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The flower is an astonishing innovation that arose during plant evolution allowing
flowering plants — also known as angiosperms — to dominate life on earth in a relatively
short period of geological time. Flowers are formed from secondary meristems by co-
ordinated differentiation of flower organs, such as sepals, petals, stamens, and carpels.
The position, number and morphology of these flower organs impose a geometrical
pattern — or symmetry type — within the flower which is a trait tightly connected to
successful reproduction.

During evolution, flower symmetry switched from the ancestral poly-symmetric (radial
symmetry) to the mono-symmetric (bilateral symmetry) type multiple times, including
numerous reversals, with these events linked to co-evolution with pollinators and repro-
ductive strategies.

In this review, we introduce the diversity of flower symmetry, trace its evolution in
angiosperms, and highlight the conserved genetic basis underpinning symmetry control
in flowers. Finally, we discuss the importance of building upon the concept of flower sym-
metry by looking at the mechanisms orchestrating symmetry within individual flower
organs and summarise the current scenario on symmetry patterning of the female repro-
ductive organ, the gynoecium, the ultimate flower structure presiding over fertilisation and
seed production.

Introduction
Since the earliest known multicellular organisms (Ediacaran biota) emerged ∼580–540 million years
ago (mya), symmetric patterns of gene expression and tissue arrangement have supported the develop-
ment of multicellular organs/organisms during evolution, allowing species to conquer new ecological
niches and support their fitness. Thus, the origin and evolution of body symmetry, of which bilateral
and radial symmetry are most common, has been a central question for all biologists [1,2].
Plants pioneered life on land and quickly adapted their lifestyle to a drier environment by evolving

features such as a vascular system to support growth and long-distance transport, stomata to support
photosynthesis and gas exchanges, roots for structural support and increased water and nutrient
uptake, seeds to encase genetic material and last but not least, the flower to orchestrate reproduction.
Flowering plants, known as angiosperms, emerged relatively late in the fossil records (early

Cretaceous, ca.140 mya) [3], but quickly radiated in several species and occupied the land. With more
than 260 000 extant species, they represent ca. 90% of all living land plants today [4]. Their wide-
spread colonisation over a relatively short evolutionary time frame initially puzzled Charles Darwin, as
it argued against a more gradual and streamlined evolution he postulated in his famous ‘Origin of
species’ [5].
The key innovation at the basis of the huge diversification of angiosperms is indeed the flower: a

reproductive structure presiding over efficient fertilisation, seed production, and fitness. One hundred
and fifty years of intense studies, from Darwin to the modern evo-devo approach, have contributed
elucidating the importance of flower symmetry for species radiation among flowering plants [6].
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Two main types of flower symmetry are widely found in nature: zygomorphy (mono-symmetry, i.e. bilateral
symmetry) and actinomorphy (poly-symmetry, i.e. radial symmetry). Extant basal angiosperms (magnoliids)
mainly display actinomorphic flowers. Radially symmetric flowers are morphologically accessible from all direc-
tions by diverse pollinators, thus augmenting fitness in a non-competitive environment. Bilateral flowers
appeared later, in the Upper Cretaceous (Turonian), and this key innovation is tightly linked to the evolution
of new reproductive strategies, i.e. specific, and sometimes unique, plant–pollinator interactions [7,8].
Interestingly, symmetry types are not always fixed but can change, either during the development of the

flower (ontogenesis), i.e. the early developmental stages display a different symmetry compared with the mature
flower, or in evolution (phylogenesis) as demonstrated by the reversion of some mono-symmetric, bilaterally
symmetric flowers back to radial symmetry [9].
In this review, we will provide an overview of the morphological diversity of floral symmetry, the molecular

and developmental basis underpinning the evolution of symmetric flowers and the functional relevance of
flower symmetry for successful pollination and reproduction. Lastly, we will highlight the latest advancements
in symmetry establishment and transition within the female reproductive structure to discuss the importance of
a general control of symmetry in plant organs.

The diversity of flower morphology defines flower symmetry
A typical flower combines multiple organs such as sepals, petals, stamens and carpels, each presiding over a
specific function carefully tailored for efficient plant reproduction. Flower organs are organised into whorls
with sepals and petals located on the outermost whorls (calyx and corolla, respectively), and stamens and
carpels positioned inwards (androecium and gynoecium whorls, respectively). The morphology, number and
position of sepals and petals (collectively known as perianth) mainly determines the architecture of the flower,
thus it has always been the major phenotype/trait defining flower symmetry [10]. The symmetric perianth
architecture forms the ‘scaffold’ of the flower, so changes in its morphology, including symmetry types, might
have straightforward consequences in flower function, e.g. efficient reproduction.
Based on the geometric feature, four types of flower symmetry can be distinguished:

(i) Actinomorphic (radially symmetric) flowers can be cut into identical halves by three or more planes of
symmetry (Figure 1a). According to the number of flower organs present in the whorls (merosity, number
of organs in a whorl), a specific rotation angle can be identified around which the body can be trans-
formed in mathematical terms, to resemble the original shape. Thus, radially symmetric flowers can
display from three to infinite folds of symmetry and include several species (Figure 1a,d–f ).

(ii) Bi-/Di-Symmetric flowers, can be divided in two identical halves by two axes of symmetry oriented perpen-
dicularly to each other (90° angle): while the vertical axis defines the left–right halves, a second, horizontal
axis virtually separates the adaxial/ventral (upper) half from the abaxial/dorsal (lower) half of the body
(Figure 1b) [11]. Mathematically, rotation around the centre as well as reflection along both axes lead to
equivalent images. Examples of bi-symmetric flowers include Arabidopsis arenosa.

(iii) Zygomorphic (bilaterally symmetric) flowers, in which one single plane (or axis) of symmetry running through
the centre of the body produces two equal halves that are mirror images of each other (Figure 1c) [11]. The
left and right sides (along the medio-lateral body-axis) identified in this way can be transformed by a reflec-
tion along the vertical axis, and as such bilateral symmetry in biology can be described in mathematical
terms. The most iconic example of the bilaterally symmetric flower is the snapdragon Antirrhinum majus.

(iv) Asymmetric flowers cannot be divided into equal halves by any plane, e.g. the flower of Canna indica.
Asymmetry can be generated by a reduction in the number of specific flower organs compared with those
in other whorls, or by a break in bilateral symmetry generated by a deflection of an organ either to the left
or right side, i.e. enantiostyly, the ‘style bending’ of the Solanum rostratum gynoecium [12]. However, it is
important to note that asymmetry does not equal to disorder; in fact, asymmetric flowers display higher-
ordered complexity, in which breaking bilateral symmetry is often a strategy employed to co-ordinate
pollen uptake and release by the pollinator visiting the flowers [6,13].

The evolution of flower symmetry
In Cretaceous rocks (145–166 mya), fossils of flowering plants are believed to have appeared suddenly and in
great diversity [3]. In 1879, Charles Darwin famously noted: ‘The rapid development as far as we can judge of
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all the higher plants within recent geological times is ‘an abominable mystery’ [14]. Palaeobotanists, plant phy-
tologists and geneticists have made huge efforts towards understanding Darwin’s abominable mystery of angio-
sperm radiation [4,10,11,15,16].
Early diverging angiosperms (magnoliids) do no display bilateral flowers, and mono-symmetric flowers are

rare among them. In line with this, a recent model-based study combined phylogeny and flower traits data to
reconstruct the ancestral angiosperm flower, which showed radial symmetry (Figure 2) [4], providing new ways
to explore the evolutionary hypothesis. However, in late-diverging eudicots, such as Rosids, Asterids and
Fabaceae (legumes) and in lineages with a high density of species, such as Orchids, bilateral flowers are very
common and often exhibit a high degree of complexity (Figure 2).
However, evolution is not always an unidirectional, straight forward process: in fact, while zygomorphy erose

independently several times from actinomorphic ancestral flowers, reversal from zygomorphy to actinomorphy
flowers has also been observed in several species [9,11].
Notably, the ‘pollination syndromes’ concept have been postulated for a long time as the driving force

behind zygomorphic flowers: a mutually beneficial co-evolution of plant–pollinator species that tightly links
flower symmetry type, the ecology of visitor pollinators, and their fitness [17,18]. Fossil records demonstrate
that the emergence of zygomorphic flowers coincides with the diversification of specialised insect pollinators [19],
implying evolution of zygomorphy may facilitate plant–pollinator interactions over evolutionary time [20]. The
astonishing precision by which pollen is placed on a pollinator’s body during visits to zygomorphic flowers is

Figure 1. Flower symmetry types in angiosperms.

Examples of (a) radial symmetry, (b) bi-radial symmetry and (c) bilateral symmetry in flowers, showing (a) multiple, (b) two, and

(c) one axis/plane of symmetry. Based on the arrangement of flower organs radially symmetric flowers can be (d) spiral, in

which floral parts are arranged spirally around the base, or thalamus, or (e,f ) cyclic, in which all floral parts are arranged in

concentric circles around the thalamus. Based on the number of floral organs in each distinct whorl, i.e. merosity, flowers can

be classified in (e) trimerous, (b) tetramerous and (f ) pentamerous flowers, in which the organs belonging to each whorl are

consistently three, four, five (or multiples of that number), respectively. (a) Waterlily, Nymphaea thermarum; (b) Aubrieta

deltoidei; (c) butterworts, Pinguicula moranensis; (d) Camellia japonica; (e) Asiatic lily, Lilium auratum; (f ) Nemophila Discoidalis.

Photos were taken by Yuxiang Jiang.
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exemplified by some species of orchids, in which flower shapes are so complex that they include highly specia-
lised structures which only specific types of pollinators (insects and sometimes vertebrates) can access to feed,
while passively supporting plant reproduction [21]. An extreme example of the complexity of bilateral flowers
is the orchid genus Ophrys which produce blossoms that mimic the form and scent of a female wasp to attract/
deceive male wasps in search of a mating partner (Figure 2) [22,23]. Although the mutual benefit for both
plants and animals is clear, the debate of who led this co-evolution, e.g. orchid or pollinators such as orchid
bees, goes on [7].

The genetic basis of floral symmetry
The molecular basis of floral symmetry lies in a spatio-temporal orchestration of gene expression by specific
transcription factors (TFs). In the bilateral flower of Plantaginaceae family members (including snapdragon and
toadflax) dorsal and ventral domains display distinct morphological and molecular characteristics, i.e. dorsal–
ventral (adaxial-abaxial) asymmetry (Figure 3a,b) [15,24–26]. For example, five petals are arranged along the
adaxial–abaxial axis in three distinct positions — two dorsal, two lateral and one ventral — thanks to the activ-
ity of two teosinte BRANCHED1–CYCLOIDEA–PCF (TCP) domain-containing TFs, namely CYCLOIDEA
(CYC) and its paralog DICHOTOMA (DICH), that control dorsal–ventral axis asymmetry (Figure 3c). Genetic
studies of the cyc dich ‘peloric’ mutant in snapdragon (Antirrhinum majus), which produce radially symmetric
flowers with ectopic ventral identity, demonstrated their role in controlling flower bilateral symmetry by pat-
terning the dorsal region and restricting the ventral domain [25–27]. Accordingly, the gene CYC is expressed at
very early stages of flower development, in the dorsal domain of the flower meristem, where it affects growth
rate and primordium initiation, thus establishing dorsoventral asymmetry [26]. Interestingly, also the morpho-
logical asymmetry displayed by individual petals is controlled by the same core mechanism, which is recruited
and finetuned at different time points to reinforce the patterning of symmetry at different scales [25].
The expansion of TF families during plant evolution is positively correlated with flower complexity [27,28].

The MYB TF family is one of the most ancient found in animals and plants, and their role in flower develop-
ment has been extensively studied in the past three decades. The MYB domain is the key feature of this protein
family and is necessary for protein–protein interactions and DNA-binding. Three MYB TFs, DIVARICATA
(DIV), RADIALIS (RAD), and DIV-and-RAD-interacting-factors (DRIF), compose the core DDR module for
(a)symmetry establishment along the dorsal–ventral (abaxial–adaxial) axis [27] (Figure 3c). DIV and DRIF
form heterodimers in the ventral region and activate unknown downstream target genes to promote ventraliza-
tion. In the dorsal and lateral domains, the formation of heterodimers between DIV and DRIF is inhibited
(despite their active expression) by a third MYB player, RAD, which directly binds to DRIF preventing the

Figure 2. Simplified scheme of evolution of floral symmetry in Angiosperms.

All images of representative flower symmetry patterns are adapted from the ‘Phylogeny of angiosperms poster’ (http://www.

plantgateway.com/poster/) following the APG IV classification [66] except the model-based prediction of the ancestor flower of

angiosperms, which is adapted from Sauquet et al. [4] according to the article’s Creative Commons Attribution 4.0 International

License. Representative plants of main groups: ANA grade, Nymphaeaceae; Magnoliids, Magnoliaceae; Monocots,

Orchidaecae; Basal eudicots, Papaveraceae; Rosids, Fabaceae; Asterids, Mazaceae.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

262

Emerging Topics in Life Sciences (2022) 6 259–269
https://doi.org/10.1042/ETLS20210270

http://www.plantgateway.com/poster/
http://www.plantgateway.com/poster/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


latter from interacting with DIV (Figure 3c). Thus, ventralization is inhibited in the dorsal and lateral regions.
Accordingly, a reversion to radial symmetry and a loss of dorsal identity is observed when RAD function is
lost [29]. Consistently, further studies revealed the expression of RAD is directly controlled by CYC and DICH,
which are expressed in the dorsal region [24,30]. CYC and DICH were shown to directly bind and activate
RAD expression [31,32], thus regulating the dorsoventral axis and flower bilateral symmetry. Therefore, control-
ling CYC and DICH expression is key in patterning flower bilateral symmetry. However, their upstream

Figure 3. Genetic basis of floral symmetry.

Example of (a,b) Inflorescence and (a0,b0) flower of (a,a0) wild-type and (b,b0) peloric mutant of toadflax (Linaria vulgaris)

displaying bilateral and radial flower symmetry, respectively. (a0,b0) Adapted from Cubas et al. [26]. (c) Schematic flower

diagrams and genetic regulation of flower symmetry and establishment of the dorsal–ventral body-axis. Key TFs from TPC

family (CYC and DICH) activate RAD gene in the dorsal region. RAD sequesters DRIF, leaving DIV unable to promote

ventralization. In the absence of TCPs or RAD, DRIF and DIV form heterodimers, promoting gene expression and ventral

identity. Illustrations are created with Biorender.com.
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regulation might be more complex than anticipated and tailored in an organ-specific fashion: there are studies
showing CYC-like expression is active in organs other than petals, such as stamens, where CYC expression
expands in the lateral and ventral domains [33–35].
However, how the expression and activity of CYC and DICH are regulated remains unclear. A recent study

showed the 50 untranslated region of both CYC and DICH is significantly enriched in autoregulatory sites,
which suggests a role for direct transcriptional autoregulation [36].
MADS box TFs, which play pivotal roles in determining flower organ identity in both Arabidopsis and snap-

dragon, also control flower symmetry in zygomorphic orchid flowers. Careful expression studies have shown
the precise spatio-temporal pattern of MADS gene expression during orchid flower development, defining their
role in specifying organ identity [31,37]. However, how the downstream MADS box TFs regulate flower sym-
metry patterns still requires further investigation, as do other molecular pathways underlining floral symmetry
establishment in several other species [27].

Transition in floral symmetry
Body symmetry transition and breaking events are not rare in metazoan, e.g. during echinoderm development, in
which a bilaterally symmetric embryonic larvae becomes a radially symmetry adult [38], or during embryogenesis
of flatfishes, where migration of one eye to the contralateral side of the skull breaks bilateral symmetry [39].
Similarly in Angiosperms, although a large proportion of flowers show consistent symmetry patterns during floral
development, many experience symmetry transition events during ontogenesis, e.g. mono-symmetric, bilateral
flowers may be radially symmetric in early phases, or poly-symmetric flowers may display mono-symmetry or
even be asymmetric at early phases.
In early stages of Couroupita guianensis flower development, growth of the upper side of the flower (dorsal

domain) is retarded, causing a polarisation event that engrains bilateral symmetry. This is followed by the
establishment of radial symmetry when the stamen and carpel are initiated; however, at a later stage, the
androecium positioned in the lower section (ventral domain) proliferates to such an extent that it forms a
tongue-like structure, thus turning the developing flower into a bilaterally symmetric structure again [6,40].
Transitions in symmetry have been attributed to gradients in developmental signals along the inflorescence,

leading to differential cellular/tissue growth and/or mechanical constraints resulting from neighbouring organs [6].
Also, environmental factors, such as the direction of light and gravity have been shown to influence flower sym-
metry transition [6,36,41,42]. It has long been known that gravity can affect the orientation of the apical–basal
axis of multicellular organisms, as in brown algae of the genus Fucus, in which gravity helps the fertilised egg
cell to fix polarity, distribute organelles asymmetrically and establish the apical–basal axis [1]. In angiosperms,
gravity affects the angular position of petals in some species of zygomorphic Saxifraga flower, as demonstrated
by experiments carried out in the absence of directional gravity resulting in the development of actinomorphic
flowers [43]. While the underlining molecular mechanism connecting gravity to flower morphology is still
unresolved, recent work in Campanulaceae found that CYC gene expression is preserved along the dorsal–
ventral axis of a flower even as it turns upside-down, suggesting that at least late CYC gene expression is not
regulated by gravity [44].

Symmetry within floral organs: the gynoecium case
The fundamental importance of corolla development has been the focus of studies on flower symmetry. Sepals,
petals, stamens and carpels are all modified leaves, which have acquired an astonishing variety of shapes and
functions during evolution, and together they preside over plant reproduction [45]. Although fundamental for
morphology and function, the understanding of symmetry establishment within individual flower organs has
remained more enigmatic. In recent years, studies focused on the development of the gynoecium in several
plant species have partially addressed this gap in knowledge.
In angiosperms, the carpel — the basic unit of the gynoecium — surrounds the ovules to protect them from

herbivory, mechanical damage and the environment [45,46]. The carpel also ensures correct fruit development
after fertilisation, and supports the release of the seeds at maturation [47,48]. Despite the astonishing morpho-
logical diversity in carpel shapes across angiosperm species, the basic organisation of the gynoecium consist-
ently composes three parts along the basal–apical axis: the ovary, the style, and the stigma [49]. Pollen deposits
on the stigma and germinates producing a pollen tube that grows internally through the style to fertilise the
ovules contained in the ovary below.
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Interestingly, many monocots and dicots display opposite symmetry types at the end of their gynoecia. Style/
stigma are bilaterally symmetric in grasses, such as rice and wheat, while the ovary is formed by the fusion of
three carpel primordia, e.g. three-fold radial symmetry (Figure 4a) [50,51]. Conversely, in the dicot model plant

Figure 4. Symmetry patterning within the gynoecium of monocots and dicots.

Schematic illustration of fully developed gynoecium representative of (a) monocots (Oryza sativa) and (b) dicots (Arabidopsis

thaliana). (a) In grasses such as rice, only one ovule develops in the ovary, which is formed by three carpels, i.e. radial

symmetry, while the apical branched stigma displays bilateral symmetry. (b) In Arabidopsis, cross sections in the ovary and

style regions display bilateral and radial symmetry, respectively. (c) Schematic top- and side-views of a developing Arabidopsis

gynoecium showing the molecular basis underpinning symmetry transition. Auxin signalling maximum (red dots) transition from

2-foci (bilateral symmetry) to 4-foci (biradial symmetry) to a ring stage (radial symmetry), during organ growth, coordinating

symmetry establishment and transition with the body axes. SPATULA (SPT), INDEHISCENT (IND) and HECATEs (HECs) inhibit

polar auxin transport (PAT) by repressing the kinase PINOID (PID), ultimately regulating the auxin–cytokinin (CK) balance.

Illustrations are created with Biorender.com.
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Arabidopsis thaliana the gynoecium consists of two carpels congenitally fused along their marginal tissues,
which grow as a tube harbouring two rows of ovules inside, and displays bilateral symmetry in cross-section
along the medio-lateral axis (left–right) (Figure 4b) [52,53]. At the apical end, the Arabidopsis bilateral ovary
gives rise to a solid structure, the style, which terminally fuses the two carpels and displays radial symmetry.
Style and stigma form towards the end of the patterning phase of gynoecium development, thus a transition in
symmetry, from bilateral to radial, takes place during a specific developmental window and at the distal–apical
end of the growing organ. This fascinating process is controlled by key TFs and hormonal dynamic cross-talks
[54]. The phytohormone auxin — whose levels are finely regulated to orchestrate plant development [55] —
plays a central role in the bilateral-to-radial gynoecium symmetry transition.
Genetic and molecular studies carried out in Arabidopsis and rice (Oryza sativa) revealed comparable activity

for auxin in setting up symmetry at their gynoecium apices. During gynoecium ontogenesis in Arabidopsis, auxin
accumulates at two apical lateral foci, with a single auxin maximum at the apex of each carpel, thereby sustaining
equal growth and patterning bilateral symmetry within the growing organ [56]. Subsequently, two new auxin
maxima peak in the medial–apical cells to trigger the ex novo apical fusion. This four-foci stage of auxin distribu-
tion imposes a bi-radial state in the organ that patterns the medio-lateral axis [57,58]. Lastly, the four auxin foci
merge into a ring, patterning radial symmetry at the gynoecium apex, that causes apical cells to build the style and
stigma (Figure 4c) [57,59]. Several TFs, belonging to the bHLH and B3-domain families, such as SPATULA (SPT),
INDEHISCENT (IND), HECATEs (HEC1,2,3) and NGATHAs (NGA1,2,3,4), play fundamental roles in this
process by controlling auxin transport and biosynthesis [46,60,61]. Among these, SPT has been shown to orches-
trate symmetry establishment and transition at the gynoecium apex by regulating the expression of the kinase
PINOID (PID), which controls the distribution of the polar auxin transporters (PINs) [59]. In Arabidopsis, SPT
and IND repress PID expression at the gynoecium apex when radial symmetry is established [59]. PID-mediated
phosphorylation of PINs controls the polarity of auxin transporters and thus the flux and accumulation of the
hormone. Down-regulation of PID causes the apolar distribution of PINs at the plasma membrane of apical cells
undergoing symmetry transition, thus scaling up symmetry from the cellular to the organ level [59]. On the other
hand, PID expression and activity has been shown to support the development of the bilateral stigma in rice, since
the pid loss-of-function mutant lack stigmatic tissue (leading to a failure to pattern bilateral symmetry), while over-
expression of PID in rice led to an increase in stigma development by augmenting its branching [53].
In addition, SPT also controls auxin biosynthesis and represses the cell-proliferation signal mediated by another

phytohormone, cytokinin (CK), which is known to work antagonistically with auxin during plant development
[57,58,62]. Moreover, SPT represses the expression of marginal CUP-SHAPE COTYLEDON genes (CUC1 and
CUC2) at the gynoecium apex [63]. CUCs are fundamental growth regulators that repress growth cell-autonomously
to create boundaries and separate organs, for example during bilateral symmetry establishment in plant embryogen-
esis when the cotyledons form [64,65]. Altogether, the default bilateral symmetry of the Arabidopsis ovary results
from the fusion of the two carpels at their margins and requires the activation of a dedicated genetic programme to
drive radial symmetry establishment at the apical end, thus build the style and stigma of the gynoecium.
In conclusion, the genetic programme orchestrating gynoecium morphology and symmetry may be con-

served and differentially regulated across angiosperms, (e.g. eudicots vs monocots) to shape their apical ends
according to function.

Summary
• Flower symmetry is significant not only in plant biology, but more broadly for co-evolution of

plants and animals and their connected ecological traits. Thus, it is a theme that brings
together palaeobotanists, developmental geneticists, entomologists, bioinformaticians and
comparative evolutionary biologists with the focus of understanding the basis of geometrical
features in biology.

• Core, conserved molecular mechanisms are co-ordinated with the establishment of the body
axes and tissue patterning to set up bilateral and radial symmetry in flowers across plant
species. Expanding the investigation of symmetry establishment and transition in individual
flower organs is a powerful strategy to reveal novel, conserved players and biological rules
underpinning symmetry during organogenesis.
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• We are still far from fully deciphering how key TFs and chemical gradients orchestrate flower
symmetry. With the technological advances of next-generation whole genome sequencing,
powerful genetic manipulation tools (e.g. CRISPR), and phenotypical analysis, we are a step
closer to drawing a large-scale picture of the molecular networks regulating flower symmetry.
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