
 International Journal of 

Molecular Sciences

Review

Advances of Proteomic Sciences in Dentistry

Zohaib Khurshid 1, Sana Zohaib 2, Shariq Najeeb 3, Muhammad Sohail Zafar 4, Rabia Rehman 2

and Ihtesham Ur Rehman 5,*
1 Department of Prosthodontics and Dental Materials, School of Dentistry, King Faisal University,

Al-Hofuf 31982, Saudi Arabia; drzohaibkhurshid@gmail.com
2 Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Hofuf 31982,

Saudi Arabia; szohaib@kfu.edu.sa (S.Z.); rimtiaz@kfu.edu.sa (R.R.)
3 Department of Restorative Dental Sciences, Al Farabi Colleges, Riyadh 11313, Saudi Arabia;

shariqnajeeb@gmail.com
4 Department of Restorative Dentistry, College of Dentistry, Taibah University, Madina Munawwarrah 41311,

Saudi Arabia; MZAFAR@taibahu.edu.sa
5 Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield,

North Campus, Broad Lane, Sheffield S3 7HQ, UK
* Correspondence: i.u.rehman@sheffield.ac.uk; Tel.: +44-114-222-5946; Fax: +44-114-222-5945

Academic Editor: Mohamed N. Rahaman
Received: 18 April 2016; Accepted: 9 May 2016; Published: 13 May 2016

Abstract: Applications of proteomics tools revolutionized various biomedical disciplines such as
genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major
milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard
and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought
revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection
of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools
for the analysis of oral tissues. In addition, dental materials proteomics and their future directions
are discussed.

Keywords: proteomics; dentistry; enamel; dentin; saliva; gingival crevicular fluids and
dental materials

1. Introduction

Every living thing contains fascinating molecules called proteins [1]. Proteins are building blocks
for the living matrix and perform various functions [2]. The human body contains a number of
different proteins which are structural, catalytic, regulatory, transport and storage, and transducer
proteins. Each of these proteins plays a specific functional role [3]. Proteins belong to biological
macromolecules that exist as three-dimensional structures because of the sequences involving the
twenty different amino acids [4,5]. These amino acids are linked with each other by peptide bonds.
The word “proteome”, first coined by Mark Wilkins in 1961, is used to describe a mixture of proteins [6].
All proteomes arise from mRNA and can be used to describe a cell’s protein content [7]. In simple
terms, proteomics is the study of the distribution and interaction of proteins in time and space in a cell,
organisms, or an ecosystem. In recent years, a number of proteomical studies on human body fluid
and tissues (diseased and non-diseased) have been carried out by several researchers to analyze the
chemistry in order to understand the life processes at the molecular as well as the cellular levels [8,9].

Proteomic tools have the ability to analyze human body samples such as blood, saliva, serums,
urine, cervico-vaginal fluid (CVF), sperm cells, gingival crevicular fluids (GCF), microorganisms, and
different tissues (enamel, dentine, cementum, pulp, gingiva, bone ligaments, stem cells, and mucosa)
in both pathological and normal physiological states [10–12]. Quite a few studies have reported the
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analysis of dental tissues by means of proteomic tools. Approximately, 64% of human oral tissues
samples have been studied for proteomics analysis as compared to 11% of animal dental tissues
which signifies the clinical importance of proteomics [13]. A number of studies have explored human
saliva due to its ease of accessibility and non-invasive method of collection. A significant number of
studies (30%) have explored the salivary proteome during oral pathological conditions e.g., caries,
periodontitis, gingivitis, dental abscess, endodontic lesions, and oral carcinomas [14]. Two methods
exist to conduct proteomics of body fluids. In top down proteomics, intact proteins are analyzed
by Electrospray Ionization (ESI) or Matrix-Assisted Laser Desorption/Ionization (MALDI) and the
peptides are generated by a gas phase fragmentation method [15]. In contrast, bottom-up approach of
proteomics is commonly used to analyze peptides produced through chemical or enzymatic cleavage
of proteins, and with post-translational modification as well as through liquid chromatography (LC) in
conjunction with mass spectrometry (MS). The bottom-up analysis, the more conventional method,
has been sometimes also called “shotgun proteomics” [16]. Both approaches are commonly used in
proteomics procedures utilizing mass spectrometry.

Table 1 presents a description of proteomics studies carried out on whole mouth saliva (WS),
unstimulated whole mouth saliva (USWS) parotid gland secretions, submandibular and sublingual
gland secretions, salivary gland ductal secretions, enamel, dentine, pulp tissues, gingival crevicular
fluid (GCF), cementum, alveolar bone, periodontal fibers (PDL), and dental materials through
top-down and bottom up approaches.
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Table 1. Detailed discussion of oral diseases protein analysis using proteomic tools.

Sample Disease Condition Proteomic Tools Identified Markers References

Whole mouth
saliva (WS)

Oral squamous cell
carcinoma

Shotgun proteome analysis, Western blotting (WB) and
Enzyme Linked Immuno-Sorbent Assay (ELISA)

MRP14, M2BP, CD59, catalase, profilin, M2BP, involucrin, histone H1,
S100A12, and S100P [17]

WS Denture stomatitis

Surface-Enhanced Laser Desorption/Ionization (SELDI)
time-of-flight-(TOF)/ mass spectrometry (MS), liquid
chromatography (LC)- Matrix-Assisted Laser
Desorption/Ionization (MALDI)-TOF-MS

Statherin, desmocollin-2, kininogen-1, carbonic anhydrase-6, cystatin SN,
cystatin c, peptidyl-prolyl cis-trans isomerase and immunoglobulin fragments [18]

WS Primary Sjögren’s syndrome two dimensional electrophoresis (2-DE), MALDI-TOF/MS,
WB and ELISA

Carbonic anhydrase VI, α-amylases precursor, epidermal fatty acid binding
protein (E-FABP), macroglobulin (b-2), immunoglobulin k light chain
(IGK-light chain) and glyceraldehydes-3-phosphate dehydrogenase (G3PDH)

[19]

WS Secondary Sjögren’s
syndrome 2-DE, MALDI-TOF-MS, WB and ELISA Decrease Ó Proline rich proteins (PRPs), Ó Cystatin C, Ó Lysozyme C and

histatin, Increase Ò Kallikrein and defensins [20]

WS GVHD Tandem MS & ELISA IL-1 receptor antagonist and cystatin B [21]

WS Protein-energy
undernutrition 2-DE Gel and Image Master two dimensional 2D Cyclic-dependent protein kinase [22]

WS Squamous cell carcinoma
(head and neck region)

C4 Reverse Phase-High Pressure Liquid Chromatography
(RP-HPLC), and LC-MS/MS MRP14, Profilin, CD59, catalase and M2BP [23]

WS Diabetes (type-2) 2D-LC-MS/MS, WB and ELISA α-1-antitrypsin (A1AT), α-2 macroglobulin (A2MG), transthyretin (TTR),
salivary α -amylase (AMYS), cystatin C (Cys-C) [24]

WS Edentulous patient with
type-2 diabetes 2D-LC-MS/MS

Serum amyloid-A and glyceraldehyde-3-phosphate dehydrogenase are
increased, serotransferrin and amylase, palate, lung and nasal epithelium
associated proteins (PLUNC) are reduced

[25]

Unstimulated whole
mouth saliva (USWS)

Squamous cell carcinoma
(oral mucosa)

Ultra-Pressure Liquid Chromatography (UPLC-MS),
Hydrophilic Interaction Liquid Chromatography (HILIC) L-carnitine, choline, betaine and pipecolinic acid [26]

Saliva (parotid glands) Caries HPLC-MS/MS matrix metalloproteinase-9 (MMP9), mucin-7 (MUC7), lactotransferrin (LTF),
carbonic anhydrase 6 (CA6), azurocidin (AZU), and cold agglutinin [27]

WS Orthodontic tooth
movement 2-DE, MALDI-TOF/tandem mass spectrometry (TEM) Protein S100-A9, CRISP-3, Immunoglobulin J chain and Ig α-1 chain C region [28]

USWS Aggressive periodontitis 2-DE/HPLC–Electrospray Ionization (ESI)-MS

Increase in serum albumin, immunoglobulin Ig γ2, α2 chain C region, zinc-α2
glycoprotein, salivary α-amylase and vitamin D-binding proteins.
Decrease in lactotransferrin, carbonic anhydrase 6, elongation factor 2,
14-3-3 sigma, short palate, lung and nasal epithelium
carcinoma-associated protein-2

[29]

USWS Periodontitis chronic 2-DE/MALDI-TOF/TOF MS and nLC-Q-TOF Rise in serum albumin, hemoglobin, immunoglobulin and α-amylase [30]

WS Periodontitis in obese
patient SELDI-TOF-MS Albumin, haemoglobin (α and β chains) and α-defensins (1, 2 & 3) [31]
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Table 1. Cont.

Sample Disease Condition Proteomic Tools Identified Markers References

USWS Gingivitis 2-DE/MALDI-TOF/TOF MS and nLC-Q-TOF
Zymogen granule protein-16 homolog B mucin, S100-A9, histatin,
proline-rich-protein, 3, lipocalin-1 precursor, carbonic anhydrase 6,
prolactin-induced protein, cystatin, keratins

[32]

Dental cementum - Nano-Acuity HPLC and LTQ-FT ultra Osteomodulin (OMD), biglycan (BGN), insulin-like growth factor II (IGF2),
pigment epithelium-derived factor (SERPINF1) and POSTN [33]

Fine Needle Aspiration
(FNA) fluid

Parotid gland tumor
(Benign origin)

Nano LC-ESI-MS/MS and LTQ-Qrbitrap velos analysis and
Western blot analysis

Ig γ-1 and kappa chain and Ig α-1 chain C regions, S100A9, macrophage
capping proteins, apolipoprotein E and α crystalline B chain, annexin
(A1 and A4)

[34]

Gingival crevicular
fluids (GCF)

Gingivitis and chronic
periodontitis 2-DE-LC-ESI-MS and Nano-LC-ESI-MS Fibronectin, keratin, neutrophil, defensin3, Immunoglobulins, lactotransferrin

precursor, 14-3-3 protein ζ/δ and α-actinin [35]

Dentin - LC-MS/MS Biglycan, osteoglycin, osteopontin, osteocalcin, asporin, lumican, mimecan,
DSPP and SOD3 [36]

Dental pulp - 2-DE, Nano-LCMS/MS 342 proteins identified [37]

Periodontal fibers (PDL) - 2-DE, MALDI-TOF, Western blot, 117 proteins identified [38]

Acquired enamel
pellicle (AEP) - LC-ESI-MS/MS 130 proteins identified [39]
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Recent developments in dental proteomic have helped uncover previously unknown details
regarding the unique protein structures and their function for the diagnosis, defense mechanisms,
and regeneration of dental tissues, tissue calcification, and repairing of dental tissues [40]. The aim of
this paper is to elaborate on the currently available techniques, their reported applications for dental
tissues. Furthermore, the current status of dental proteomical analysis and the discovered biomarkers
is discussed in detail.

2. Dental Hard Tissue Proteomics

The tooth is the strongest calcified tissue of the human body due to its special architecture
and compositions. It is composed of three distinct mineralized hard tissues: enamel, dentine, and
cementum. Enamel is the hardest tissue of the human body and contains 96% minerals, 1% proteins
and the remainder being water. The adequate mechanical properties of enamel suit its primary
function: mastication of food. Enamel, the only dental hard tissue formed before eruption of teeth, is
formed by cells called ameloblasts. Histologically, the inorganic component of enamel is composed of
micro-rods and inter-rods of hydroxyapatite (HA) crystals embedded in protein matrix, the organic
phase [41]. To date, the major enamel proteins that have been recognized are amelogenin, ameloblastin,
enamelin, and tuftelin [42]. Additionally, a total of 42 proteins has been identified during enamel
formation (secretory phase and maturation phase) by two dimensional electrophoresis (2-DE) and MS.
These proteins include ERp29 which is involved in secretory protein synthesis and calcium binding
protein (calbindin) and play a role in tooth maturation [43–46]. It has been concluded that amelogenin
takes part in enamel formation and cementum development by guiding cells. It also regulates initiation
and growth of HA crystals during the mineralization front across the carboxyl terminals [47,48].
Very recently, a novel organic protein containing enamel matrix was reported in an adult human tooth
with thickness of 100–400 µm which could provide important protein transportation or biochemical
linkage between enamel and dentin [49]. Ameloblasts secrete enamel specific extracellular matrix
protein called ameloblastin and its expression is also detected during the initial development of
craniofacial bones and dental hard tissues of mesenchymal origin [50]. The precise role of ameloblastin
is not known but it has been hypothesized that it may control the enamel mineralization process
during tooth development alongside growth of enamel mineral crystals [51].

The bulk structure of a tooth is made from dentin which possesses neurogenic and regenerative
capabilities. By weight, dentin contains 70% minerals (mainly hydroxyapatite), 20% organic
component, and 10% water. In proteomics, dentin has been particularly found useful for the
identification of collagenous and non-collagenous proteins [52]. Its formation and biomineralization
(dentinogenesis) is dynamically complex. Odontoblasts develop and secrete extracellular matrix
followed by mineralization in an organized fashion [53]. Most abundant collagenous proteins
present in dentin matrix are collagen (type I, III, V, VI, and XII) providing a three dimensional
(3D) template for the mineralization of apatite crystals. Fibronectin and matrix metalloproteinase
(MMP) 2, 9, and 20 are associated with predentin collagen fibrils [36]. Park et al. [36] performed
Sodium-Dodecyl-Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) followed by an LC-MS/MS
method for identifying dentin proteins. The outcome of these experiments revealed the presence of
233 proteins and was confirmed using Western blot technique and immunohistochemical staining.
This study was the first to provide dentin protein classification such as: metabolic enzymes, signal
transduction, cellular organization, transport, immune response, transcription factor activity, cell
growth/maintenance, chaperone/stress response, nucleic acid binding, and unknowns function.
Another study reported by Jagr et al. [54], 2-DE and nano-LC-MS/MS was used to identify 289 proteins
overall of which 90 had been previously unknown. In this study nine novel proteins were identified
and were classified as immunoglobulins which help in the formation of extracellular matrix, formation
of the cytoskeleton, cell adhesion molecule activity, cytoskeleton protein binding, immune responses,
and peptidase activity. These findings may provide deep insight for the regenerative and rehabilitation
of dental tissues. Moreover, only a few studies reported the proteomics analysis of cementum and
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alveolar bone. A total of 235 and 213 proteins have been recognized in the alveolar bone and cementum
respectively using LC-MS/MS with LTQ-FT (Ultra) due to their high resolution and high accuracy [33].
Previously, proteins including osteocalcin (BGLAP), TNN, FN, VIM, CHAD, vitronectin VTN, and
LUM were identified as non-collagenous extracellular proteins in cementum and alveolar bone [55–57].

3. Oral Fluid Proteomics

Compared to dental hard tissues, whole mouth saliva (WMS) and GCF have been studied more
for proteomical analysis due to their non-invasive collection technique, minimal patient discomfort
and anxiety as compare to blood collection for serum or plasma [14]. WMS is not only composed of
major and minor salivary glands secretions but also contains mucosal transudates from all surfaces
of the mouth, lymphoid tissues, oropharynx, and GCFs [58]. Proteomics studies on human saliva
revealed 1000 plus proteins and peptides (Figure 1).
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Numerous studies have been conducted on WMS to evaluate various body physiological and
pathological conditions and have proven it as a diagnostic as well as a maintenance test fluid. The WMS
was isolated from different diseases such as dental caries, Sjögren’s syndrome, diabetic patients, breast
cancer patients, squamous cell carcinoma patients, and graft-versus-host disease patients. The WMS
has been analyzed successfully by proteomical tools (electrophorically and chromatographically) [59–62].

Human gingival crevicular fluid (GCF) has been analyzed extensively. GCF has a variable protein
composition based on periodontal health and diseases. GCF contains serum transudate (found in
gingival sulcus), broken products of host epithelial or connective tissues, subgingival microbial plaque,
extracellular proteins, host inflammatory mediators and cells [63]. GCF provides medium for the
transportation of bacterial byproducts into the periodontal microenvironment and also helps to drive
off host derived products [64]. It has been reported that GCF volume for biochemical and proteomics
analysis is limited due to severity of tissue inflammation [65]. Many methods are available for the
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collection of GCF such as paper strips, capillary tubes, gingival wash, and paper cones [63]. In the last
decade researchers have favored using paper strip in their research work due to easy insertion into the
gingival crevice up to 1 mm of depth without bleeding from periodontal pockets [35]. After collection
of the GCF sample it goes through different steps for proteomics analysis, as illustrated in Figure 2.
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Variety of proteolytic enzymes are identified in GCF, such as collagenase, elastase, and cathepsin
B, D, H, and L [66]. These proteolytic enzymes have been reported as destructors of periodontal
tissues and have the capability to degrade type-I collagen and glycoproteins [67]. Table 2 describes
detailed profiling of GCF proteins, proteomic tools used, and the number of proteins identified.
Most commonly reported identified proteins from GCF are actin, keratins, histones, annexins, proteins
S100-A9, apolipoprotein A-1, albumin, salivary gland antimicrobial peptides (histatins, HNP-1, -2 & -3,
LL-37, statherin), and cystatin B [68,69]. Some immune related proteins present in GCF such as; Ig γ-1
chain C region, Ig γ-3 chain C region, lactoferroxin-C, leukocyte elastase inhibitor, α 1 antitrypsin, heat
shock protein β-1, and coronin-1A [70].
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Table 2. Profiling and proteomic tools used for the detection and characterization of gingival crevicular fluid (GCF) proteins.

Author Sample Collection Sites Collection Method Proteomic Tool Number of
Identified Proteins Outcome of Study Reference

Baliban
et al.

Collected from pre-selected sites with
probing depth >6 mm and <8 mm in
periodontitis patients and for
periodontaly health from mesio-buccal
sites of first molar

Filter strips (Periopapers®,
Interstate Drug. Exchange,
Amityville, NY, USA)

Protein digest with trypsin, HPLC, fragmented analysis
with tandem mass spectrometry (MS/MS)

432 human proteins
identified (120 new)

Study identified novel biomarkers
from GCF of periodontaly healthy and
chronic periodontitis patients

[68]

Tsuchida
et al.

Labial side of maxillary incisors without
crown and restoration

Absorbent paper points
(ZIPPERER®, Munich,
Germany)

2-DE, Sodium-Dodecyl-Sulfate-Polyacrylamide Gel
Electrophoresis (SDS-PAGE), WB analysis, HPLC with
LTQ-XL, HPLC with LTQ-Orbitrap XL, LC-MS/MS

327 proteins
identified

SOD1 and DCD were significantly
increase Ò in GCF of
periodontal patients

[64]

Carneiro
et al.

Healthy gingival sulcus of the second
and third molar teeth Periopapers®, USA

Trypsin digested followed by nano-flow liquid
chromatography electrospray ionization tandem mass
spectrometry (LC-ESI-MS/MS) analysis and ELISA for
human albumin analysis

199 proteins
identified

Provide proteins analysis of healthy
periodontium and explore GCF
composition with new groups of
proteins specific to GCF
microenvironment

[71]

Ngo et al. Five deepest sites and molar sites except
mesial surface were excluded

Microcaps (glass micocapillary
tubes); Drummed Scientific,
Brookmall, PA, USA

Matrix-assisted laser desposition/ionization
time-of-flight (MALDI-TOF) mass spectrometry (MS)

GCF mass spectra could be best for
analyzing attachment loss and
diagnosis of periodontal diseases

[69]

Carina,
et al.

Chronic Periodontitis patients sample
were taken from different sites (5 deep
sites, 5 shallow sites with gingivitis, and
4 without bleeding on probing sites)

Periopaper strip (ProFlow Inc.,
Amityville, NY, USA) Reversed- phase (RP) LC-ESi-MS/MS and ELISA 230 proteins

identified
Concluded marked differences in GCF
proteomics in different disease profiles [70]

Carneiro
et al.

The pre-selected specific sites with
moderate and severe chronic
periodontal disease were defined by
pocket depth of 5–7 mm (24 patients)
and >7 mm (16 patients)

Periopaper strips (Oraflow,
Plainview, NY, USA)

SDS-PAGE, Isotope-Coded-Affinity-Tag (ICAT)
labelling, mTRAQ labelling, Nano-LC-ESI-MS/MS,
Human Albumin ELISA Kit, and S100-A9 protein
quantification by ELISA

238 proteins
Identified

Innovative approach concluded the
novel changes in host and microbial
derived GCF proteome of
periodontal patients

[72]

Rody Jr
et al.

Collected from a deciduous second
molar with radiographic evidence of
root resorption on 1 quadrant
(experimental site) and from the
permanent first molar on the
contralateral quadrant (control site) in
the same jaw

Periopaper strips (Oraflow,
Plainview, NY, USA)

One dimensional LC-MS and Two dimensional
(2D) LC-MS

2789 proteins in
control group and
2421 proteins in root
resorption group

Mass spectrometry is useful tool for
analyzing external root resorption [73]

Kinney
et al.

Collection from the mesio-buccal aspect
of each site (tooth) for up-to 28 teeth
per patient

Methylcellulose strip (Pro Flow,
Inc., Amityville, NY, USA) ELISA and Quantibody Human Cytokine Array (HCA) This method offer improved patient

monitoring and disease control [74]

Huynh
et al.

Collection were chosen based on how
well they represented the healthy,
gingivitis and chronic periodontitis
inclusion criteria

Glass-microcapillary tube
(Drummond Scientific,
Brookmall, PA, USA)

One dimensional Gel-Electrophoresis and
Nano-LC-ESI-MS

121 proteins
identified

Concluded various biomarkers which
differentiate between healthy
periodontium, gingivitis and
chronic periodontitis

[35]
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A protein based oral biofilm, the acquired enamel pellicle (AEP), is formed on tooth surfaces
within seconds after mechanical cleaning of the tooth surfaces [75]. It consists predominantly of
proteins secreted from major and minor salivary glands, carbohydrates, ions, exogenous proteins,
and lipids [76]. Lee and co-workers investigated AEP layer on enamel and quantified 50 proteins
through Liquid Chromatography- Electrospray Ionization-Mass Spectrometry(LC-ESI-MS/MS) [77].
This layer amount is approximately 0.5–1 µg per tooth surface and its formation is crucial and the
dynamic process is influenced by many factors such as; circadian cycle, biochemical properties of tooth
surfaces, proteolytic capacity of the oral micro environment, and the oral microbiota [78]. The fatty
acids (FAs) identified in AEP play an essential role in the pellicle formation, bacterial adhesion and
protection against pellicle [79]. In-situ study reveals qualitatively and quantitatively a wide range of
FAs (C12–C24) through gas-chromatography- electrospray ionization/ mass spectrometry (GC-EI/MS),
in this study pellicle were formed in-situ on bovine enamel slabs mounted on upper jaw splints and
inserted in the mouth of 10 subjects for 3–240 min. Several methods have been used for the collection of
AEP over the last four decades e.g., palatal appliances, chemical solubilization techniques, mechanical
techniques and soaked membranes method [80]. All these methods reported different compositions
due to different routes of collection. Mayhall et al. [81] remounted freshly extracted discs of teeth
crowns in a palatal appliance worn by the subject for 1 h. After AEP formation on the specimens, they
dipped the appliances in 2% HCl and detected glutamic acid, serine, and glycine but a low amount
of proline [81]. In another in vivo study on AEP composition it revealed a high level of glutamic acid
and alanine but a significant amount of hexosamines. This study also determined that a different
approach of AEP collection varies the composition of AEP [82]. AEP has many function in the oral
cavity such as lubrication, regulation of mineral homeostasis, providing defense against microbes
and microbial colonization through specific receptors. Siqueira et al. [75] identified 100 plus proteins
and peptides from in vivo AEP, and suggested that all play an active role in maintaining oral health.
Similarly, histatin peptide has shown protective mechanism against demineralization of the tooth [83].
A total of 130 proteins were identified from AEP using LC-ESI-MS/MS with high confidence which
allowed the classification of AEP proteins according to nature of origin, chemical properties, and
biological function as shown in Figure 3 [39]. Very recently, another group of researchers has identified
76 proteins from in vivo AEP present on deciduous teeth through mass spectrometry which opens up a
diagnostic frontier in pediatric dentistry [84].
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4. Dental Soft Tissue Proteomics

This dental pulp is a soft connective tissue that is composed of cells (mesenchymal,
odontoblasts, fibroblasts) neural fibers, blood vessels, and lymphatics [85]. Tooth development,
nourishment, sensitivity, defense reactions, repair, and regeneration are the main functions of dental
pulp [86]. Its unique composition helps in nutrition as well as sensation for external stimuli [87].
Robertson et al. [88] investigated the calcification response from dental pulp against various external
stimuli including dental trauma, caries, abrasion or attrition, and tooth retransplantation. Similarly,
Yamazoe et al. [89] harvested dental pulp cells in subcutaneous tissues and analyzed its calcified tissues
through proteomics. The reason behind this is that stem cells have the potential to form deciduous
or permanent pulp cells. In the last decade, dental pulp stem cells have proven value in repairing
dentin-pulp complex [90]. Dental pulp contains unique tissue specific proteins and small leucine-rich
proteoglycans (biglycan, lumican, and mimecan) [91]. Pääkkönen et al. [92] analyzed gene and protein
expression in healthy and carious dental pulp organs for the first time using cDNA microarray and
2D-gel electrophoresis. In their study, slight expression changes were reported due to the high amount
of healthy pulp in both conditions. In addition, a total of 96 proteins were identified through 2-DE gel
followed by MS/MS techniques. In the same experiment, cDNA microarrays explored the difference
of gene expression in carious tissues and no gene differences were detected in 96 detected proteins.
In another in vitro study on proteome mapping of odontoblasts-like dental pulp revealed 23 total
proteins by 2-DE gel followed by MS [93]. These proteins are comprised of various types of peptides
such as cell membrane bound molecules, cytoskeleton, and nuclear proteins and are involved in
matrix synthesis and enzyme metabolism. The expression of various recognized proteins (annexin
VI, heteronuclear ribonuclear proteins C, collagen type VI, matrilin-2) were confirmed using western
blotting (WB) technique and real time- polymerase chain reaction (RT-PCR) analysis. The RNA
amplification technique was successfully used to analyze gene expression and protein encoding linked
to physiology of dental pulp. Microarray analysis disclosed a total of 362 genes related to pulp
expression specifically hence, further classified as protoncogenes, tooth morphogenesis, genes of
collagen, DNAse, metallopeptidases, and growth factors [94]. McLachlan et al. [95] studied dental pulp
tissues for detailed characterization and molecular changes due to dental caries. A total of 445 genes
were identified with two fold or greater difference in the expression level. At least 85 genes were
reported abundant in health and 360 more abundant in disease suggesting that this approach may
contribute to improved future diagnosis and treatment. Another comprehensive study on human
tooth pulp was done by 2D-gel electrophoresis followed by nano-liquid chromatography tandem mass
spectrometry (LC/MS). This approach detected 342 proteins in total with a high confidence, and two
proteins were distinguished in human samples [37]. Very recently, Eckhard et al. [96] attempted in
depth dental pulp proteome with N-Terminome by the help of the terminal amine isotropic labelling of
substrates (TAILS) approach and identified 17 missing protein candidates for the Chromosome-centric
Human Proteome Project (C-HPP; www.c-hpp.og). Missing proteins can be defined as proteins that
show only transcriptomic evidences and an expected sequence (or suggested by homology) or partly
detected proteins. Furthermore, there are transcript evidences for the survival of the corresponding
proteins available without conclusive mass spectrometry data [97].

Periodontal ligament (PDL) is another fibrous connective tissue containing heterogeneous
cell population and type 1collagen fibers abundantly. They play a key role in maintaining PDL
space, homeostasis, and anchorage, as well as maintaining and providing regeneration or repair of
periodontium in response to disease and mechanical trauma. Only a few studies reported on PDL
cellular components at genomics and proteomics level but it is very essential to understand the unique
features and functions. Reichenberg et al. [38] reported a first study on periodontal ligament (PDL)
fibroblast proteome for understanding physiology and regulation of PDL and identifying disease
related protein markers. In this study 900 spots were detected and 117 proteins spot identified with
74 different genes. In another study on exploring the early osteogenic differential protein-profile in
human PDL cells [98], 29 differentially expressed proteins during osteogenic differentiations were
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reported [98] which have been primarily linked to the cell membrane-binding, cytoskeleton, nuclear
regulations, matrix synthesis signal conduction and metabolic enzymes [99]. Proteomics may shed
light on these complex functional details of these intra- and inter-cellular processes.

5. Dental Materials Proteomics

Concurrent application of genomics and proteomics have revolutionized dentistry by allowing the
identification and characterization of oral tissues (soft, hard, and liquid), and also help in understanding
them on the molecular level [10]. By definition, dental materials are those materials or devices which
interact with the oral environment in physio-chemical, mechanical, and biological aspects [100–106].
Hence, dental materials should be biocompatible and interact without causing any toxicity. Many
approaches have been used previously to analyze the success of dental materials and failure at a cellular
level. Very recently, Ryta et al. [107] studied elution of unreacted triethylene glycol dimethacrylate
(TEGDMA) from Smart Dentine Replacement (SDR™), Dentsply International, UK bulk-fill dental
composite by using HPLC. In this study, polymerized specimens were treated with four solutions
(100% ethanol, 75% ethanol, distilled water, and 100% methanol) with different concentration to
evaluate direct dental pulp toxicity of unreacted TEGDMA monomer. It was confirmed through HPLC
that the toxicity of unreacted TEGDMA towards dental pulp established during the first hour after the
placement of resin. Dental adhesive systems were analyzed by a research group for the quantification
of monomer elution and carbon–carbon double bonds in dental adhesive system using reverse-phase
HPLC, and observed that no correlation exists between the resin dentin bonding of adhesives and
the elution of unreacted monomers [108]. However, further proteomic analysis of materials on the
molecular level is needed to understand the changes in proteomes of failed or successful implants.
Some of the studies reported in the last decade on proteomics of dental materials are listed in Table 3.

Table 3. Use of proteomics techniques for dental materials analysis.

Author
Name Title of Study Outcomes References

Boyan
et al.

Porcine fetal enamel matrix
derivative enhances bone formation
induced by demineralized freeze
dried bone allograft in vivo

Emdogain contains a number of low-molecular-weight
proteins (mainly amelogenins), associated with
cementogenesis and osteogenesis during
tooth development

[109]

Derhami
et al.

Proteomic analysis of human skin
fibroblasts grown on titanium:
Novel approach to study molecular
biocompatibility

Gain a better understanding of the molecular basis of
biocompatibility of human skin fibroblast on titanium [110]

Koin et al. Analysis of the degradation of a
model dental composite

Liquid chromatography mass spectrometry (LC-MS)
found leaching of intact BisGMA and several degradation
products that contained the bisphenol A moiety from the
overlayer into distilled water after 2 weeks of aging

[111]

Jung et al.
Proteomic analysis in cyclosporin A
(CsA)-induced overgrowth of
human gingival fibroblast (HGF)

The CsA-treated HGF demonstrated that Prx 1 may play a
crucial role in the HGF proliferation induced by CsA and
proteomic analysis data provide an efficient approach in
understanding the mechanisms of HGF
proliferation by CsA

[112]

Taiyoji
et al.

Identification of proteinaceous
inhibitors of a cysteine proteinase
(an Arg-specific gingipain) from
Porphyromonas gingivalis in rice
grain, using targeted-proteomics
approaches

These results suggest that these rice proteins may be
useful as nutraceutical ingredients for the prevention and
management of periodontal diseases

[113]

Haigh
et al.

Alterations in the salivary proteome
associated with periodontitis

Results highlight the predominant involvement of S100
proteins in the host response during periodontitis [113]
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Table 3. Cont.

Author
Name Title of Study Outcomes References

Zilm and
Bartold
et al.

Proteomic identification of
proteinase inhibitors in the porcine
enamel matrix derivative, EMD®

Enamel matrix derivatives (EMD) contains a number of
high-molecular-weight compounds which include the
proteinase inhibitors, fetuin A and α1-antichymotrypsin

[114]

Dorkhan
et al.

Effects of saliva or serum coating on
adherence of Streptococcus oralis
strains to titanium

The adherence of LA11 and 89C strain to the moderately
rough surfaces coated with saliva was more than twice
that seen on the smooth saliva coated surfaces. This clearly
demonstrates that surface topography is, at least to some
degree, maintained in the presence of a saliva coating

[115]

Zhao et al.

Quantitative proteomic analysis of
human osteoblast-like MG-63 cells
in response to bio-inert implant
material titanium and
polyetheretherketone (PEEK)

Titanium and polyetheretherketone (PEEK) induces
similar response in osteoblast proteome and PEEK causing
worse proliferation was related to mRNA processing

[116]

6. Conclusions

With the help of “omics” (genomics, transcriptomics, proteomics, metabolomics, and
metagenomics) many hidden compositions, behavior and metabolisms of dental tissues and oral
fluids have been analyzed in the last fifteen years. These scientific disciplines helped the gathering
of valuable information of the human proteome and will complete the Human Proteome Project
(HPP) [117]. Proteomics tools have provided remarkable information regarding dental tissues and oral
fluids [118]. The overall analysis on proteomics in dentistry shows that more studies directed toward
structural formation, diagnosis, and pathogenesis but very limited studies on evaluation of treatment,
prevention of diseases, and prognosis of interventions. To sum up, all proteomic tools can help to fill
the gaps of the unexplored aspects of oral health and dental sciences.
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BGLAP Bone Gamma Carboxyglutamate Protein
cDNA Complementary Deoxyribonucleic Acid
CHAD Chondroadherin
C-HPP Chromosome-Centric Human Proteome Project
CsA Cyclosporin A
DNAse Deoxyribonuclease
EMD Enamel Matrix Derivative
ESI Electrospray Ionization
FN Fibronectin
FNA Fine Needle Aspiration
HGF Hepatocyte Growth Factor
GCF Gingival Crevicular Fluid
GVHD Graft Versus Host Disease
HA Hydroxyapatite
HPP Human Proteome Project
LC/MS Liquid chromatography/mass spectrometry
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LTQ-FT Linear Ion Trap Mass Spectrometer
LUM Lumican
mRNA messenger Ribonucleic Acid
MS Mass-Spectrometry
MALDI Matrix-Assisted Laser Desorption/Ionization
PDL Periodontal Ligament
PEEK Polyetheretherketone
R-PCR Realtime-Polymerase Chain Reaction
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
TAILS Terminal Amine Isotropic Labelling of Substrates
TNN Tenascin
USWS Unstimulated Whole-Mouth Saliva
VIM Vimentin
VTN Vitronectin
WS Whole-Mouth saliva
WB Western Blotting
2-DE 2-Dimensional Electrophoresis
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