repeated k times, so each subset is used
as test data. This paper adopts the same conditions to objectively evaluate the performance of the
DeeoPred-SubMito predictor. Table 3 shows prediction results at four locations, respectively.

In the SubMitoPred dataset, the SubMitoPred [8] predictor utilizes the support vector machine
(SVM) method to predict protein submitochondrial locations. DeepMito predictor [11] combined
features of the position specific scoring matrix (PSSM) and physical–chemical attributes and then
used these features to train a single convolution model. Comparing with the SubMitoPred predictor,
Matthews Correlation Coefficient values range from 0.46 to 0.65, depending on the compartment.
Experiments prove that the deep learning method is effective.

In the SubMitoPred and the SM424-18 datasets, our proposed predictor is better than the
DeepMito predictor. From Table 3, we can see that the Matthew Correlation Coefficient (MCC) of
the protein submitochondrial was 0.1–0.47 higher than that of the DeepMito predictor. It may be
because the DeepMito predictor uses artificially extracted features, missing some useful features.
Unlike the DeepMito predictor, our DeepPred-SubMito predictor extracts and classifies features in an
end-to-end manner, automatically identifying crucial high-level features. To capture motifs, DeepMito
is based on a single-layer CNN architecture. Parallel global average polling and global max polling
layers capture different types of patterns. The DeepPred-SubMito predictor extracts and classifies
features in an end-to-end manner, automatically identifying crucial high-level features. It eliminates the
noise of manual intervention. The DeepPred-SubMito predictor includes the two-layer multi-channel
CNN architecture to consider the entire protein sequence feature. To avoid overfitting, the second
convolution layer concatenates a dropout layer to randomly remove neurons. In Figure 5, a higher
MCC is manifested by a lighter color in the color gradation. It can be seen that the performance for
matrix protein is not very good. The DeepPred-SubMito predictor is confused with the inner membrane
protein and matrix protein. This may be due to the similarity of protein sequences that make it difficult
to distinguish. All in all, the method we proposed is effective in some the existing problems.

Table 3. Performance comparison of different predictors.

Datasets Model MCC (O) MCC (I) MCC (S) MCC (M) ACC

SM424-18 DeepMito 0.46 0.47 0.53 0.65 NA
DeepPred-SubMito 0.85 0.49 0.99 0.56 0.79

SubMitoPred SubMitoPred 0.42 0.34 0.19 0.51 NA
DeepMito 0.45 0.68 0.54 0.79 NA
DeepPred-SubMito 0.92 0.69 0.97 0.73 0.88

MCC (O, I, S, M): Matthew Correlation Coefficient of outer membrane, inner membrane, intermembrane space,
and matrix localization, respectively. ACC: accuracy. NA: Not available.

To validate the performance of our proposed predictor for predicting three submitochondrial
locations except for the intermembrane space location, Table 4 compares the results of our proposed
predictor with other predictor methods on the M983 dataset. It can be seen from Table 4 that the
DeepPred-SubMito predictor is superior to the SubMito-PSPCP predictor, in which the MCC value on
the inner membrane increases by 18%, on the matrix, it increased by 23%, and on outer membrane,
it increased by 15%. Compared with the Ahmad predictor, the MCC value at the position of the matrix
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and outer membrane was 2% and 1.5% lower, but at position of the inner membrane, the MCC value
was increased by 7.9%, and the ACC was increased by 2.5%. In contrast to the SubMito-XGBoost
predictor, our proposed predictor obtained comparable results. The MCC value on the inner membrane
was slightly below 0.5%, but on the other locations, it improved by 0.5% and 2%.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 13 
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In summary, the DeepPred-SubMito predictor has good prediction results on four and three
submitochondrial datasets, which sufficiently indicates that the prediction method constructed in this
paper is stable, consistent, and robust.

Table 4. Prediction results for submitochondrial of the M983 dataset.

Dataset Model MCC (I) MCC (M) MCC (O) ACC (%)

M983

SubMito-PSPCP 0.77 0.73 0.83 89.01
Ahmad et al. 0.871 0.986 0.996 0.951
SubMito-XGBoost 0.9559 0.9595 0.9604 98.94
DeepPred-SubMito 0.9503 0.9649 0.9807 97.68

MCC (I, M, O): Matthew Correlation Coefficient of inner membrane, matrix, and outer membrane localization,
respectively. ACC: accuracy.

3. Materials and Methods

3.1. Datasets

This paper utilizes three datasets, the SM424-18 dataset, the SubMitoPred dataset, and the
M983 dataset. The SM424-18 and the SubMitoPred datasets contain four submitochondrial locations.
Savojardo et al. [11] established the SM424-18 dataset from UniprotKB/SwissProt (release 2018_02).
The author selected full-length proteins with experimental evidence (without fragments). It performed
clustering utilizing the CD-HIT program [26] with global alignment and the sequence identity
threshold set to 40%. The screened data were 424 mitochondrial proteins. The dataset includes 74 outer
membranes, 190 inner membranes, 25 intermembrane spaces, and 135 matrix proteins. Kumar et al. [8]
built the SubMitoPred dataset. It comprises 570 mitochondrial proteins, and it is distributed in the
four different submitochondrial locations, which include 82 outer membranes, 282 inner membranes,
32 intermembrane spaces, and 174 matrix proteins. The dataset is not screened for a certain species,
so the predictor developed in this paper is suitable for the prediction of four submitochondrial positions
on all species. The M983 dataset was constructed by Du et al. [27] in 2013. The M983 dataset includes
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145 outer membranes, 661 inner membranes, and 177 matrix proteins. The feature of datasets is shown
in Table 5.

Table 5. The feature of datasets.

Compartment SM424-18 SubMitoPred M983

Outer membrane 74 82 145
Inner membrane 190 282 661
Intermembrane space 25 32 NA
Matrix 135 174 177
Total 424 570 983

NA: Not available.

3.2. Sequence Encoding

Convolutional neural networks (CNN) is a classical deep learning model, and it requires the length
of each sample in the dataset to be fixed. However, different protein sequences have different lengths.
To tackle this problem, the protein sequences are processed by using the following procedure. Initially,
the protein sequence with length L is divided into multiple subsequences with length S, each of which
is a channel. Therefore, the whole sequence can be divided into (L− S)/(S−W) subsequences with
W overlapped shifts. If a protein sequence length is less than S, we fill it with N to a fixed length.
After that, the sequence is converted to a one-hot matrix encoding [28,29]. Among them, a protein
subsequence s = (s1, . . . , sn) is converted into an (n + 2m− 2) × 20 array M, in the following ways:

Mt, f


0.05 i f St−m+1 = N or t < m or t > n−m
1 i f St−m+1 = f th base in (A, R, N, . . . , Y, V)

0 otherwise
(1)

where t is the index of the amino acid, f is the index corresponding to A, R, N, . . . , Y, N in the matrix,
and m is the size of the convolve filters.

3.3. Resolving the Data Imbalance Problem

As mentioned earlier, the mitochondrial subcellular location data shows a high imbalance.
The largest ratio between the majority and minority classes reaches approximately 9:1 in the
SubMitoPred dataset. In such a case, the predictor is more likely biased [30]. Researchers generally
use over-sampling or under-sampling techniques to adjust the multi-class samples. When using the
under-sampling to balance the data in this paper, it will discard part of the mitochondrial protein,
causing the deterioration of the predictor [31]. Over-sampling is commonly used in deep learning [32,33].
Different from machine learning models, over-sampling cannot result in convolution neural network
overfitting [30]. Considering those characteristics, we exploit a random over-sampling algorithm to
compensate for the unbalanced data in our algorithm.

Random sampling is the ordinary method in some sampling algorithms. Ling and Li [34]
proposed this method, which was proved to be robust. Specifically, it is a strategy to transform
the unbalanced sample distribution in the dataset into relative balance. The function of random
over-sampling is to randomly generate new minority samples within the group of existing minority
outer membrane, inner membrane, matrix protein samples. Suppose D =D1

∪D2
∪D3

∪D4 is the sum
of the mitochondrial proteins in the four locations. Among them, D1, D3, D4 are the minority sample.
Then, we randomly selected samples from the minority to generate new samples D1

i , D3
i , D4

i (i ∈ n).
The balanced dataset D2 = D1

i ∪D2
∪D3

i ∪D4
i (i ∈ n).
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3.4. Convolutional Neural Networks

CNN is a multi-layer neural network. The fundamental CNN structure usually includes a
convolution layer, activation layer, pooling layer, and full connection layer. The convolution layer
is constituted of several convolution kernels, which are used to compute different feature maps.
Specifically, the new feature map can be constructed by convolution of the input feature graph with
a learned kernel and then applying the nonlinear activation function on the convolution result.
Each output feature graph may be the value of combining the convolution of multiple input
feature graphs:

Xl
j = f

∑
i∈M j

Xl−1
i ∗ kl

i j + bl
j

 (2)

where M j represents a selection of input maps, ki j is the convolution kernel used for the connection
between the i characteristic graph of input and the j characteristic graph of output, b j is the offset
corresponding to the j characteristic graph, and f is the activation function.

A subsampling layer produces down-sampled versions of the input maps [35]. Assume that layer
l is the pooling layer and layer l− 1 is the convolution layer. Then, the calculation formula of layer f is

δl
j = βl+1

j

(
f ′
(
ul

j

)
◦

up
(
δl+1

j

))
(3)

where f ′ represents a derivative of a function,
◦

represents that each element is multiplied, and up( )
represents up-sampling operation.

The sensitivity of each pixel is obtained and the weight is updated.

∂E
∂b j

=
∑
u,v

(
δl

j

)
uv

(4)

∂E
∂kl

i j

=
∑
u,v

(
δl

j

)
u,v

(
pl−1

i

)
uv

(5)

where
(
pl−1

i

)
uv

is each patch convolved with ki j when Xl−1
i is convolved.

When the l layer is the pooling layer, the l + 1 layer is the convolution layer, and the sensitivity of
a pixel in the l layer is

δl
j = f ′

(
ul

j

)
◦

conv2
(
δl+1

j , rot180
(
kl+1

j

)
, ′ f ull′

)
. (6)

In this case, convolution operation is convolution kernel k rotated 180 degrees twice. Since the
weight of the pooling layer is fixed, there is no need to calculate a partial derivative.

3.5. Illustration of the DeepPred-SubMito

For convenience, the protein submitochondrial localization predictor proposed in this paper is
called DeepPred-SubMito, and the framework is shown in Figure 6. The detailed steps are as follows:

Step 1: Random Over-sampling. The random over-sampling technology was applied to alleviate
the imbalance in datasets. Later, the count of protein sequence of the outer membrane, the inner
membrane, the intermembrane space, and the matrix are balanced.

Step 2: Predictor construction and predictor evaluation. A balanced dataset was used to build the
predictor. Then, we used 10-fold cross-validation tests on SM424-18 and 5-fold cross-validation tests
on SubMitoPred.

Next, we describe the structure of the proposed predictor in detail. Prediction protein
submitochondrial localizations can be regarded as a multi-classification problem, in which the
input protein sequence pertains to one of four different submitochondrial proteins. The first
part is data preprocessing. A sliding window cuts each input protein sequence into the same
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length subsequence, and then each subsequence is transformed into a one-hot matrix M. The second
part includes two convolution layers. Each convolution operation captures features in sequences,
and all output of the convolution operation will be concatenated as the input of the subsequent layer.
Convolution kernel is employed to scan the input data, and the acquired features are mapped to the
activation functions for activation. At last, the data are partitioned and sampled by the maximum
pooling layer. The second convolution layer concatenates a dropout layer to randomly remove neurons
to avoid overfitting and adjust the number of convolution kernels. Two fully connected layers make
up the third part. The first fully connected layer connects a dropout layer. The final fully connected
layer has four neurons corresponding to four classifications: the outer membrane, the inner membrane,
the intermembrane space, and the matrix.
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3.6. Evaluation Criteria

To evaluate the performance of the DeepPred-SubMito predictor, accuracy (ACC), Matthews
Correlation Coefficient (MCC), and Receiver Operating Characteristic curve (ROC curve) were used
as experimental evaluation criteria. The application of the Matthews Correlation Coefficient in
multi-classification is called K-categories [36], and it is defined as:

MCC(K) =
M ∗ S−

∑K
k Pk ∗ tk√(

S2 −
∑K

k p2
k

)
∗

(
S2 −

∑K
k t2

k

) (7)
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where tk =
∑K

i Cik is the number of times that class k actually happens, pk =
∑K

i Cik is the number of times
the k class is predicted, M =

∑K
k Ckk is the number of correctly predicted samples, and S =

∑K
i
∑K

i Ci j is
the total number of samples.

The accuracy is defined as:

ACC(K) =
TPK

TPK+FNK
(8)

where TPK and FNK are the numbers of true positives, true negatives, and false negatives of the
Kth location, respectively [37,38]. Due to ACC having some limitations, we also use the ROC curve,
which is a plot of the false positive rate to the true positive rate for all possible prediction thresholds.
It is also used to compare the performance of predictors trained on imbalanced datasets [22]. For the
above measurement indexes, the higher the measurement value, the better the performance prediction.

4. Conclusions

This paper proposes an end-to-end predictor for predicting protein submitochondrial locations.
For the use of researchers, the source code of the proposed predictor is available on the GitHub
site at https://github.com/jinyinping/DeepPred-SubMito.git. The contribution of the predictor is
summarized below. (1) It utilizes random over-sampling to deal with data imbalance. (2) Since the
CNN requires an input of fixed length information, this model employs a sliding window to divide
each protein sequence into multiple subsequences of the same length and then converts the sequence
into a two-dimensional vector. (3) The processed data are directly connected with the specially
designed CNN framework. The convolutional layer is used to extract protein sequence information.
Compared with the machine learning method relying on artificial feature engineering, the CNN
model achieves better outcomes. We compare the performance of the DeepPred-SubMito predictor
with baseline methods. Experimental results imply that the nominated predictor achieves better
performance than existing predictors. We also evaluated the DeepPred-SubMito predictor performance
by changing the convolutional kernel size, number, and CNN layers. The results indicate that the
appropriate convolution layer is beneficial to improve performance prediction.

Although DeepPred-SubMito has acquired outstanding results in predicting protein
submitochondrial locations, there is still some work to be done subsequently. Natural language
processing is well applied in text processing, and we can process protein sequences identical to the text
to further improve the performance of DeepPred-SubMito.
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