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Random tomography is a common problem in imaging science and refers to the task of
reconstructing a three-dimensional volume from two-dimensional projection images
acquired in unknown random directions. We present a Bayesian approach to random
tomography. At the center of our approach is a meshless representation of the unknown
volume as amixture of spherical Gaussians. EachGaussian can be interpreted as a particle
such that the unknown volume is represented by a particle cloud. The particle
representation allows us to speed up the computation of projection images and to
represent a large variety of structures accurately and efficiently. We develop Markov
chain Monte Carlo algorithms to infer the particle positions as well as the unknown
orientations. Posterior sampling is challenging due to the high dimensionality and
multimodality of the posterior distribution. We tackle these challenges by using
Hamiltonian Monte Carlo and a global rotational sampling strategy. We test the
approach on various simulated and real datasets.
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1 INTRODUCTION

Many different imaging techniques acquire two-dimensional (2D) projection data of an unknown
three-dimensional (3D) object. If the projection directions are known, tomographic reconstruction
methods can be used to recover the 3D structure of the object (Natterer, 2001). An additional
complication arises, if the projection directions are unknown. This imaging modality is of particular
relevance to single-particle cryo-electron microscopy (cryo-EM). In recent years, cryo-EM has
emerged as a powerful technique to determine the structure of large biomolecular assemblies at near
atomic resolution (Frank, 2006). In cryo-EM, many copies of the particle of interest are first applied
to a carbon grid and then plunge-frozen to prevent the formation of ice crystals. The frozen randomly
orientated particles are imaged with electrons resulting in thousands to millions of noisy projection
images. Similar reconstruction problems arise in cryo-electron tomography as well as single-particle
diffraction experiments at free-electron lasers (von Ardenne et al., 2018). A completely different field
of application is in situmicroscopy of various specimens such as mesoscopic organisms (Levis et al.,
2018).

The reconstruction problem common to all of these imaging methods is to recover a 3D
volume from 2D images acquired in random projection directions and has been termed random
tomography (Panaretos, 2009). Since the projection directions are unknown, we have to estimate
them in the course of the reconstruction. Moreover, to avoid model bias, the desired
reconstruction method should not rely on an initial guess of the volume (ab initio
reconstruction).
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Various ab initio reconstruction methods have been proposed
(Bendory et al., 2020) including maximum likelihood via
expectation maximization (Scheres et al., 2007) and maximum
a posteriori (MAP) estimation (Jaitly et al., 2010; Scheres, 2010,
2012a), regularized maximum likelihood (Scheres, 2012b),
stochastic gradient descent (Punjani et al., 2017), common
lines (Vainshtein and Goncharov, 1986; Van Heel, 1987;
Penczek et al., 1996; Elmlund et al., 2008; Singer and
Shkolnisky, 2011; Elmlund and Elmlund, 2012; Lyumkis et al.,
2013), the method of moments (Kam, 1980; Levin et al., 2018),
random-model methods (Yan et al., 2007; Sanz-Garcia et al.,
2010), methods using stochastic hill climbing (Elmlund et al.,
2013) or nonlinear dimensionality reduction (Vargas et al., 2014)
and frequency marching (Barnett et al., 2017).

These approaches typically reconstruct the unknown volume
by solving an optimization problem. However, optimization
approaches do not offer any uncertainty quantification.
Another drawback is that many reconstruction algorithms are
iterative procedures that critically depend on the initialization,
which counteracts the idea of achieving an unbiased ab initio
reconstruction. Moreover, most algorithms employ a number of
ad hoc parameters that need to be tuned by the user and impact
the final result in a way that is not always obvious.

Our goal is to develop a fully Bayesian approach to 3D
reconstruction using a meaningful model of the unknown
structure (including a physically realistic prior) and utilizing
sampling algorithms for parameter estimation and uncertainty
quantification. In our previous work (Joubert and Habeck, 2015),
we already took the first step towards this goal. We considered the
reconstruction problem in random tomography as a density
estimation problem utilizing a mixture of Gaussians. With the
help of conjugate priors and the introduction of latent assignment
variables, we could derive analytical updates for a Gibbs sampler
that infers the unknown rotations and component means.

However, there are various problems with our previous Gibbs
sampling approach. First, Gibbs sampling suffers from slow
convergence and depends strongly on the initial conditions.
Therefore, to locate the posterior mode many restarts of the
Gibbs sampler from varying initial conditions are necessary.
Second, our Gibbs sampling algorithm is restricted to a
Poissonian likelihood. The Poisson model is limited in that it
ignores the effect of the point spread function and correlations in
the noise. Third, the prior over the component means (particle
positions) is chosen to be a conjugate, zero-centered Gaussian
distribution, which is not realistic for biomolecular structures,
because it ignores excluded-volume effects.

Here, we overcome these limitations by developing a more
general probabilistic model for particle systems and their
projection images. We no longer aim to develop analytical
updates for the Gibbs sampler, but use of Markov chain
Monte Carlo (MCMC) algorithms to infer both the particle
positions as well as the unknown rotations. Sampling
conformations of the particle system for fixed rotations can be
achieved with Hamiltonian Monte Carlo (HMC). To sample the
rotations, we use a Metropolis-Hastings algorithm that explores
the unit quaternions parameterizing the unknown projection
directions. Since Metropolis-Hastings samples a probability

distribution only locally, we occasionally run a global sampling
step that is computationally more expensive. Using simulated and
real experimental data, we demonstrate that our Bayesian
approach to random tomography is capable of estimating
physically plausible coarse-grained models.

2 PROBABILISTIC MODEL AND
POSTERIOR SAMPLING

We aim to reconstruct a 3D volume f (r) for r ∈ R3 and
f : R31R+. We do not observe f (r) directly but only
projection images

g(u) � ∫

f (RTr) dz � ∫

f (θ⊥u + θz) dz �: X θ[ f ](u) (1)

where R ∈ SO(3) is a 3D rotation matrix whose last row θ ∈ R3 is
a unit vector pointing into the projection direction, and θ⊥ ∈ R3×2
is the matrix whose columns span the plane orthogonal to θ such
that RT � [θ⊥, θ]. Throughout this article, u ∈ R2 denotes a
position in the projection image, and r ∈ R3 a position in the
volume. The integral transform XR[f ] (Eq. 1) is known as the
X-ray transform or John transform (Natterer, 2001). In 2D, the
X-ray transform is identical to the Radon transform. The
reconstruction problem in random tomography is to estimate
f (r) from N random projection directions θn, or equivalently Rn,
such that

gn(u) � X θn[ f ](u) + n(u), n � 1, . . . ,N (2)

where n(u) is the noise.

2.1 Kernel Expansion of Images and
Volumes
The standard discretization of images and volumes is based
on pixels and voxels placed on regular 2D and 3D grids.
Instead, we expand images and volumes into sums of basis
functions that can be centered at irregular positions (as in
meshless methods). We use a radial basis function (RBF)
kernel ϕ such that the kernel expansion of the volume
becomes

f (r) � ∑K
k�1

wk ϕ(r − xk) (3)

where K is the number of basis functions, ‖ · ‖ is the Euclidean
norm, wk a coefficient or weight (if wk > 0) and xk ∈ R3 a position
vector that determines the center of the kth kernel. We can
represent members of a reproducing kernel Hilbert space using
this expansion. RBF representations are widely used in machine
learning (Schölkopf and Smola, 2002), image processing (Takeda
et al., 2007) and numerical applications (Schaback and
Wendland, 2006).

A physical interpretation of the kernel representation is that
we model the object as a collection of K particles at positions xk
with mass wk > 0. The model (3) can then be interpreted as the
blurred version of a particle system:
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f (r) � ⎛⎝ϕp∑K
k�1

wkδxk⎞⎠(r) (4)

where δxk is the delta function centered a xk and the particle
density,∑

k
wkδxk, is blurred by a convolution (denoted by p) with the

RBF kernel. The particle locations and weights {(xk,wk); k �
1, . . . ,K} can also be viewed as a weighted point cloud. The
component means xk could be fixed to a regular 3D grid. But
we will consider particle systems that are not tied to a grid and
can be distributed in an irregular fashion (similar to meshless
or meshfree methods used in numerical analysis). Typically,
the particle system is a coarse-grained representation of
the unknown structure rather than an atomic-resolution
representation. Therefore, 3D reconstruction from 2D
projection data provides a pseudo-atomic representation
whose resolution depends on the number of particles K
(Figure 1 for an illustration).

One motivation for our choice of the volume representation
(Eq. 3) are its efficient transformation properties. Rigid
transformations of f (r) involve a shift by the translation
vector t and a reorientation brought about by the rotation
matrix R. Under the RBF expansion these transformations
reduce to rigid transformations of the particle positions:

f (r)1R,t f (RT(r − t)) � ∑
k

wk ϕ(r − Rxk − t) � ∑
k

wk ϕ(r − xk′) (5)

where xk′ � Rxk + t.
There are many options for ϕ(r). We will restrict ourselves to

Gaussian RBF kernels. The d-dimensional spherical Gaussian is
defined by

ϕd(r; x, σ2) :� 1

(2πσ2)d/2 exp{ − 1
2σ2

����r − x
����2 } (6)

where σ > 0 is the bandwidth of the kernel. The volume
representation that we will use throughout this paper is a
mixture of K spherical Gaussians:

f (r) � ∑K
k�1

wk ϕ3(r; xk, σ2) (7)

This representation is very common in statistics, in particular
in density estimation where xk are observed samples resulting
in a kernel density estimate of an unknown probability
density function. Indeed, our original motivation (Joubert
and Habeck, 2015) to choose this representation of f (r) was
mainly driven by viewing 3D reconstruction from random
projections as an instance of a density estimation problem.
Other examples for uses of (Gaussian) particle
representations in cryo-EM data analysis such as denoising
or the analysis of continuous conformational changes have
been proposed by Jin et al. (2014); Jonić et al. (2016); Jonić
and Sorzano (2016).

A convenient property of the spherical Gaussian kernel is its
behavior under the X-ray transform (Eq. 1):

X θ[ϕd](u) � ∫

ϕd(θ⊥u + θz; x, σ2 ) dz � ϕd−1(u;PRx, σ2) (8)

where again R � [θ⊥, θ]T ∈ SO(3) and the 2 × 3 projection
matrix P is

P � ( 1 0 0
0 1 0

) (9)

Spherical Gaussians are closed under the X-ray transform, and
the projected volume (7) is again a K component mixture of
spherical Gaussians

X θ[ f ](u) � ∑K
k�1

wk ϕ2(u;PRxk, σ2) (10)

with centers xk′ � PRxk ∈ R2. This fact motivates us to also
represent the input images as mixtures of spherical Gaussians
in 2D (see Representation of Projection Images by Point Clouds
for a concrete application).

FIGURE 1 | Coarse-grained representation of GroEL/GroES using a varying number of particles (left) atomic structure (PDB code 1aon). Panels (middle left) to
(right) show coarse-grained models using K � 50, 300, and 1000 particles.
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2.2 Probabilistic Model
The unknown parameters of our model are the particle positions
xk and weights wk as well as the unknown rotation matrices Rn.
Since we interpret the Gaussian components as particles of equal
mass, we fix the weights: wk � K−1, such that the main inference
parameters are xk and Rn.

2.2.1 Likelihoods
We tested two probabilistic models for the input data. The first
model uses the input images {gn; n � 1, . . . ,N} directly. For each
image, the intensities are gnm � gn(unm) at pixel positions unm
where m � 1, . . . ,Mn with Mn being the number of pixels in the
nth image. Typically, the number of pixels Mn is identical for all
projection images.

A simple image model is to assume pixelwise identically and
independently distributed Gaussian noise in the image formation
(2), such that the likelihood of the nth image is

Pr(gn∣∣∣∣x,Rn, tn, cn, αn, τn) � (τn
2π

)Mn/2

exp
⎧⎨⎩ − τn

2
∑Mn

m�1
⎡⎣gnm − αn − cn∑

k

ϕ2(unm;PRnxk + tn, σ
2)⎤⎦2⎫⎬⎭

(11)

where τn > 0 is the precision of the image, and αn, cn are an offset
and a scaling factor (the constant weight wk � 1/K has been
absorbed by the scaling factor cn). The two-dimensional
translation tn accounts for a shift of the image. These three to
five nuisance parameters per image (depending on whether shifts
tn are fitted or not) need to be estimated in addition to the particle
positions x � {xk; k � 1, . . . ,K} and the rotations
R � {Rn; n � 1, . . . ,N}. Model (11) is an idealized image
formation model. It ignores important effects such as the CTF
or correlated noise that are highly relevant for cryo-EM
applications.

The second model also uses a kernel expansion of the input
image motivated by the fact that ideally, according to our image
model, the projection image should also be a mixture of spherical
Gaussians (Eq. 10). In a preprocessing step, we fit a point cloud
Yn � {ynm ∈ R2;m � 1, . . . ,Mn} to the nth input image gn such
that

gn(u) ≈ αn + cn ∑Mn

m�1
ϕ2(u; ynm, σ2n) (12)

Typically, we choose Mn � M but this is not a requirement.
Again, model (12) does not account for the CTF or other
important effects in cryo-EM image formation. In each
projection direction, the 2D point cloud can be blurred to
a different degree captured by the width σn. The
Supplementary Material details how projection images
can be converted to point clouds; Representation of
projection images by point clouds in Results shows a
practical example for further illustration.

As in Joubert and Habeck (2015), we model the 2D point
clouds as samples from the projected 3D volume:

Pr(Yn|x,Rn, tn, σn) � ∏Mn

m�1

1
K

∑K
k�1

ϕ2(ynm;PRnxk + tn, σ
2
n) (13)

In the following, we will denote all nuisance parameters, i.e. all
parameters except particle positions and rotations, collectively
by ξ. In case of the image likelihood (11), we have
ξ � {(αn, cn, τn, tn); n � 1, . . . ,N}. In case of the point cloud
likelihood (Eq. 13), we have ξ � {(σn, tn); n � 1, . . . ,N}.
Moreover, we will denote both likelihoods as Pr(D|x,R, ξ)
where D are the data (projection images or 2D point clouds).

2.2.2 Priors
After incorporating our prior beliefs about the model parameters,
we are able to derive the posterior distribution by invoking Bayes’
theorem:

Pr(x,R, ξ|D) � Pr(D|x,R, ξ)Pr(x,R, ξ)
Pr(D) (14)

where Pr(x,R, ξ) is the prior which we assume to factor into

Pr(x,R, ξ) � Pr(x)Pr(R)Pr(ξ) (15)

The normalization factor Pr(D) is the model evidence, which
can be ignored if we are only interested in parameter estimation.

We use standard priors for the nuisance parameters: Jeffreys
priors for precisions τn and 1/σ2n. The prior for the scaling factors
and offsets are flat. Note that these priors are improper (i.e., not
normalizable). Since we are only interested in parameter
estimation, this does not pose a problem. The priors for the
scaling factor and offset could be improved. For example, cryo-
EM images are often normalized such that the mean intensity is
zero and the standard deviation is one. It is possible to express this
information as a prior on the offset and scaling factor. The
Supplementary Material provides more details about these
priors. For the image shifts tn, a zero-centered two-
dimensional Gaussian distribution is a reasonable choice.

Typically, biomolecules orient themselves randomly in the ice
layer that is imaged by cryo-EM. Therefore, we choose a uniform
distribution over SO(3):

Pr(R) � ∏N
n�1

Pr(Rn)∝ 1 (16)

These priors are proper, because the rotation group is
compact.

In our previous work (Joubert and Habeck, 2015), we used a
zero-centered Gaussian prior for all particle positions xk to ensure
that prior and likelihood are conjugate, which enabled the
derivation of closed-form updates for the component means.
However, this prior is very unrealistic, if we think of the Gaussian
basis functions as massive particles that should not occupy the
same region in space (excluded volume), but rather repel each
other. Since the packing of biomolecular structures is reminiscent
of fluids (Liang and Dill, 2001), the prior should favor particle
configurations that show similar packing characteristics. To
model repulsive interactions between particles, we use a
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Boltzmann distribution over the positions xk involving a soft
repulsive interaction potential E(x):

Pr(x1, . . . , xK)∝ exp{−βE(x1, . . . , xK)} (17)

Furthermore, the particles are confined to a box with soft
boundaries (Habeck, 2017). Pairs of particles repel each other if
the distance is smaller than the particle diameter 2Rwhere R is the
effective particle radius. We choose a quartic repulsion which is
commonly used in NMR structure calculation:

E(x1, . . . , xK) � ∑
k<k′

[∣∣∣∣∣∣∣∣xk − xk′
∣∣∣∣∣∣∣∣≤ 2R]⎛⎝1 −

����xk − xk′
����

2R
⎞⎟⎠4

(18)

where [·] is the Iverson bracket. Given the total number of atoms
L of the system, the particle radius can be predicted for a desired
number of particles K by using the relation

R ≈ 0.92 (L/K)0.42 Å. (19)

Using a configurational temperature estimator (Mechelke and
Habeck, 2013), the inverse temperature is estimated to β ≈ 175.
The estimates for R and β are based on an analysis of several
biomolecular structures at different levels of coarse graining. See
Supplementary Material for details.

Since the excluded-volume term (Eq. 18) is purely repulsive,
we add a radius of gyration term such that the overall prior for
particle positions is

Pr(x1, . . . , xK)∝ exp{−βE(x1, . . . , xK)} exp{−αRg(x)} (20)

where Rg(x) is the radius of gyration of the coarse-grained
structure x and α a positive constant. The radius of gyration
term imposes a weak preference for compact structures and
prevents configurations with isolated particles that do not
contact another particle. In our experiments, we set α � 10 Å;
in principle, we could estimate α by using techniques similar to
those used in the estimation of β. But since α does not have a
strong impact on the final structure, we restricted ourselves to a
single fixed value for α.

2.3 Inference
Bayesian random tomography employs MCMC sampling from
the posterior distribution (14). We use a Gibbs sampling strategy
(Geman and Geman, 1984) where each group of parameters, the
particle positions x, the rotations R and the nuisance parameters
ξ, is updated separately while clamping the other parameters to
their current values. To update the nuisance parameters, we use
standard samplers for generating Gamma variates and normally
distributed random variables (more details can be found in the
Supplementary Material). However, the conditional posteriors of
the particle positions x and the rotations R are not of a standard
form and need to be updated with more sophisticated algorithms.

2.3.1 Sampling Particle Positions With Hamiltonian
Monte Carlo
To sample the particle positions, we use Hamiltonian Monte
Carlo (HMC) (Neal, 2011). The conditional posterior distribution
over particle positions is

Pr(x|R, ξ,D)∝Pr(D|x,R, ξ) Pr(x)
In HMC, −logPr(x|R, ξ,D) defines a potential energy over

configuration space that is composed of an attractive term
−logPr(D|x,R, ξ) matching particle positions to the projection
data, and a repulsive contribution −logPr(x) stemming from the
excluded-volume term (18). For fixed rotations and nuisance
parameters, the particle positions undergo Hamiltonian
dynamics following the gradient of −Pr(x|R, ξ,D) during a
short leapfrog integration. The resulting configuration is
accepted or rejected according to the Metropolis criterion.

2.3.2 Sampling Rotational Parameters With
Metropolis-Hastings
A challenging problem is to estimate the rotations. Because the
projection images are statistically independent of each other, the
problem decomposes into N subproblems:

Pr(Rn|x, ξ,D)∝

exp
⎧⎨⎩ −τn

2
∑Mn

m�1
⎡⎣gnm − αn − cn ∑K

k�1
ϕ2(unm;PRnxk + tn, σ

2)⎤⎦2⎫⎬⎭
(21)

if projection images gn are fitted directly, or

Pr(Rn|x, ξ,D)∝ ∏Mn

m�1
∑K
k�1

ϕ2(ynm;PRnxk + tn, σ
2
n) (22)

if we fit 2D point clouds. In Joubert and Habeck (2015), we
introduced assignment variables such that the conditional
posterior (22) is replaced by the matrix von Mises-Fisher
distribution, which can be simulated in a straightforward
fashion (Habeck, 2009). However, because the assignment
variables are highly coupled to the other parameters, this
strategy converges only slowly to the next local minimum.
Moreover, there is no flexibility regarding the likelihood function.

We use the Metropolis-Hastings (MH) algorithm (Liu, 2001)
to estimate the rotation matrices. We parameterize rotation
matrices using unit quaternions (Horn, 1987) and propose
new quaternions by adding a random perturbation that is
sampled from a uniform distribution. We run 10 MH steps to
update the quaternions representing each projection direction in
every Gibbs sampling iteration and adapt the step-size
automatically: Upon acceptance, the step-size increases by
multiplying it with a factor of 1.02; in case of rejection, the
step-sizes decreases by a factor of 0.98. This rule results in an
acceptance rate of approximately 50%. We use this sampling
algorithm to simulate both types of conditional posteriors (21)
and (22).

2.3.3 Global Sampling of Rotational
Parameters
Since the MH algorithm achieves only local sampling of
probability distributions, we occasionally scan all rotations
systematically. The unit quaternions are elements of the 3-
sphere, the unit sphere embedded in the four-dimensional
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space. To evenly cover rotation space, we discretize the 3-sphere
using the 600-cell (Coxeter, 1973). The 600-cell is composed of
even sized tetrahedra whose corners lie on the unit sphere. By
projecting the center of a tetrahedron onto the unit sphere we
obtain a unit quaternion parameterizing a valid rotation matrix.
Due to the degeneracy of the quaternions we only have to
consider the upper half of the 4D sphere that is covered by
330 tetrahedra at the coarsest level of discretization. To obtain a
finer tessellation of SO(3), we can split each tetrahedron into
eight tetrahedra whose corners again lie on the 4D unit sphere. By
default, we use a frequency of 0.1 to run a global rotation scan.
The conditional posterior is evaluated for all rotations and then
sampled from the discrete distribution.

The source code and scripts for reproducing the tests are
available at github.com/michaelhabeck/bayesian-random-
tomography.

3 RESULTS

3.1 Sampling Tests
To test MCMC strategies for inferring particle positions and
rotations, we use the structure of the GroEL/GroES complex. This
system has been studied extensively with cryo-EM. Since our
focus is mainly on algorithmic aspects, we first use simulated data
that exactly follow our probabilistic model. To generate input
point clouds in 2D, we use the crystal structure of GroEL/GroES
(PDB code 1aon; 58,674 atom coordinates in total). The 2D point
clouds are generated by projecting the 3D positions of every 10th
Carbon-alpha atom (802 points in total) along 35 random
directions into 2D. We also generated corresponding
projection images by blurring the point clouds with a
Gaussian filter of width 5 Å.

3.1.1 Sampling Particle Positions and Precisions With
Fixed Rotations
We first studied the performance of sampling particle positions
by fixing the rotations to the correct values and sampling only the
particle positions and the precisions of the projection data. HMC

sampling of particle positions started from a random initial
configuration for K ranging between 50 and 1,000 particles. In
all of our HMC experiments, the number of leapfrog steps was set
to 10, whereas the step-size was adjusted automatically. The
precisions 1/σ2n follow Gamma distributions and can be
sampled directly.

Figure 2A shows the evolution of the log likelihood achieved
by the particle system during HMC. After roughly 200 to 500
HMC steps (depending on K), the particle cloud reproduces the
input data well, which is reflected in high values of the log
likelihood. The sampled particle configurations are very
similar to the true structure at the same level of coarse
graining. Successful sampling of Pr(x|R, ξ,D) with HMC is
observed reliably for many different initial particle
configurations.

It is clear that an increasing number of particles K results in a
higher goodness of fit, which is obvious from Figures 2A,B
showing the average standard deviation σn of the point cloud
likelihood (Eq. 13) as a function of particle radius: A higher
number of particlesK results in more flexible models that result in
a better goodness of fit and higher precision. These findings
indicate that HMC is highly suited to sample particle
configurations.

Figure 2C shows the accuracy of the coarse-grained models
inferred from the projection data with HMC. The accuracy is
quantified by the root mean square deviation (RMSD) between
corresponding positions in a reference structure and a coarse-
grained model. Here, our reference structure is the atomic
structure of GroEL/ES reduced to the positions of
8,015 Carbon-alpha atoms listed in the PDB entry 1aon. To
compare this structure with a coarse-grained model, positions in
the atomic structure are assigned to positions in the coarse-
grained model that are closest in 3D space. There are two factors
that contribute to this measure of accuracy: the level of coarse
graining as well as the performance of posterior sampling based
on the 2D projection data. To disentangle both contributions, we
also show the accuracy between the crystal structure and its
coarse-grained versions (obtained with the DP-means algorithm
by Kulis and Jordan (2012); also see the Supplementary Material).

FIGURE 2 |HMC sampling of particle positions with fixed rotations for a simulated data set of GroEL/ES. A Evolution of the log likelihood during HMC sampling. The
larger the number of particlesK, the higher is the final log likelihood. Increasing darkness indicates larger number of particles. Line annotations also indicate the number of
particles. B Average standard deviation (computed over all 35 input point clouds) vs. the size of the particle R. C RMSD between Carbon-alpha positions of the crystal
structure and the coarse-grainedmodels inferred with HMC. As a reference, the RMSD between the Carbon-alpha positions and the coarse-grained versions of the
crystal structures is shown as red curve.
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This curve shows that coarse-grained models of GroEL/ES using
1,000 particles achieve an accuracy of about 4.6 Å, whereas an
ultra coarse-grained model based on only 50 particles is on
average 15.5 Å away from any Carbon-alpha atom in the
crystal structure. For very high levels of coarse graining (small
K), the models inferred with HMC reach the maximum accuracy
that is possible at this level of coarse graining. With increasing
number of particles K, the gap in accuracy widens but is still
similar to the maximum attainable value. For example, with K �
1000 the model obtained with HMC achieves an RMSD of 5.7 Å,
whereas the coarse grained model obtained directly from the
crystal structure achieves an accuracy of 4.6 Å.

If we estimate particle configurations from projection images
instead of point clouds, we obtain similar results. Supplementary
Figure S4 shows the log likelihood and cross-correlation
coefficients obtained with different numbers of particles, again
ranging between 50 and 1,000. The evolution of the log likelihood
indicates that the HMC sampler seems to converge even faster
compared to a simulation based on point cloud data: within
20–150 HMC steps the log likelihood plateaus. The accuracy of
the structure after 500 HMC steps is similar to or better than the
accuracy of the particle models fitted against 2D point clouds and
almost reaches the accuracy of the coarse-grained models derived
from the crystal structure. Supplementary Figure S5 shows FSC
curves for all 3D models. For the same number of particles, the
FSC curves are similar with a slight preference for the image-
based models when using larger numbers of particles. The
resolution ranges from 12.2 Å (50 particles) to 4.5 Å (1,000
particles). Supplementary Table S1 shows resolution estimates
for all models.

3.1.2 Sampling Rotational Parameters and Precisions
With Fixed Particle Positions
To test our rotational sampling approach, we fixed the particle
positions to an ultra coarse-grained structure (K � 200) of
GroEL/ES. Although each rotation can be updated
independently of the other rotations, and each conditional
posterior (given either by Eqs. 21 or 22) is only a four-

dimensional probability distribution over the quaternions, the
sampling problem is still challenging due to its multimodality.
Since Metropolis-Hastings (MH) is a local sampling algorithm, it
tends to become trapped in subordinate modes of the conditional
posterior, which are typical for rigid registration problems. As a
result, running MH on the conditional posteriors is not sufficient
to reliably recover the rotation matrices.

Figure 3A shows the cross-correlation coefficients for the 35
projection images obtained with global rotational sampling in
comparison with MH runs starting from 30 random rotations.
Global rotational sampling was based on the first two
discretizations of the 3-hemisphere using 330 and 2,640
quaternions, respectively. The number of local sampling
attempts was set to 30 so as to match the speed of global
sampling at the finer level. That is, the coarse sampling based
on 330 quaternions is approximately 8 times faster than the 30
local sampling trials. As evidenced by Figure 3A, global sampling
is capable of finding rotation matrices that yield high cross-
correlation coefficients, whereas MH alone fails to do so in a
systematic fashion. Figure 3B shows the Frobenius distances
(ranging from 0 to a maximum of 2

%
2

√
) between the true rotation

matrix and the estimated rotation matrices. Again, global
rotational sampling achieves more accurate rotations, whereas
the distances scatter largely for the local MH trials. These findings
suggest that global rotational sampling is indispensable for
Bayesian random tomography in agreement with our previous
findings (Joubert and Habeck, 2015) where we had to resort to
repeated Gibbs sampling runs.

Before we study sampling of the full posterior distribution (all
parameters R, x and ξ are unknown), we will first outline how
experimental projection images can be converted to 2D point
clouds that are suitable for our approach to random tomography.

3.2 Representation of Projection Images by
Point Clouds
Experimental projection data are typically presented as projection
images rather than point clouds. In this subsection, we discuss

FIGURE 3 | Global vs. local sampling of orientational parameters. Shown are the cross-correlation coefficients (panel A) and Frobenius distances (panel B) for
each of the 35 input directions achieved with local sampling based on the MH algorithm and global sampling using a regular discretization of the 3-hemisphere. The blue
curve shows the results obtained with the coarsest covering based on 330 unit quaternions; the red curve shows the results obtained with a finer covering (2,460
quaternions). The box plots show the variability within 30 trials of MH starting from random rotations.
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how to convert 2D projection images to 2D point clouds that are
suitable for our Bayesian random tomography approach. We
discuss this for a cryo-EM data set, but similar techniques are also
applicable to other data, as we will demonstrate later.

The projection properties of mixtures of spherical Gaussians
(Eq. 10) suggest to also represent the projection image as a
mixture of Gaussians. Our model can only capture nonnegative
intensities. Therefore, we first have to choose a suitable threshold
θ above which image intensities are considered real signal. The
threshold will be used to construct a binary mask: the intensities
of pixels that are part of the mask will be shifted by θ such that
their shifted intensities are nonnegative; the intensities of pixels
that are not part of the mask will be set to zero (i.e., they will be
ignored in the construction of the point cloud). A simple choice of
θ for class averages from cryo-EM is the median intensity, but a
different choice might be more suitable for other types of images.

An example of the thresholding procedure is shown in
Figure 4B for a class average showing the projection of the 80S
ribosome (shown in Figure 4A). Black pixels indicate pixels with
intensity above the median. By looking at the mask, it is clear that
only the central pixels forming a connected component carry signal.

Next, we identify pixels that form connected components.
Again this applies to cryo-EM images; other types of images
might require a different treatment to construct a suitable mask.
To identify signal pixels that form a connected component, we
convert the thresholded image to an undirected graph G � (V, E)
where the pixels with intensities above the threshold are the
vertices V � {um; g(um)> θ,m � 1, . . . ,M}. Edges are introduced

between all pairs of pixels that are nearest neighbors on the 2D
square lattice, i.e. their Euclidean distance is smaller than or equal
to one pixel:

E � {(i, j) ∈ {1, . . . , |ν|}2; ‖ ui − uj ‖ ≤ 1}.
As shown in Figure 4C, multiple connected components are

typically found in the masked pixels. Since cryo-EM class
averages are often centered, we pick the connected component
whose center of mass is closest to the image center. The selected
pixels including their intensity (shifted by θ) are shown in
Figure 4D.

To obtain a particle-based representation of the central
connected component, we run the Expectation Maximization
algorithm (details in Supplementary Material). Figure 4E shows
the estimated point cloud using 1,000 particles. The estimated
standard deviation of the Gaussian is 1.34 pixels. The density
generated by the 2D particles is shown in Figure 4 and correlates
highly with the original image and the masked image.
Supplementary Figure S1 shows more examples of class
averages represented as 2D point clouds.

3.3 3D Reconstruction by Sampling the Full
Posterior Distribution
We applied Bayesian random tomography to three real datasets,
two cryo-EM datasets and one dataset from stochastic
microscopy experiments visualizing marine microorganisms.

FIGURE 4 | Representation of projection images by 2D point clouds (A) Class average of the 80S ribosome (B) Mask obtained by thresholding image intensities
greater than themedian intensity. Black pixels are part of themask (C)Clustering of pixels that are part of themask. Pixels that form a connected component are grouped
together and shown in different grayscale colors (D) Pixels that form themost central connected components with shifted image intensities (E) 2D point cloud composed
of 1,000 particles obtained by running the Expectation Maximization algorithm (F)Model image according to Eq. 10. The cross-correlation coefficient between the
model and the original image is 95.8%. If only pixels are considered that are part of the mask indicating the central connected component, the cross-correlation
coefficient increases to 99.6%.
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In these applications, we sampled the joint posterior distribution
of all unknown parameters, particle positions xk, rotations Rn and
nuisance parameters ξ, with the MCMC techniques discussed
above. We started our reconstruction simulations from spherical
random structures and random rotations and did not observe any
dependence on the initial values.

The first dataset is comprised of 400 2D class averages of the
80S ribosome computed with SIMPLE2 (Elmlund and Elmlund,
2012) from cryo-EM micrographs (EMPIAR-10028); the size of
the images is 80 × 80 pixels, the pixel size is 2.68 Å. The class
averages are part of a SIMPLE2 tutorial and publicly available
at https://simplecryoem.com/SIMPLE3.0/old_pages/2.5/data/

FIGURE5 | 2D projections of the 80S ribosome. First row: point clouds derived from class averages. Each projection image is represented by 1,000 points. Second
row: 2D projections of the coarse-grained model calculated with Bayesian random tomography based on 2D point clouds. Third row: Class averages. Bottom row: 2D
projections of the coarse-grained model calculated with Bayesian random tomography based on class averages.

FIGURE 6 | 3D models of the 80S ribosome (Left) 1,000 particle model inferred with Bayesian random tomography (Right) Initial model computed with PRIME.
The particles are sorted such that spatially close particles have similar indices. By using Pymol’s chainbow command, we can then visualize the particle models such that
substructures are better visible.
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simple2.5tutorials.tgz. Figure 4 and Supplementary Figure S1
show some example images and the 2D point clouds that were
generated with the procedure outlined in subsection 3.2. Class
averages were converted to 2D point clouds each composed of
1,000 points. Because the dataset is highly redundant, we only
used the first 50 class averages and point clouds in the posterior
simulations.

We used K � 200 and K � 1000 particles with a radius of R �
16.4 and R � 8.4 Å, respectively to fit the ribosome point clouds.
We ran 500 iterations of Gibbs sampling with the global strategy
for the rotational parameters and HMC for the particle positions.
Figure 5 shows five input point clouds and the projected model
after convergence. We observe a good agreement between the
experimental point clouds and the model point clouds with an
RMSD ranging between 6.4 Å and 9.8 Å and an average
of 7.7 ± 0.7 Å.

We also compared our 3D coarse-grained model of the 80S
ribosome with a structure obtained with PRIME (Elmlund et al.,
2008). To simplify the comparison, we converted the density map
obtained with PRIME to a structure made up of 1,000 particles.
The indices of the particle models were ordered such that spatially
close particles have similar particle indices (which can be
achieved, for example, by solving a traveling salesman problem
using the matrix of inter-particle distances as input). Both
structures show similar features (Figure 6); an FSC analysis
reveals a resolution of 15.5 Å using the 0.143 criterion
(Supplementary Figure S6).

We also ran simulations based on the first 50 class averages
rather than 2D point clouds using 200 up to 12,000 particles.
Again, we ran 500 steps of Gibbs sampling where the rotational

parameters were updated globally with a frequency of 0.1.
Projections of the 200 particle model are shown in the bottom
rows of Figure 5. The cross-correlation coefficient between the
class averages and the model images ranges between a minimum
andmaximum value of 90%–96%with an average of 94 ± 1%. For
comparison, we also report the RMSDs to the particle clouds
which range between 6.1 Å and 13.1 Å and an average
of 8.3 ± 3.0 Å.

Using the last 100 particle configurations, we also generated
density maps for each simulation and compared them to the
high-resolution reconstruction EMD-2660 (Wong et al., 2014).
The density maps are shown in Figure 7. To assess the quality of
the particle models, we computed the FSC between the high-
resolution map and the model maps (Supplementary Figure S6).
Based on the 0.143 criterion, the resolution of the particle models
ranges from 23.6 Å (200 particles) to 10.6 Å (12,000 particles).
For comparison, the reconstruction obtained with SIMPLE
reaches a resolution of 6.2 Å based on 200 class averages.
More details about the quality of the reconstruction and
computation times can be found in the Supplementary
Material (Supplementary Tables S2, S3).

The posterior samples can be also used to assess the
uncertainty of the particle models in the form of structural
error bars. To carry out uncertainty quantification, the particle
models first need to be superimposed and a correspondence
between particles across different samples has to be
established. We solve these two tasks by using the Iterative
Closed Point (ICP) method followed by a linear assignment
step where particle distances between superimpose clouds are
used as a cost. Supplementary Figure S7 shows an example for

FIGURE 7 | Density maps of the 80S ribosome obtained with Bayesian random tomography using 50 class averages as input. Top row: 200, 1,000, 2000 particles
(left to right). Bottom row: 4,000, 8,000, 12,000 particles (left to right).
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structures based on 200 and 2000 particles. The distribution of
uncertainties is inhomogeneous. Highly uncertain particles tend
localize on the surface of the 200-particle model. The 2000-
particle model shows smaller variations in the uncertainty of
particle positions. So the large variations in the uncertainties of
the 200-particle model might also be caused by the small number
of particles.

The second cryo-EM dataset comprises 16 class averages of
beta-galactosidase. These images are part of a RELION tutorial
and available at ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/
relion31_tutorial_precalculated_results.tar.gz. The class average
based on the data from EMPIAR-10204. The size of the images is
60 × 60 pixels, the pixel size is 3.54 Å. In this test, we inferred the
structure from the images directly using likelihood (11) without
converting the class averages to 2D point clouds.

Similar to the ribosome simulations we used 500 steps of Gibbs
sampling with occasional global sampling of the rotational
parameters to infer the coarse-grained structure of beta-
galactosidase. We inferred structural models for systems with
100 up to 2000 particles.

The top row of Figure 8 shows the first eight class averages
that were used as an input for particle-based random
tomography. The bottom row shows the projection images of
a model composed of 500 particles that was obtained with
sampling the full posterior distribution. Starting from a

random initial structure and rotations, our sampling algorithm
estimates a model structure and orientations that reproduce the
experimental images closely with cross-correlation coefficients
ranging between 94.7% and 97.5% and an average of
95.9 ± 0.01%.

We compared the structure inferred with Bayesian random
tomography against a high-resolution crystal structure (PDB
code 1jz8) and a near-atomic cryo-EM reconstruction (EMD-
5995). To enable this comparison, we converted the PDB
structure to a 3D point cloud composed of 2000 particles.
Correspondences between particles in our model and the
model based on the crystal structure were established as in the
calculation of the RMSD. Figure 9 shows both models. The
RMSD between our particle model and the Carbon-alpha
atoms of the high-resolution structure 1jz8 is 3.4 Å. For
comparison, we also report the RMSD between 1jz8 and its
coarse-grained version (shown on the right of Figure 9) which
is 2.4 Å. Bayesian random tomography achieves a similar
accuracy by inferring a 3D model from the class averages as
direct coarse graining of the high-resolution structure.
Supplementary Figure S8 shows density maps for all of the
five simulations. By comparison with the high-resolution
reconstruction (EMD-5995) we assess the resolution of the
models to range between 25 Å (100 particles) and 11.5 Å
(2000 particles). For comparison, the initial model from

FIGURE 8 | 2D projections of beta-galactosidase. Top row: eight (out of 16) projection images (RELION class averages). Bottom row: Projection images
calculated with Bayesian random tomography using 500 particles.

FIGURE 9 | 3D models of beta-galactosidase (Left) 2000 particle model inferred with Bayesian random tomography (Right) Coarse-grained model of the atomic
structure (PDB code 1jz8).

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 65826911

Vakili and Habeck Bayesian Random Tomography

ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/relion31_tutorial_precalculated_results.tar.gz
ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/relion31_tutorial_precalculated_results.tar.gz
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


RELION achieves a resolution of 9.8 Å (Supplementary Figure
S9 shows the corresponding FSC curves).

To assess the impact of the Boltzmann prior (Eq. 17), we ran
two posterior simulations using 200 and 1,000 particles with the
inverse temperature set to zero (i.e. the repulsive inter-particle
energy is switched off). The quality of the reconstructed density
map is largely unaffected by this change. For the 200 particles
model, the average cross-correlation with Boltzmann prior is
94.7 ± 1.1%; without the Boltzmann prior we have 95.7 ± 0.9%.
For the 1,000 particles model, these averages are 95.5 ± 1.5%
(with Boltzmann prior) and 95.9 ± 1.5% (without Boltzmann
prior). A comparison of the FSC curves obtained with and
without Boltzmann prior confirms this finding
(Supplementary Figure S11). The estimated resolution of the
200-particle model is 20.5 (19.4) Å with (without) Boltzmann
prior; the 1000-particle model achieves a resolution of 12.0 (11.6)
Å with (without) Boltzmann prior.

However, the Boltzmann prior has a strong effect on the
packing of particles as assessed by the radial distribution
functions (Supplementary Figure S11). With Boltzmann
prior, the radial distribution shows a prominent peak close to
the particle diameter, which is indicative of local order similar to a
fluid. Without the Boltzmann prior, this peak disappears and we
observe an enrichment of very short distances indicating a
physically unrealistic particle packing. If our goal is to
reconstruct a single 3D density from a homogeneous dataset,
introducing the Boltzmann prior is not harmful, but dispensable.

Turning the argument around, we find that the Boltzmann prior
is compatible with the data and does not result in a severe loss of
fitting quality. We expect that the prior will become essential in
more advanced 3D reconstruction tasks, in particular when facing
conformational heterogeneity.

Finally, we applied our random tomography approach to a
dataset that shows structures on length scales that are much larger
than the length scales imaged in cryo-EM. Following the work by
Levis et al. (2018), we downloaded in situ microscopy images of
the marine plankton species Pyramimonas Longicauda; the data
are available at https://darchive.mblwhoilibrary.org/handle/1912/
7341. These mesoscopic organisms are transparent and therefore
allow for 3D reconstruction from 2D microscopic images. Since
the organism seems to be quasi symmetric, we selected out of the
121 projection images recorded in 2013, 16 representative images.
The selected images cover most of the views that are present in the
dataset.

The intensity of microscopic images gn is proportional to the
transmissivity, which is related to the optical density of the object
via an exponential transform. Therefore, to convert the images to
2D point clouds, we use the expectation maximization approach
(see Supplementary Material) with weights proportional to
−log gn > 0, since gn ∈ (0, 1). The six out of the 16 selected
images and their point cloud representations are shown in
Figure 10. Each microscopic image was converted to 2D cloud
composed of 1,000 points.

The fact that the magnification can vary from image to image
requires that we extend the likelihood for 2D point clouds (13)
(also Supplementary Equations S1, S2 in the Supplementary
Material). These variations are accounted for by an additional
factor that scales the coordinates of the projected model so as to
match the 2D point cloud derived from the microscopic image.
Moreover, we need to account for shifts in the image plane. These
extensions increase the number of unknown parameters per
image from four to eight: four quaternions parameterizing the
unknown orientation, two translation parameters accounting for
a shift, a scaling factor compensating variations in the
magnification and a precision.

Inference of a 3D particle model proceeded as before. We
estimated a model composed of 100 particles from the 16 2D
point clouds starting from a random structure and random
rotations (the initial values for the scaling factors and

FIGURE 10 | Stochastic microscopy images of a plankton species. Top row: six (out of 16) projection images. Middle row: 2D point clouds representing the
image data. Bottom row: 2D projections of the particle model calculated with Bayesian random tomography.

FIGURE 11 | 3Dmodel of Pyramimonas Longicauda using 100 particles
inferred from the point clouds shown in Figure 10.
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translations were one and zero, respectively). Figure 11 shows a
3D model of the plankton species inferred with Bayesian random
tomography.

4 DISCUSSION

We outlined a Bayesian approach to random tomography, the
problem of reconstructing a 3D structure from 2D views along
unknown random directions. At the core of our approach is a
representation of 3D volumes using a radial basis function kernel
whose centers are our main inference parameters. We interpret
the kernel centers as particle positions and use an excluded-
volume prior to ensure that estimated particle configurations
show a physically plausible packing. We demonstrated that
coarse-grained models can be inferred from projection data
(images or point clouds) with MCMC algorithms such as
HMC and global sampling of the rotations.

In cryo-EM applications, our approach can be used to generate
an initial model that can be refined further. So far, we tested the
method only an class averages that displayed a high SNR. In
future applications, we plan to explore the use of Bayesian random
tomography from raw cryo-EM images and include the effect of the
CTF into our model. Another route for extending the approach is
account for conformational heterogeneity, which is one of the major
bottlenecks in cryo-EM data processing. An interesting approach to
characterize conformational variability in the presence of continuous
flexibility has been proposed recently by Chen and Ludtke (2021)
who use an autoencoder network with a Gaussian mixture model to
represent conformational changes in a low dimensional latent space.

In all applications discussed in this paper, the number of
particles K was fixed. An interesting question for future research
is to estimate the number of particles based on the projection

data. This might also provide a new way of measuring the
resolution of the input data.
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