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Location, location, location: 
environmental factors better predict 
malaria‑positive individuals during reactive 
case detection than index case demographics 
in Southern Province, Zambia
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Abstract 

Background:  Decreasing malaria transmission leads to increasing heterogeneity with increased risk in both hot 
spots (locations) and hot pops (certain demographics). In Southern Province, Zambia, reactive case detection has 
formed a part of malaria surveillance and elimination efforts since 2011. Various factors may be associated with find‑
ing malaria infections during case investigations, including the demographics of the incident case and environmental 
characteristics of the location of the incident case.

Methods:  Community health worker registries were used to determine what factors were associated with finding a 
malaria infection during reactive case detection.

Results:  Location was a more powerful predictor of finding malaria infections during case investigations than the 
demographics of the incident case. After accounting for environmental characteristics, no demographics around 
the incident case were associated with finding malaria infections during case investigations. Various time-invariant 
measures of the environment, such as median enhanced vegetation index, the topographic position index, the con‑
vergence index, and the topographical wetness index, were all associated as expected with increased probability of 
finding a malaria infection during case investigations.

Conclusions:  These results suggest that targeting the locations highly at risk of malaria transmission is of importance 
in elimination settings.
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Background
As malaria transmission decreases it becomes increas-
ingly heterogeneous, with pockets of residual transmis-
sion when approaching elimination [1]. Identifying and 
clearing these pockets is key for malaria elimination 
programmes to succeed [2]. Population-based surveys of 

malaria parasite prevalence have been employed to find 
clusters of transmission, e.g., in Sudan [3], while school-
based surveys have also been trialled in The Gambia [4]. 
Unfortunately, as transmission drops to low levels the 
utility of these population-based surveys for identify-
ing residual transmission rapidly declines. Furthermore, 
these surveys are unwieldy, expensive, have limited spa-
tial resolution or coverage, and are constrained to a single 
snapshot in time unless repeated.

In contrast, routine malaria surveillance can serve 
as both a tool for planning and evaluating malaria 
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interventions, as well as a method of targeting malaria 
interventions to residual foci of malaria transmis-
sion in elimination settings [5]. Care needs to be taken 
with passive case detection data, i.e., derived from self-
reported symptomatic individuals. As these data are 
greatly influenced by treatment-seeking behaviour [6]. 
Nevertheless, the sensitivity of routine malaria surveil-
lance, i.e., the ability to detect a greater proportion of 
the reservoir of human infections [7], can be enhanced 
by extending services into the community and integrat-
ing reactive case detection (RCD) for confirmed cases 
(Larsen et  al., pers. comm.). Briefly, RCD consists of 
performing case investigations at and around the home 
of an incident malaria case [8, 9]. RCD is based on the 
assumption that incident malaria cases are indicative of 
local malaria transmission and therefore an increased 
risk of infection in individuals living in close proxim-
ity to the incident case [10–12]. In Zambia, RCD has 
been scaled throughout all low transmission areas (inci-
dence of <5 per 1000) and involves testing all individu-
als within 140 m of an incident malaria case with a rapid 
diagnostic test (RDT) and treating those positive with 
artemether–lumefantrine [13].

The probability that an incident malaria case indicates 
additional malaria infections within the range of an RCD 
response due to local transmission is likely influenced 
by a number of factors related to the characteristics and 
behaviour of both the incident malaria case and the sur-
rounding community members [14]. For the incident case, 
a key determinant is travel history, i.e., travel from an area 
of low to high transmission may be indicative of imported 
malaria. In Zambia travel history is only recorded when 
the individual has travelled outside of their home dis-
trict in the previous month. Assuming progression to a 
symptomatic infection and presentation to a health facil-
ity occurs within a month, the absence of travel suggests 
that transmission has occurred within a district. Within 
the RCD population, certain demographics are more 
likely to harbour malaria infections than others, due to 
their exposure to malaria-transmitting mosquitoes [15]. 
Characteristics such as gender, age, occupation as well 
as travel history may all be associated with increased or 
decreased probability of finding malaria infections dur-
ing a response. The utility of incident malaria cases as a 
proxy for detecting pockets of residual transmission is 
also heavily influenced by local environmental factors 
that drive vector abundance. Ultimately, heterogeneity 
in Anopheles mosquito habitat drives observed heteroge-
neity in malaria transmission [15]. For example, during 
the dry season Anopheles mosquito habitat is clustered 
around more permanent breeding sites [16], whereas 
habitat expands dramatically during the wet season, 

suggesting that an incident case in the wet season may 
be less likely to be associated with localized transmission. 
Topographical measures may also influence where addi-
tional malaria cases are found due to their capacity to pre-
dict larval breeding sites [17–20], and have been linked 
with malaria risk in some instances [21, 22] but not in 
others [23]. More clearly understanding factors influenc-
ing the probability of finding additional malaria positives 
will help malaria control and elimination programmes to 
identify residual pockets of malaria transmission and tar-
get interventions to them to progress to elimination.

This paper examines how characteristics of incident 
malaria cases seeking care, as well as environmental fac-
tors, are associated with the probability of finding malaria 
infections during RCD.

Methods
Study area
Southern Province, Zambia has low malaria transmis-
sion with previous malaria indicator surveys finding <5% 
malaria parasite prevalence in children  <5  years of age. 
The districts near Lake Kariba have the highest malaria 
transmission intensity, with transmission intensity wan-
ing further inland (north and northwest) from the Lake 
[24]. Due to such low transmission, Southern Province 
contains the first districts targeted for elimination in the 
national strategic plan. This study analysed data from 
three districts: Itezhi-tezhi, Kazungula and Namwala, in 
Southern Province (Fig.  1) which are in pre-elimination 
phase. Subsistence farming is the principal means of 
employment in the area, and the major malaria vector is 
Anopheles arabiensis. Ecologically the area is a relatively 
flat plain dominated by scrub forest (Fig. 2).

Case investigations
RCD has formed part of the Ministry of Health’s rou-
tine malaria surveillance in Southern Province, Zambia 
since 2011 [13]. In brief, volunteer community health 
workers (CHWs) are tasked with following up all con-
firmed incident malaria cases diagnosed at either a health 
centre or a CHW health post by testing all household 
members living within 140  m of the incident malaria 
case with a malaria RDT. All CHWs are literate and are 
trained repeatedly on both malaria rapid diagnostics and 
treatment as well as maintaining quality registries. The 
140-m radius for conducting RCD was derived from spa-
tial analyses of a mass screening and treatment study in 
another area of Southern Province [13, 24]. Individuals 
testing positive are immediately treated with an effective 
anti-malarial or if presenting with signs and symptoms of 
severe malaria referred to the nearest health centre as per 
national guidelines.
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Community health worker data
CHWs keep detailed registers in simple notebooks 
recording activities performed. These records are divided 
into a passive section describing their routine case man-
agement activities of diagnosing and treating malaria 
cases, and an active section describing their case investi-
gations of how many people were tested for malaria and 
how many people tested positive. CHW paper registers 
were collected and data from 2012–2013 was transcribed 
into a custom-built Microsoft Access database.

Environmental indices
The topographical position index is a measure of an 
area’s elevation relative to its neighbours, and can be 
used to identify valleys, plains, ridges, and slopes at vary-
ing scales. On a large scale, broad trends are depicted, 
while at a smaller scales finer nuances in morphometry 
can be identified [25]. The topographical position index 
for the study area at scales of 270, 810, 1980, and 4950 m 
was calculated using Google Earth Engine and a publicly 

available, hydrology-adjusted, digital elevation model with 
a resolution of three arc-seconds (30  m) developed by 
the World Wildlife Fund. From the same digital elevation 
model the convergence index (CI) and topographic wet-
ness index (TWI) for the study area were generated using 
the SAGA Convergence Index and SAGA Topographic 
Wetness Index tools, respectively, available in Quan-
tum GIS version 2.0.1. The convergence index measures 
an area’s propensity to pool water by comparing the sur-
rounding area’s aspect, i.e., whether the surrounding areas 
converge (a basin or pit) or diverge (a ridge or cone). The 
TWI is the ratio of upslope catchment area to an area’s 
actual slope and estimates how water flows through an 
area with higher values associated with wetter soils.

The enhanced vegetation index (EVI) derived from 
the moderate-resolution imaging spectroradiometer 
(MODIS) provided estimates of vegetation density 
around rural health posts and serves as an indicator 
of available adult mosquito habitat [26]. EVI indices 
at eight-day intervals from Google Earth Engine were 

Fig. 1  Map of the study area
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lagged four weeks and matched to the date of the inci-
dent malaria case. The median EVI over the study period 
was also calculated.

Using the raster package [27, 28] in R version 3.2.4 [29], 
mean values for all environmental indices were extracted 
to health posts buffered by 5 km in order to account for 
catchment areas. Unfortunately geo-coordinates of actual 
case investigations were not available. Based upon distri-
bution of continuous indices, lagged EVI was categorized 
above and below 0.5, median EVI above and below 0.25, 
topographical wetness index above and below 10.2, and 
convergence index above and below 0 for analysis. TPI 
at various scales was categorized as ridge (>1 standard 
deviation above 0), valley (<−1 standard deviation below 
zero), upper slope (0.5–1 standard deviation below zero), 
lower slope (−0.5 to −1 standard deviation below zero) 
and flat (−0.5 standard deviations below 0–0.5 standard 
deviations above zero).

Analyses
A series of regression analyses were conducted to better 
understand factors associated with detecting secondary 
positives during reactive case detection. First, the prob-
ability of an RDT-confirmed incident malaria case to be 
investigated was predicted from various case-level param-
eters including age, travel history and gender as well as 
the CHW workload and seasonality using a simple logis-
tic regression with CHW included as a random intercept. 
Second, RDT-positivity during reactions was estimated as 
a function of incident malaria case demographics, CHW 

demographics, remotely sensed environmental indica-
tors, and remotely sensed topographical indices. A mixed 
effects zero-inflated Poisson regression with health post 
included as a random intercept and the number of peo-
ple tested during each reaction included as the offset 
better fit the distribution of RDT-positives found during 
case investigations than a Poisson or negative binomial 
distribution. Third, the probability of individuals testing 
positive during a reaction was analyzed using a mixed 
effects logistic regression with reaction included as a 
random intercept. This model allowed for measuring the 
effect that order of house testing had on the probability 
of finding an RDT-positive individual after accounting 
for incident malaria case demographics, environmental 
measures and topographical indices. Because household 
geo-coordinates were not collected during reactions the 
order of house testing serves as proxy for distance from 
the incident malaria case household, with the first house 
tested being the residence of the incident malaria case 
and subsequent houses tested expanding geographically 
from there. In all regression models a sinusoidal function 
accounted seasonality. All analyses were conducted in 
Stata version 13.1; a p value <0.05 was considered statisti-
cally significant.

Results
From 2012–13, 333 CHWs saw a total of 23,716 treat-
ment-seeking patients of which 2469 tested positive for 
a malaria infection (10.4%). Children aged 5–15  years 
were most likely to present as an incident malaria case 
(Table 1). RDT-positivity was highly seasonal, peaking at 
around 10% in the wet season (December–May) then fall-
ing below 5% in the dry season (August–November). Of 
the 2469 confirmed malaria cases that could have been 
investigated, CHWs investigated 854 (34.6%). A number 
of factors (Table  2) were associated with the likelihood 
of investigating incident malaria cases, most notably a 
higher monthly patient burden decreasing the likelihood 
of an investigation.

The 854 case investigations tested 14,409 individuals 
during RCD of which 1200 were RDT-positive (8.3%). 
RDT positivity during reactions exceeded RDT positivity 

Fig. 2  Altitude of the study area

Table 1  Rapid diagnostic test positivity among treatment-
seeking individuals presenting to community health work-
ers for passive case detection stratified by age

χ2 = 77.6, p < 0.0001; CI confidence interval

Age (years) RDT positivity at CHW (95% CI)

<5 5.8% (4.6–6.9%)

5–15 15.8% (12.8–18.7%)

>15 10.4% (9.1–11.6%)
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of treatment-seeking individuals during the dry season, 
but not during the wet season (Fig. 3). A number of fac-
tors (Table  3) were associated with increased likelihood 
of individuals testing positive during case investigations 
including individual having a fever, living in the index 
house and being aged 5–15.

Just over half of case investigations conducted found 
no additional malaria infection. All remotely sensed fac-
tors were associated with finding positives during case 
investigations except for the topographical position index 
at scales of 810 and 1980 m, which were not included in 
the final analysis because of collinearity with each other 
(Table  4). Of note, both the convergence index and the 
topographical wetness index were associated with finding 
more malaria positive individuals during case investiga-
tions. Median EVI over the time-period better predicted 
the number of positives found than lagged EVI. As a 
whole, environmental factors rather than incident case 
demographics better predicted which reactions would 
find additional malaria infections.

Discussion
The ability to prioritize intervention responses and target 
resources where they can have maximum impact will be 
key to sustaining progress towards elimination and then 
maintaining this status. In the Zambian context, a key inter-
vention in this quest is community surveillance, including 
RCD. In this paper, this surveillance system identified 1200 
additional malaria infections that did not seek treatment 
between 2013 and 2014. Despite challenges, these results 
are encouraging in light of recent articles failing to find util-
ity with RCD, albeit in markedly different settings [8].

Volunteer CHWs investigated approximately one-third 
of the incident malaria cases, finding additional infec-
tions in roughly half of those case investigations. As 
expected, these volunteers were less likely to perform 
case investigations during the rainy season and for inci-
dent malaria cases reporting travel in the previous two 
weeks. Furthermore, CHWs investigated fewer malaria 
cases during months that they had higher workloads in 
terms of outpatient attendance at the health post. More 

Table 2  Factors associated with community health workers conducting case investigations of incident malaria cases

N = 2469 cases, 333 CHWs

CI confidence interval, OR odds ratio

*p < 0.05 **p < 0.01 ***p < 0.001

Factor Categorization Unadjusted OR (95% CI) Adjusted OR (95% CI)

Age 15 years or older Reference Reference

5–14 years 0.620*** (0.503–0.766) 0.704** (0.565–0.876)

<5 years 0.625** (0.661–0.928) 0.694* (0.520–0.925)

Travel Index case did not travel Reference Reference

Index case travelled 0.701* (0.496–0.990) 0.669* (0.473–0.948)

Gender Index case is female Reference Reference

Index case is male 0.563*** (0.464–0.682) 0.625*** (0.513–0.761)

Season During dry season Reference Reference

During rainy season 0.613*** (0.494–0.762) 0.795 (0.628–1.007)

CHW workload 1–6 patients Reference Reference

7–11 patients 0.935 (0.692–1.264) 1.126 (0.824–1.539)

12–18 patients 0.597** (0.442–0.805) 0.775 (0.563–1.067)

19–28 patients 0.509*** (0.377–0.687) 0.659* (0.479–0.907)

29–110 patients 0.496*** (0.349–0.705) 0.650* (0.448–0.943)
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Fig. 3  Malaria rapid diagnostic test positivity by month, 2012–2013
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specific understanding of CHWs in this context is needed 
to improve CHW productivity in order to pursue malaria 
elimination with a surveillance system that heavily relies 
on volunteers [30]. Interestingly, CHWs were less likely 
to follow up men and children, which may reflect social 
networks.

Malaria test positivity during case investigations 
declined as the CHWs moved away from the index case 
house and sharply fell off after the fifth neighbour tested 
during the case investigation. Unfortunately, CHWs do 
not collect geo-coordinates during their routine case 
investigations and so distance from index cases was not 
available in the data analyzed. Other research in a nearby 
area suggests that CHWs may conduct RCD beyond the 
programmed 140-m radius (Searle et al. in prep.), which 
would help explain the sharp drop in the malaria posi-
tivity. Without geo-coordinates of RCD investigations, 
geo-coordinates of corresponding health posts were used 
to calculate the environmental indices. This limitation 
masks any potential nuances of intra-health post varia-
tion in malaria transmission risk. Importantly however, 
this limitation does not undermine the value of health 
post location in finding additional malaria infections 
during RCD. Estimating the mean of the topographi-
cal indices would not actually predict mosquito breed-
ing sites as other studies have done [17–20], but rather 
created a measure of areas around health posts that are 
more or less likely to harbour mosquito breeding. Further 
work needs to examine how best to link topography with 
malaria risk at any given location, perhaps building on 
mosquito dispersal [31, 32].

To address the lack of geo-coordinates, a word-based 
georefencing system called ‘What 3 Words’ is being 
investigated [33]. Briefly, this system applies a grid 
(3 m × 3 m) across the world’s surface and assigns three 
words to each grid square. Allowing any location to be 
identified with just three words, e.g., the entrance to The 
White House is ‘curve.empty.buzz’. The aim is to distrib-
ute the word identifiers to each and every household 
during campaigns, e.g., indoor residual spraying or net 
distributions, thereby allowing accurate locations to be 
recorded when visiting a household for RCD. Depending 
on the success of this approach, individuals may retain 
these identifiers for case reporting at the clinic.

Contrary to other findings from Zambia [34], incident 
malaria cases younger than 5  years were less likely to 
predict malaria positives during case investigation than 
children aged 5–15 years and were no different from indi-
viduals >15 years old. This discrepancy may be explained 
by the difference in prevalence, and therefore underlying 
transmission intensities, of 45% RDT positivity in house-
hold contacts sampled in Central Province [34] versus 
10% reported here. Furthermore, along with individuals 
reporting symptoms of fever, children aged 5–15 were 
most likely to test positive for malaria. This age group 
is known to be the least likely to use insecticide-treated 
bed nets [35], and may serve as a sentinel population for 
malaria elimination.

In this analysis, environmental factors proved to be 
the most important predictors of finding additional 
malaria infections during RCD. Indeed, four of the five 
predictive environmental factors separate time-invariant 

Table 3  Factors associated with testing positive for malaria during reactive case detection

N = 14,049 individuals, 859 cases

CI confidence interval, OR odds ratio

*p < 0.05 **p < 0.01 ***p < 0.001

Factor Categorization Unadjusted OR (95% CI) Adjusted OR (95% CI)

Age >15 years Reference Reference

5–15 years 1.768*** (1.524–2.053) 1.739*** (1.490–2.031)

<5 years 1.069 (0.884–1.293) 0.936 (0.768–1.140)

Travel No travel in previous 2 weeks Reference Reference

Travelled in previous 2 weeks 1.741*** (1.337–2.266) 1.927*** (1.464–2.536)

Gender Female Reference Reference

Male 1.287*** (1.128–1.469) 1.272** (1.108–1.459)

Season During dry season Reference Reference

During rainy season 1.403** (1.149–1.714) 1.435** (1.168–1.762)

House location Beyond nearest neighbours Reference Reference

Index house 3.059*** (2.147–4.359) 2.992*** (2.076–4.312)

Nearest neighbour (5 houses) 2.065*** (1.465–2.911) 2.033*** (1.426–2.897)

Symptoms No fever Reference Reference

Fever 4.536*** (3.757–5.475) 4.661*** (3.840–5.657)
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indices (TPI at 270 m, TPI at 4950 m, TWI, CI), and the 
fifth (median EVI) did not vary over the study period, 
suggesting that the pockets of residual malaria transmis-
sion in this area may be spatially stable at the level of the 
health post (Fig. 3). This stability is important as it ena-
bles targeting of resources towards conventional vector 
control interventions, e.g., insecticide-treated bed net 
distribution/utilization, indoor residual spraying or lar-
viciding [36].

Conclusion
To achieve elimination, residual pockets of transmission 
must be identified and interventions focused on them. 
This paper suggests that for RCD responses, the most 
important factor in identifying which incident cases 
should be followed up is their location, i.e., environmen-
tal risk factors. As reporting becomes more granular and 
fine-scale risk is better understood, it may be possible to 
efficiently focus efforts for maximal impact.

Table 4  Factors associated with finding a malaria infection during investigation of an incident malaria case in Southern 
Province, Zambia

Zero-inflated Poisson regression models were inflated by the number of people tested and month of the year. Models also controlled for seasonality with a sinusoidal 
function

N = 690 case investigations

CI confidence interval, IRR incident rate ratio

*p < 0.05 **p < 0.01 ***p < 0.001

Measure Categorization Unadjusted IRR (95% CI) Adjusted IRR (95% CI)

Topographical position index 270 m Flat Reference Reference

Valley 1.115 (0.916–1.442) 1.019 (0.733–1.417)

Ridge 1.268* (1.034–1.554) 1.590* (1.106–2.286)

Lower slope 0.994 (0.780–1.268) 1.211 (0.893–1.645)

Upper slope 1.872*** (1.496–2.341) 1.979*** (1.521–2.573)

Topographical position index 4950 m Flat Reference Reference

Valley 1.000 (0.817–1.224) 1.032 (0.780–1.365)

Ridge 0.962 (0.782–1.183) 0.576** (0.419–0.792)

Lower slope 0.732** (0.583–0.919) 0.654** (0.491–0.871)

Upper slope 1.398** (1.152–1.696) 1.153 (0.909–1.462)

Enhanced vegetation index lagged 4 weeks <0.5 Reference Reference

≥0.5 1.668** (1.209–2.328) 1.291 (0.894–1.865)

Median enhanced vegetation index <0.25 Reference Reference

≥0.25 1.740*** (1.512–2.002) 1.259* (1.049–1.513)

Altitude ≤1100 m Reference Reference

>1100 m 1.442*** (1.252–1.661) 0.949 (0.783–1.151)

Wetness index ≤10.2 (drier) Reference Reference

>10.2 (wetter) 1.061 (0.918–1.225) 1.432*** (1.198–1.712)

Convergence index ≤0 (wetter) Reference Reference

>0 (drier) 1.030 (0.897–1.184) 0.811* (0.665–0.989)

Index case travelled No travel in previous 2 weeks Reference Reference

Travel in previous 2 weeks 0.898 (0.789–1.188) 0.776 (0.544–1.106)

Timeliness of case investigation Same week as incident case Reference Reference

At least 1 week following incident case 1.381* (1.072–1.780) 1.211 (0.905–1.621)

Gender of index case Female Reference Reference

Male 1.329** (1.132–1.560) 0.943 (0.765–1.162)

Travel among individuals in community tested No travel in previous 2 weeks Reference Reference

Any travel in previous 2 weeks 0.670*** (0.587–0.766) 0.805* (0.668–0.969)

Age of index case >15 years old Reference Reference

5–15 years old 0.898 (0.740–1.091) 0.862 (0.685–1.085)

<5 years old 0.761 (0.565–1.025) 0.686* (0.484–0.973)
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