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Abstract

Cancer cells frequently undergo chromosome missegregation events during mitosis,

whereby the copies of a given chromosome are not distributed evenly among the two

daughter cells, thus creating cells with heterogeneous karyotypes. A stochastic model trac-

ing cellular karyotypes derived from clonal populations over hundreds of generations was

recently developed and experimentally validated, and it was capable of predicting favorable

karyotypes frequently observed in cancer. Here, we construct and study a Markov chain

that precisely describes karyotypic evolution during clonally expanding cancer cell popula-

tions. The Markov chain allows us to directly predict the distribution of karyotypes and the

expected size of the tumor after many cell divisions without resorting to computationally

expensive simulations. We determine the limiting karyotype distribution of an evolving tumor

population, and quantify its dependency on several key parameters including the initial kar-

yotype of the founder cell, the rate of whole chromosome missegregation, and chromo-

some-specific cell viability. Using this model, we confirm the existence of an optimal rate of

chromosome missegregation probabilities that maximizes karyotypic heterogeneity, while

minimizing the occurrence of nullisomy. Interestingly, karyotypic heterogeneity is signifi-

cantly more dependent on chromosome missegregation probabilities rather than the num-

ber of cell divisions, so that maximal heterogeneity can be reached rapidly (within a few

hundred generations of cell division) at chromosome missegregation rates commonly

observed in cancer cell lines. Conversely, at low missegregation rates, heterogeneity is con-

strained even after thousands of cell division events. This leads us to conclude that chromo-

some copy number heterogeneity is primarily constrained by chromosome missegregation

rates and the risk for nullisomy and less so by the age of the tumor. This model enables

direct integration of karyotype information into existing models of tumor evolution based on

somatic mutations.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006447 September 11, 2018 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Elizalde S, Laughney AM, Bakhoum SF

(2018) A Markov chain for numerical

chromosomal instability in clonally expanding

populations. PLoS Comput Biol 14(9): e1006447.

https://doi.org/10.1371/journal.pcbi.1006447

Editor: Ilya Ioshikhes, Ottawa University, CANADA

Received: December 29, 2017

Accepted: August 18, 2018

Published: September 11, 2018

Copyright: © 2018 Elizalde et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Sergi Elizalde was supported by the

William H. Neukom 1964 Institute for

Computational Science and by grant #280575 from

the Simons Foundation. Ashley Laughney was

supported by the Burroughs Wellcome Fund

Career Award at the Scientific Interface, the Lung

Cancer Research Foundation. Samuel Bakhoum

was supported by the DoD Breast Cancer Research

Breakthrough Award (BCRBA) W81XWH-16-1-

0315 (Project: BC151244), the Elsa U. Pardee

http://orcid.org/0000-0003-4116-2455
https://doi.org/10.1371/journal.pcbi.1006447
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006447&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006447&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006447&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006447&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006447&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006447&domain=pdf&date_stamp=2018-09-21
https://doi.org/10.1371/journal.pcbi.1006447
http://creativecommons.org/licenses/by/4.0/


Author summary

Chromosomal instability (CIN) is a hallmark of cancer and it results from persistent chro-

mosome segregation errors during cell division. CIN has been shown to play a key role in

drug resistance and tumor metastasis. While our understanding of CIN on the cellular

level has grown over the past decade, our ability to predict the behavior of tumors contain-

ing billions of cells remains limited due to the paucity of adequate mathematical models.

Here, we develop a Markov-chain model that is capable of providing exact solutions for

long-term chromosome copy number distributions during tumor growth. Using this

model we confirm the presence of optimal chromosome missegregation rates that balance

genomic heterogeneity required for tumor evolution and survival. Interestingly, we show

that chromosome copy number heterogeneity is primarily influenced by the rate of chro-

mosome segregation errors rather than the age of the tumor. At chromosome missegrega-

tion rates frequently observed in cancer, tumors can acquire maximal genomic

heterogeneity after a few hundred cell divisions. This model enables the integration of

selection imparted by CIN into existing models of tumor evolution based on somatic

mutations to explore their mutual effects.

Introduction

Cancer genomic heterogeneity, which is often driven by genomic instability, enables Darwin-

ian selection, leading to tumor metastasis and increased resistance to therapeutic pressures

[1–3]. A frequent, yet understudied source of genetic heterogeneity is numerical chromosomal

instability, which allows cancer cells to rapidly vary the number of copies of each chromosome

(karyotype) through whole chromosome missegregation events during mitosis [4–7]. This kar-

yotypic heterogeneity can lead to tumor cells with varying fitness levels depending on the

potency and distribution of oncogenes (proliferative) and tumor suppressor genes (anti-

proliferative) on individual chromosomes [8]. Despite its importance, the contribution of

numerical chromosomal instability toward tumor evolution has been poorly understood due

to limitations in experimental and theoretical models that attempt to understand this process

on the systems level.

Chromosome missegregation was first incorporated into a model of tumor evolution by

Gusev et al. [9] and later in a continuous time model by Desper et al. [10]. While helpful, these

models neglected the observed phenomenon that having more copies of chromosomes encod-

ing a higher fraction of oncogenes is advantageous for the cell, while having more copies of

chromosomes encoding tumor suppressor genes increases its chances of dying [8]. Laughney

et al. addressed this limitation by building a stochastic model that tracks single cell karyotypes

derived from clonal populations over hundreds of generations, while simultaneously allowing

the cumulative proliferative or anti-proliferative effects of genes encoded on individual chro-

mosomes to alter cellular viability [4]. This model incorporates chromosome-specific scores

derived from a recent genomic analysis by Davoli et al. [8], which weighs individual chromo-

somes based on the potency and chromosomal distribution of oncogenes (proliferative, con-

tributing positively) and tumor suppressor genes (anti-proliferative, contributing negatively).

The scores of the individual chromosomes are then aggregated to determine the survival prob-

ability of each cell. In its most basic form, the model assumes the following:

1. When a cell divides and gives rise to two daughter cells, each individual chromosome copy

has a fixed probability of undergoing a missegregation event. Such an event leads to
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disproportionate inheritance, causing the two daughter cells to end up with one too many

or one too few copies of the missegregated chromosome.

2. Cells are considered nonviable if they completely lose any given chromosome (a process

known as nullisomy), as they would be missing a number of essential genes, or if they have

more than 8 copies of any given chromosome. Sensitivity analysis for these assumptions

has been performed for key conclusions [4].

The model by Laughney et al. unveiled several key observations which were validated exper-

imentally. First, it revealed a highly favorable, and commonly observed near-triploid state,

onto which evolving cells converge. This is in line with enrichments for near-triploid karyo-

types observed in human tumors deposited in the Mitelman database, as well as tumor ploidy

inferred from bulk DNA sequencing of TCGA tumors [11, 12]. It also predicted the existence

of an optimal missegregation rate —which maximizes cell viability with the generation of het-

erogeneity—that agreed with the experimentally measured chromosome missegregation rates

observed in human cancer-derived cell lines [13, 14]. Finally, it was directly validated by pre-

dicting the frequency at which single cells deviate from the modal chromosome numbers for

any given chromosome in an expanding clonal population after 25 cell divisions, as experi-

mentally measured in single-cell-derived clones by fluorescence in situ hybridization. This

model, however, was unable to predict the limiting distribution of cellular karyotypes in a

tumor population or to complement models of tumor evolution based on somatic mutations,

which occur with relatively low frequency, given the sheer number of cells that must be tracked

for many generations in order to reach a probabilistic conclusion. It was also unable to test the

dependence of large tumor cell populations on multiple parameters due to the sheer computa-

tional power required to perform such simulations.

In this paper, we construct and mathematically analyze a Markov chain that describes the

evolution of the karyotype of a random cell in the above stochastic model. A special case of this

Markov chain was briefly mentioned in [4] and used in some computations. However, no

mathematical analysis was given, where the focus was to obtain a biological understanding of

the role of numerical chromosomal instability in tumor evolutionary dynamics.

The structure of the paper is as follows: in the Methods section, we start by describing a

simplified version of the model and its associated Markov chain without chromosome-specific

influence on cellular viability. Then we describe the full model which enables chromosome-

specific scores to alter cellular viability. In the Results section we analyze both models. First we

show that the simplified Markov chain, after some slight adjustments, has interesting mathe-

matical properties; for example, the limiting cellular karyotype does not depend on the chro-

mosome missegregation rate. We study this limiting karyotype, as well as its dependence on

the maximum allowed number of copies of each chromosome. Next we focus on the full

model, showing that, interestingly, the limiting distribution of cellular karyotypes is no longer

independent of missegregation rate in this scenario. We show that by varying key parameters

of the model, namely the missegregation rate (or probability, p) and the chromosome scores,

very different behaviors are obtained in the limit. In particular, for parameters observed in

human cancer cells, the resulting limiting behaviors are more realistic than those predicted in

[9]. Finally, using our model, we find that maximal karyotype heterogeneity can indeed be

achieved after a small number of cell divisions at chromosome missegregation rates frequently

observed in cancer. This suggests that chromosome missegregation is more consequential

toward genomic heterogeneity than the tumor lifetime, as tumors with low missegregation

rates cannot reach maximal heterogeneity even after tens of thousands of generations of cell

division. The Discussion section explains these conclusions, and compares our model to others

in the literature.

A Markov-chain model of chromosomal instability
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Methods

The basic model

Let us begin by describing a simplified version of the stochastic model, which is also used in

[4].

The karyotype of a cell is the vector (n1, . . ., n23) where nk is the number of copies of chro-

mosome k that it contains. Starting from a founder cell with a given karyotype, at each genera-

tion, all the cells in the colony divide, giving rise to two cells. When a cell divides, each of the

nk copies of chromosome k, for 1� k� 23, splits into two copies. In normal circumstances,

each copy goes to one of the daughter cells, so the daughters have the same karyotype as the

mother. However, with probability p, the two copies go to the same daughter cell, while the

other daughter receives no copies. Such an event is called a missegregation, and p is called the

missegregation rate (per chromosome copy per cell division). Note that at each cell division,

each copy of each chromosome undergoes a missegregation with probability p, and these

events are independent of each other. If the number of copies of a chromosome in a cell

reaches 0 or goes above the maximum allowed number of copies, N, the cell automatically dies

and no longer reproduces. Thus, for a cell to be viable, it must have 1� nk� N for all k.

The basic stochastic model described in this section does not include chromosome-specific

scores; these will be included in the next section. In the basic model, the only way for a cell to

die is if the number of copies of a chromosome leaves the range [1, N]. We construct a Markov

chain M that models the proportion of copies of a given chromosome in the colony. The fol-

lowing simplifications will make our model more tractable:

1. Since, by hypothesis, missegregation events that take place for the different chromosomes

are independent, we consider only one type of chromosome (say, chromosome k) at a time.

Let us suppose, for now, that cells only have one type of chromosome, and so the only infor-

mation that we need about the cell is whether it is dead, and otherwise how many copies of

the chromosome it has. Thus, our Markov chain has an absorbing state labeled 0, corre-

sponding to dead cells, and N non-absorbing states, with a label i, where 1� i� N, that

indicates the number of copies of the chromosome. This simplification allows us to work

with only N non-absorbing states instead of N23. We will be able obtain the probability of a

given karyotype (n1, . . ., n23), with 1� nk� N for all k, by multiplying the probability that

the Markov chain corresponding to chromosome k is in state nk for 1� k� 23.

2. We follow a random branch in the evolution process by starting with the founder cell and

randomly considering one of the two daughters at each division. The number of copies of

chromosome k in a cell is affected only by the number of copies of that chromosome in the

mother and by the missegregation rate. The Markov chain M at time g will give the proba-

bility that a random branch, after g generations, ends at cell with i copies of chromosome k,

for each 1� i� N, or at a dead cell with a disallowed number of copies of chromosome k.

3. To simplify the transition probabilities, we disregard the highly unlikely event that multiple

copies of the same chromosome in a cell missegregate simultaneously. To that end, we dis-

regard terms that are quadratic in p, which are negligible when p is very small.

With the above assumptions, the transition matrix M for the non-absorbing states has

entries

Mij ¼

1 � ip if i ¼ j;

ip=2 if ji � jj ¼ 1;

0 if ji � jj � 2;

8
><

>:
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for 1� i, j� N, where Mij is the probability of transitioning from state i to state j. Adding an

extra row and column corresponding to the absorbing state 0, we get the matrix

M0 ¼

1 0 � � � 0

p=2

0

..

.

0

Np=2

M

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

For example, if the maximum number of chromosomes is N = 8, which is the bound used in

[4], we have

M0 ¼

1 0 0 0 0 0 0 0 0

p=2 1 � p p=2 0 0 0 0 0 0

0 p 1 � 2p p 0 0 0 0 0

0 0 3p=2 1 � 3p 3p=2 0 0 0 0

0 0 0 2p 1 � 4p 2p 0 0 0

0 0 0 0 5p=2 1 � 5p 5p=2 0 0

0 0 0 0 0 3p 1 � 6p 3p 0

0 0 0 0 0 0 7p=2 1 � 7p 7p=2

4p 0 0 0 0 0 0 4p 1 � 8p

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Indeed, each copy of the chromosome in a cell will produce 0, 1 or 2 copies in a random

daughter with probability p/2, 1 − p and p/2, respectively. If a cell has i copies of the chromo-

some, since each one of these copies missegregates independently, the probability that a ran-

dom daughter has j copies is given by the coefficient of xj in the polynomial
p
2
þ ð1 � pÞx þ p

2
x2Þ

i�
. Neglecting quadratic terms in p, we have

p
2
þ ð1 � pÞx þ

p
2
x2

!i

�
ip
2
xi� 1 þ ð1 � ipÞxi þ

ip
2
xiþ1:

 

This gives the rows of M0, except for the first row, which is trivial because a dead cell does not

divide, and the last row, which takes into account that a cell with N + 1 copies is considered

dead.

To describe the evolution of the karyotypes of tumor cells with 23 types of chromosomes in

this basic model, we consider the product of 23 Markov chains, each of them isomorphic to

M. We can do this because missegregation events involving different chromosomes are inde-

pendent, and the number of copies of each chromosome evolves according to M. Product

states where at least one of the components corresponds to a dead (i.e. absorbing) state are

regarded as dead states in the product chain. Thus, even though the Markov chain for
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chromosome k does not capture the fact that a cell may die because of a disallowed number of

copies of another chromosome, this event is taken into account in the product of the 23 chains.

One way to think about it is by pretending that cells with no copies of a chromosome still

divide as usual, but they give rise to two dead cells with no copies of that chromosome.

The model with chromosome scores

In the basic model from the previous section, the only way for a cell to die is if the number of

copies of a chromosome reaches 0 or goes above N. A more realistic model should include the

possibility that a cell dies for other reasons. In fact, the karyotype of the cell is postulated to

have an influence on its survival probability. It has been proposed [8] that having more copies

of certain oncogenic chromosomes is subject to positive selection as evidenced by a pan-cancer

analysis of chromosome-level amplifications, whereas having more copies of other tumor-

suppressive chromosomes is subject to negative selection.

In this section we construct a more general Markov chain which takes these factors into

account. This Markov chain describes the evolution of the number of chromosome copies in

random cells in the stochastic model of Laughney et al. [4]. As in that model, we assign a score

sk to each chromosome k, which is positive for oncogenic chromosomes and negative for

tumor-suppressive ones, so that the total score of a cell with karyotype (n1, . . ., n23) is

S ¼
P23

k¼1
sknk. Numerical values of sk were experimentally inferred by Davoli et al. [8]. Here

we describe the Markov chain in a more abstract setting where the sk are left as parameters.

The survival probability of the cell with score S at a given generation is Qsurv = ec+dS for

some constants c< 0 and d> 0, which again are parameters of the model. With probability

1 − Qsurv, the cell spontaneously dies at that generation. With probability Qsurv, the cell divides

as usual, with missegregation events taking place as in the model without scores. Note that it is

still possible for the daughter cells to die if the number of copies of a chromosome leaves the

range [1, N], but this cause of death is unrelated to the survival probability Qsurv.

A key obervation that will make the size of our Markov chains tractable is that

Qsurv ¼ ecþd
P23

k¼1
sknk ¼

Y23

k¼1

eckþdsknk ¼
Y23

k¼1

qkðnkÞ; ð1Þ

where the ck are arbitrary constants with c1 + � � � + c23 = c, and we write qkðiÞ ¼ eckþdski to

denote the contribution to the survival probability coming from chromosome k. It will be con-

venient to write qk(i) = Cμi for constants C ¼ eck and m ¼ edsk (note that μ> 1 if and only if

chromosome k is oncogenic).

Eq (1) allows us to break up the model with chromosome scores into 23 independent Mar-

kov chains AðkÞ, one for each chromosome type. In AðkÞ, a cell in state i has probability qk(i) of

dividing as usual (as in the Markov chain M from the basic model), and probability 1 − qk(i)
of spontaneously dying, which is represented by a transition to the absorbing state 0. The evo-

lution of karyotypes in the colony is then described by the product of the 23 Markov chains

AðkÞ for 1� k� 23. Again, a product state where at least one of the coordinates corresponds to

the absorbing state of some AðkÞ is regarded as a dead state in the product chain. With this

setup, a cell with karyotype (n1, . . ., n23) has probability Qsurv = ∏k qk(nk) of surviving and

dividing as in the model without scores, with each chromosome type behaving independently,

and probability 1 − Qsurv of spontaneously dying. Since viable states in the product chain cor-

respond to products of viable states in the chains AðkÞ, the proportion of cells with a given kar-

yotype (n1, . . ., n23) after g generations (as a fraction of 2g) is given by the product for 1�

k� 23 of the probability that the Markov chain AðkÞ is in state nk. This means that the

A Markov-chain model of chromosomal instability
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simplification 1 described in the previous section is still applicable in the model with chromo-

some scores.

When it creates no confusion, we will simply write A instead of AðkÞ. The transition matrix

of this Markov chain restricted to the non-absorbing states is A, with entries defined as

Aij ¼

ð1 � ipÞ qkðiÞ if i ¼ j;

ip qkðiÞ=2 if ji � jj ¼ 1;

0 if ji � jj � 2;

8
><

>:

for 1� i, j� N. We can express A as A = DM, where D is the diagonal matrix with Dii = qk(i)
for 1� i� N, and M is the matrix from the basic model.

If the value of the parameter c is such that Qsurv� 1 for all valid karyotypes, then it is possi-

ble to choose the constants ck so that qk(i)� 1 for 1� i� N and 1� k� 23, and so the factors

qk(i) can be interpreted as probabilities. We point out, however, that any arbitrary choice of

the constants ck, provided that they sum to c, will give the same transition probabilities in the

product Markov chain and thus the results of the analysis do not depend on this choice.

Incorporating whole genome duplication

It is possible to modify our model to allow for whole genome duplication [5]. To this end, con-

sider an N × N matrix G with entries

Gij ¼

� pgd if i ¼ j;

pgd=2 if 2i ¼ j;

0 otherwise;

8
><

>:

for 1� i, j� N, where pgd is a new parameter giving the probability that a random cell dupli-

cates its genome but does not divide at a given generation.

To incorporate whole genome duplication, we use the matrices Mgd = M + G and Agd =

DMgd instead of M and A, for the basic model and for the model with chromosome scores,

respectively. With this modification, the corresponding Markov chains contain a transition

from state i to 2i (or to the dead state if 2i> N) with probability pgd/2. Indeed, with probability

pgd, a random cell duplicates its genome instead of producing two daughter cells, thus we can

consider the transition probability to the “daughter” cell with duplicated genome to be pgd/2,

while adding an additional transition to the dead state with probability pgd/2, corresponding to

the other “daughter” cell that has not been created. It is possible to modify the matrix G to

allow for the genome duplication probability pgd to depend on the number of chromosome

copies, by setting different values of pgd for different rows of the matrix.

Since our model considers each of the 23 chromosomes independently, it cannot account

for correlations between duplications in the different chromosomes (namely, the fact that all

23 chromosmes duplicate simultaneously). Nevertheless, by restricting to one chromosome at

a time, the model gives the correct distribution of the number of copies over time, as well as

the limiting distribution.

Incorporating the effects of aneuploidy during early tumor growth

Aneuploidy and chromosomal instability are hallmarks of advanced solid tumors. However,

during early stages of tumorigenesis, induction of aneuploidy has been shown to mitigate

tumor growth [15, 16]. It was postulated that the negative effect of aneuploidy might be due to

the various steps needed for tumor cells to become tolerant to chromosome copy number

A Markov-chain model of chromosomal instability
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abnormalities. Loss of the tumor suppressor p53 has been shown to be a landmark event in the

ability of mammalian cells to tolerate aneuploidy and complex karyotypes [17, 18]. In this sec-

tion we attempt to model the process whereby key tumor suppressor proteins are inactivated

either through mutational processes or copy number loss therefore enabling tolerance to chro-

mosome missegregation.

To this end, we modify the Markov chain A by adding two additional states that model the

early stage of the tumor, when deviation from a perfect diploid karyotype results in death due

to the presence of active copies of a certain gene X. Recall that A contains N states correspond-

ing to cells with i copies (for 1� i� N) of a particular chromosome k, which we assume is the

one containing gene X. To obtain the modified Markov chain, which we call AX , the first addi-

tional state that we add to A corresponds to cells with two copies of chromosome k, both of

which contain an active copy of gene X; we denote this state by σ. The second additional state

corresponds to cells with two copies: one where gene X is active, and one where gene X is inac-

tive due to mutation; we denote this state by τ.

Let mr denote the mutation rate, which is the probability that, at a given generation, a given

copy of chromosome k undergoes a mutation that inactivates gene X. The transition matrix of

the modified Markov chain consists of the matrix A with two additional rows and columns,

indexed σ and τ, and the following entries:

Ass ¼ ðð1 � pÞ46
� 2mrÞqkð2Þ; Ast ¼ 2mrqkð2Þ;

Ats ¼ 0; Att ¼ ðð1 � pÞ46
� mrÞqkð2Þ;

At1 ¼
p
2
qkð2Þ; At2 ¼ mrqkð2Þ;

Asi ¼ Ais ¼ Ait ¼ 0 for 1 � i � N;

Ati ¼ 0 for 3 � i � N:

Indeed, for a cell in state σ, the probability that either of the two active copies of gene X
mutates (transitioning to state τ) is about 2mr. The entry Aσσ accounts for the fact that the cell

dies if any of the 46 chromosome copies in the cell (2 for each of the 23 human chromosomes)

missegregates. The probability of none of these copies missegregating is (1 − p)46. In the

matrix, these probabilities are multiplied by the usual survival probability qk(2) of a cell with

two copies of chromosome k. Similarly, for a cell in state τ, the probability that the active copy

of gene X mutates (transitioning to state 2) is mr, and the probability that the active copy mis-

segregates and a random daughter cell receives no active copies (transitioning to state 1) is p/2.

Results

Mathematical analysis of the basic model

Let (Mg)i,j be the entry in row i and column j of the gth power of M. In the one-chromosome

version, this number is the proportion of cells after g generations that, starting with a founder

cell that has i copies of a chromosome, have j copies of that chromosome. In particular, the

sum of the entries of the ith row of Mg, which we denote by sg(i), is the probability that the

number of copies of the chromosome is between 1 and N.

When combining the 23 Markov chains to keep track of all chromosomes, the product
Q23

k¼1
sgðnkÞ is the surviving fraction after g generations when the founder cell has nk copies of

chromosome k for every k, as a fraction of 2g, which would be the number of cells after g

A Markov-chain model of chromosomal instability
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generations if there were no deaths. Thus, 2gQ23

k¼1
sgðnkÞ is the expected number of viable cells

after g generations.

Restricting to viable cells, the ith row of Mg divided by sg(i) gives the probability distribu-

tion of the number of copies of a chromosome after g generations among viable cells, when the

founder cell has i copies. More generally, if v is a probability vector that describes an initial dis-

tribution of the number of copies, then the vector vMg, divided by the sum of its entries, is the

distribution among viable cells of the number of copies after g generations.

We are interested in the behavior of the Markov chain when the number of generations

tends to infinity. Since the Markov chain M has an absorbing state, namely the one corre-

sponding to dead cells, its stationary distribution is not very interesting: in the long run, the

probability that a random branch ends at a dead cell tends to one. Instead, we would like to

know the distribution of the number of chromosome copies among viable cells. Mathemati-

cally, we can do this by conditioning on not being on the absorbing state, and finding the limit-

ing conditional distribution on the non-absobring states.

The Markov chain M has the property of being irreducible on the non-absorbing states,

meaning that it is possible to go from any state other than the absorbing one to any other state

if we allow enough steps. Markov chains with this property have been studied in the probabil-

ity literature, see e.g. [19]. It is known that when conditioning on the non-absorbing states, the

limiting conditional distribution of the chain is its so-called quasi-stationary distribution,

which is unique. In our case, this is the unique ρ-invariant distribution for M, where ρ is

its Perron—Frobenius (i.e. largest) eigenvalue. In other words, this distribution is the vector

v 2 RN
�0

satisfying vM = ρv and
PN

i¼1
vi ¼ 1. We summarize this result as a lemma, since it will

be used later on.

Lemma 1. Let Q be a Markov chain with one absorbing state and N non-absorbing states, on
which the chain is irreducible. Let Q be the transition matrix restricted to the non-absorbing
states, and let ρ be its largest eigenvalue. Then, the limiting distribution of Q conditional on the
non-absorbing states is given by the vector v 2 RN

�0
satisfying vQ = ρv and

PN
i¼1

vi ¼ 1.

In particular, it follows from Lemma 1 that the limiting distribution of M conditional on

the non-absorbing states does not depend on the number of chromosome copies of the

founder cell. Next we show that, surprisingly, it does not depend on the missegregation rate

p either. It will be convenient to write M as M = I + pJ, where I is the identity matrix, and J is

the matrix with entries

Jij ¼

� i if i ¼ j;

i=2 if ji � jj ¼ 1;

0 if ji � jj � 2;

8
><

>:
ð2Þ

for 1� i, j� N.

Theorem 2. Assuming p 6¼ 0, the limiting distribution of the Markov chain M conditional on
the non-absorbing states is independent of p.

Proof. Let us check that for p 6¼ 0, the left eigenvectors of M of J are equal. Indeed, if v is a

left eigenvector of J with eigenvalue λ, then vJ = λv, which implies that vM = v + pvJ = (1 + pλ)

v, that is, v is a left eigenvector of M with eigenvalue 1+ pλ. The converse holds by a very simi-

lar argument.

In particular, the left eigenvector whose entries are nonnegative and sum to one having

largest eigenvalue is the same for M and for J, and so it does not depend on p. By Lemma 1,

such an eigenvector for M is the limiting distribution of the Markov chain on non-absorbing

states.
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From now on, for simplicity, the limiting distribution of M conditional on the non-absorb-

ing states will simply be called the limiting distribution of M. Even though this distribution

does not depend on p by Theorem 2, we will see later that the mixing time does, in the sense

that the convergence to the limit distribution is slower if p is small.

Our next goal is to describe the limiting distribution of M. The following straightforward

result from linear algebra will be useful when determining the eigenvectors of M.

Lemma 3. For each n� 0, let An be the tridiagonal matrix

An ¼

a1;1 a1;2 0 � � � 0 0

a2;1 a2;2 a2;3 0 � � � 0

0 a3;2 a3;3 a3;4 0 0

..

. . .
. . .

. . .
. . .

. ..
.

0 � � � 0 an� 1;n� 2 an� 1;n� 1 an� 1;n

0 0 � � � 0 an;n� 1 an;n

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where the entries ai,j do not depend on n, and let Pn(x) = det(xI − An) be its characteristic polyno-
mial. Then the following hold:

I. Pn(x) satisfies the recurrence

PnðxÞ ¼ ðx � an;nÞPn� 1ðxÞ � an;n� 1an� 1;nPn� 2ðxÞ

for n� 2, with initial conditions P0(x) = 1 and P1(x) = x − a1,1.

II. Assuming that aj,j−1 6¼ 0 for all j, the left eigenvectors of An with eigenvalue λ have the form
v = (v1, v2, . . ., vn), where

vi ¼
b Pi� 1ðlÞ
Qi

j¼2
aj;j� 1

for 1� i� n, and b 6¼ 0 is a constant.

Proof. The recurrence for Pn(x) can be obtained easily by expanding the determinant along

the last row.

To prove part II, note that for 1� i< n, the i-th component of the vector equation

vAn = λv is

ai� 1;ivi� 1 þ ai;ivi þ aiþ1;iviþ1 ¼ lvi;

where we write v = (v1, . . ., vn), and we let a0,1 = 0. Solving for vi+1, we get

viþ1 ¼
1

aiþ1;i
ðl � ai;iÞvi � ai� 1;ivi� 1

� �
:

It now follows by induction and using the recurrence for Pn(x) that

vi ¼
Pi� 1ðlÞ v1
Qi

j¼2
aj;j� 1

:

Letting b = v1 we get the stated expression for v.
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Let PN(x) be the characteristic polynomial of the matrix J defined in Eq (2). Applying

Lemma 3, we see that it satisfies the recurrence

PnðxÞ ¼ ðx þ nÞPn� 1ðxÞ þ
nðn � 1Þ

4
Pn� 2ðxÞ ð3Þ

with initial conditions P0(x) = 1 and P1(x) = x + 1. For example, for N = 8, we get

P8ðxÞ ¼ x8 þ 36x7 þ 504x6 þ 3528x5 þ 13230x4 þ 26460x3 þ 26460x2 þ 11340x þ 2835=2:

The largest eigenvalue of J, which is the largest root of PN(x), depends on N, as shown in

Fig 1.

Using Lemmas 1 and 3, we can now describe the limiting distribution of M conditional on

the non-absorbing states. The i-th component of v in the next theorem is the fraction of viable

cells that have i copies of a given chromosome k, in the limit as the number of generations

tends to infinity.

Theorem 4. The limiting distribution of the Markov chain M conditional on the non-absorb-
ing states is given by v ¼ 1PN

i¼1
ui
ðu1; u2; . . . ; uNÞ with

ui ¼
2i� 1

i!
Pi� 1ðaÞ;

where the polynomials Pn(x) satisfy recurrence (3) and α is the largest eigenvalue of J (equiva-
lently, the largest root of PN(x)).

Proof. By Lemma 1, the limiting distribution of M conditional on the non-absorbing states

is given by the left eigenvector of J with largest eigenvalue α. The result now follows from

Lemma 3, normalizing v so that its components sum to 1.

As shown in the proof of Theorem 2, if α is the largest eigenvalue of J, then 1 + pα is the

largest eigenvalue of M. This eigenvalue determines the limiting growth rate of the tumor,

which is the factor by which the number of viable cells multiplies at each generation assuming

that karyotypes are distributed according to the limiting distribution. This growth rate is

2 ð1þ paÞ
23
:

Fig 2A shows a graph of this function for N = 8 and varying p.

If we modified the model by allowing only a fraction F of the cells to survive at each genera-

tion, killing the remaining ones, then the reciprocal of the limiting growth rate, namely
1

2 ð1þpaÞ23, would be the threshold such that for values of F below this threshold, the expected

number of viable cells would tend to 0 as g ! 1, whereas for values of F above this threshold,

the size of the colony would grow indefinitely.

Finally, Fig 2B shows the proportion of surviving cells, as a fraction of 2g, after g = 1000 gen-

erations for different values of p, starting from a cell with 4 copies of each chromosome. The

fact that this fraction is close to 1 for very small values of p is another unrealistic prediction of

the basic model, which will be addressed by the model with chromosome scores.

Limiting distributions in the basic model

The limiting distribution described in Theorem 4 is computed in Table 1 for 6� N� 10,

along with its average, and graphed in Fig 3 for 8� N� 16. For every N, the modal chromo-

somal number is 1, which agrees with the results of Gusev et al. [9], although it is not corrobo-

rated by experimental observations. In the next section we will describe a better model that

will have more realistic outcomes. On the other hand, the average number of chromosome

copies depends on N, and it is very close to 3 for N = 8.
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Fig 1. The largest eigenvalue of J as a function of N, for 6� N� 30.

https://doi.org/10.1371/journal.pcbi.1006447.g001

Fig 2. The limiting growth rate and surviving fraction in the basic model with N = 8. A: The limiting growth rate as

a function of p (in a logarithmic scale). B: The fraction of cells that survive after 1000 generations, starting with a

founder cell with 4 copies of each chromosome.

https://doi.org/10.1371/journal.pcbi.1006447.g002
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Even though Gusev et al. [9] guess from their figures that the chromosome copy numbers

reach a “stable distribution” after a few hundred generations and that changes of N “do not

affect the results of calculations,” we remark that the actual limiting distribution is heavily

affected by the upper bound N. For example, while for N = 8 the limiting proportion of viable

cells with one copy of the chromosome is about 0.27432 —which is close to the value observed

in [9] with p = 0.1 after 200 generations—, for N = 200 this proportion is only 0.012984.

Evolution of chromosome copy numbers over time in the basic model

Fig 4A–4D and S1 Fig show how the distribution of the number of copies of a chromosome

evolves over time in the basic model, for different values of the missegregation rate p. The

number of chromosome copies of the founder cell is denoted by f. S1 Fig replicates the data

over 200 generations obtained by Gusev et al. [9, Figs 3A, 4A, 5A], showing that our simplifica-

tion 3 does not noticeably affect the outcome for small values of p.

Table 1. The limiting distribution of M on viable cells and average number of chromosome copies, for 6� N� 10. The ith entry of each vector is the limiting fraction

of viable cells with i copies of the chromosome.

N limiting distribution of M conditional on non-absorbing states average

6 (0.34691, 0.25538, 0.17996, 0.11850, 0.069129, 0.030127) 2.3980

7 (0.30638, 0.23576, 0.17598, 0.12582, 0.084111, 0.049851, 0.022079) 2.6832

8 (0.27432,0.21817,0.16968,0.12807,0.09262,0.06266,0.03760,0.01688) 2.9695

9 (0.24832, 0.20260, 0.16251, 0.12749, 0.09710, 0.07088, 0.04842, 0.02935, 0.01331) 3.2554

10 (0.22681, 0.18888, 0.15517, 0.12533, 0.09906, 0.07600, 0.05592, 0.03852, 0.02354, 0.01078) 3.5418

https://doi.org/10.1371/journal.pcbi.1006447.t001

Fig 3. The limiting distribution of M on viable cells for 8� N� 16. The average number of chromosome copies

for each N is represented by a dot on the x-axis.

https://doi.org/10.1371/journal.pcbi.1006447.g003
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Fig 4. The evolution of the distribution of the number of chromosome copies for the various models. Each curve represents a given number

of copies. A—D: Basic model (M) with N = 8 (except in D, which uses N = 16), over 2000 generations. E—L: Full model with chromosome

scores (A) with N = 8 and a founder cell with f = 2 chromosome copies, over 2000 generations. M—P: Modified model incorporating the effects

of aneuploidy during early tumor growth (AX) with N = 8 and a founder cell with 2 active copies of gene X, over 1000 generations.

https://doi.org/10.1371/journal.pcbi.1006447.g004
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Fig 4A–4D shows data for 2000 generations. Note the similarity between Fig 4A and the

center panel in S1 Fig . Indeed, for small values of p, increasing the number of generations by a

factor of s has a similar effect to multiplying p by a factor of s. This is because (I + p J)s� I +

spJ. Fig 4D uses a different upper bound N = 16 on the allowed number of copies, and other-

wise the same parameters as Fig 4C.

Mathematical analysis of the full model

The ith row of the matrix Ag, when normalized by dividing by the sum of the entries in the

row, gives the distribution of the number of copies of chromosome k in viable cells after g gen-

erations, having started with a founder cell that has i copies of the chromosome. Note that

before normalizing, the entries of Ag are affected by the choice of the constants ck. However, if

we denote by sðkÞg ðiÞ the sum of the entries of the ith row of Ag, then the product
Q23

k¼1
sðkÞg ðnkÞ is

independent of this choice. The expression

2g
Y23

k¼1

sðkÞg ðnkÞ

is the expected number of viable cells after g generations when the founder cell has nk copies of

chromosome k for every k.

As in the model without scores, the Markov chain A satisfies the conditions in Lemma 1.

Thus, its quasi-stationary distribution, which is its limiting distribution conditional on the

non-absorbing states, is given by the unique vector v 2 RN
�0

satisfying vA = ρv and
PN

i¼1
vi ¼ 1, where ρ is the largest eigenvalue of A. We call this the limiting distribution of A

for simplicity, and we note that it does not depend on the number of chromosome copies of

the founder cell.

However, the analogue of Theorem 2 no longer holds for A: its limiting distribution

depends on p. As expected, it also depends on μ (equivalently, on the chromosome score), but

not on the constant ck. Indeed, varying C ¼ eck=23 only changes A by a constant factor, which

does not affect its eigenvectors. Another consequence is that while the number of viable cells

in the colony after g generations depends on the parameter c, the limiting distribution of kar-

yotypes among viable cells does not.

Theorem 5. The limiting distribution of the Markov chain A conditional on the non-absorb-
ing states is given by v ¼ 1P23

i¼1
ui
ðu1; u2; . . . ; uNÞ with

ui ¼
2i� 1

i!pi� 1mði
2þi� 2Þ=2

Pi� 1ðaÞ;

where the Pn(x) satisfy the recurrence

PnðxÞ ¼ ðx � mnð1 � npÞÞPn� 1ðxÞ � m2n� 1p2 nðn � 1Þ

4
Pn� 2ðxÞ

with initial conditions P0(x) = 1, P1(x) = x − μ(1 − p), and α is the largest eigenvalue of A (i.e.,
the largest root of PN(x)).

Proof. By Lemma 1, the limiting distribution of A conditional on the non-absorbing states

is given by the left eigenvector of A with largest eigenvalue α. Since this eigenvector does not

depend on the constant factor C, we can assume that C = 1, and so qk(i) = μi. The entries of A
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are then

Aij ¼

ð1 � ipÞmi if i ¼ j;

ipmi=2 if ji � jj ¼ 1;

0 if ji � jj � 2:

8
><

>:

Applying Lemma 3 to A, it follows that its characteristic polynomial PN(x) satisfies the recur-

rence in the statement, and that its left eigenvector with eigenvalue α, normalized so that its

components sum to 1, is v.

If αk is the largest eigenvalue of A(k), then the limiting growth rate of the tumor is

2
Y23

k¼1

ak: ð4Þ

Its value depends on p, on the parameters c, d, and also on the scores of the 23 chromosomes.

The estimated values for these parameters that we will use in our figures are

c ¼ � 0:036132164 and d ¼ 0:00039047: ð5Þ

This value of d was found in [4] using experimental data. On the other hand, our value of c dif-

fers slightly from the value in [4] in order to ensure that Qsurv� 1 for all valid karyotypes.

Experimental values for the chromosome scores sk were originally found in [8], and used in

[4]. These values are given in Table 2, together with the corresponding values of m ¼ edsk .

Table 2. The values of the chromosome scores determined experimentally in [8], and the corresponding values of

μ.

k sk μ
1 -0.143640496 0.999943914

2 0.638322635 1.000249277

3 0.597508197 1.000233336

4 0.106407616 1.000041550

5 -0.785208831 0.999693447

6 -0.664148445 0.999740704

7 3.039521587 1.001187547

8 1.650903175 1.000644836

9 0.765873656 1.000299095

10 -1.23443224 0.999518107

11 0.210103365 1.000082042

12 1.720482377 1.000672022

13 -1.207617162 0.999528573

14 -0.712581034 0.999721797

15 -0.751608856 0.999706562

16 -1.277797927 0.999501183

17 -0.784673321 0.999693656

18 -1.428496154 0.999442371

19 0.809097907 1.000315978

20 1.780741874 1.000695568

21 1.568732394 1.000612731

22 -1.576297101 0.999384693

23 0 1

https://doi.org/10.1371/journal.pcbi.1006447.t002
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Fig 5 shows a graph of the growth rate in Eq (4) as a function of p, with the values of c, d
from Eq (5) and the chromosome scores from Table 2 (we call these the standard parameters).
If we were to multiply Qsurv by a factor F to reduce the survival rate for all cells, then the recip-

rocal of expression (4) is the threshold for F that determines whether the expected number of

cells will tend to zero or to infinity as g ! 1.

Limiting distributions in the full model

The value of the parameter m ¼ edsk in human chromosomes, using the estimates for chromo-

some scores from [8] and for d from [4], is roughly between 0.9994 and 1.0012 (see Table 2).

We will use this range for μ in our computations below.

Fig 6A–6C shows the limiting distribution described in Theorem 5 for N = 8, three fixed

values of p, and μ varying in the above range. Note that for μ = 1, which corresponds to a chro-

mosome score of 0 (this is the score given to the sex chromosome), the limiting distribution is

the same as in the basic model and it does not depend on p, since in this case A and M differ

only by a constant factor.

As expected, for higher chromosome scores, the limiting distribution favors higher num-

bers of copies. Smaller values of the missegregation rate p make the influence of the

Fig 5. The limiting growth rate for the full model with N = 8 and the standard parameters. The limiting growth

rate is graphed in red as a function of p. Fig 2A has been overlaid in blue for comparison.

https://doi.org/10.1371/journal.pcbi.1006447.g005
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chromosome scores more noticeable, whereas larger values make the distribution closer to the

one in Fig 3 for N = 8. It is interesting to observe that when the chromosome score is positive

(equivalently, μ> 1), the modal number of copies soon becomes higher than one, and it gets

larger as μ increases. This agrees with experimental observations and addresses the main short-

coming of Gusev’s model [9]. Fig 7A shows that for p = 0.0025, small variations of μ in the

Fig 6. The limiting distribution on viable cells for the full model with N = 8. The horizontal axis indicates the number of copies of the

chromosome, and the vertical axis measures the fraction of cells (among viable ones). A—C: Full model (A) for different values of p, and μ
ranging in the interval [0.9994, 1.0012]. D—F: Full model (A) with the experimental values of μ corresponding to the 23 human chromosomes,

for different values of p. The colors depict how oncogenic (blue) or tumor suppressive (red) each chromosome is. The average of the 23 limiting

distributions is shown in black. The average number of chromosome copies in this average distribution is represented by a dot on the x-axis.

G—J: Modified model with whole genome duplication for different values of p and pgd, together with the average of the 23 limiting distributions.

The value pgd = 0 corresponds to the full model depicted in panels D—F.

https://doi.org/10.1371/journal.pcbi.1006447.g006
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interval [1.0002, 1.0006] cause the modal number of copies in the limiting distribution to take

all values between 1 and 5. The average number of copies and the modal number for three val-

ues of p and several values of μ is given in Table 3.

Fig 6D–6F shows the limiting distribution for the experimental values of μ for each of the

23 human chromosomes (Table 2), for N = 8 and different values of p, as well as the average of

these limiting distributions. The average number of chromosome copies in the limit is 3.3591

Fig 7. The limiting distribution of A with N = 8 for small variations of the parameters. A: For fixed p and varying

μ. B: For fixed μ and varying p.

https://doi.org/10.1371/journal.pcbi.1006447.g007

Table 3. The average and the modal number of chromosome copies in the limiting distribution of A on viable cells, for N = 8 and varying p and μ.

p = 0.001 p = 0.0025 p = 0.01

μ average mode average mode average mode

0.9994 1.538 1 1.975 1 2.613 1

0.9995 1.614 1 2.072 1 2.667 1

0.9996 1.713 1 2.189 1 2.722 1

0.9997 1.855 1 2.334 1 2.781 1

0.9998 2.071 1 2.511 1 2.842 1

0.9999 2.417 1 2.723 1 2.904 1

1.0000 2.969 1 2.969 1 2.969 1

1.0001 3.666 2 3.242 1 3.036 1

1.0002 4.288 4 3.526 1 3.102 1

1.0003 4.757 5 3.800 3 3.171 1

1.0004 5.104 6 4.057 4 3.242 1

1.0005 5.367 6 4.289 4 3.313 1

1.0006 5.573 6 4.492 5 3.382 1

1.0007 5.742 6 4.673 5 3.452 1

1.0008 5.883 6 4.832 5 3.523 1

1.0009 6.002 7 4.974 5 3.592 2

1.0010 6.105 7 5.101 6 3.661 2

1.0011 6.196 7 5.215 6 3.731 3

1.0012 6.277 7 5.316 6 3.795 3

https://doi.org/10.1371/journal.pcbi.1006447.t003
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for p = 0.001, 3.1618 for p = 0.0025, and 3.0107 for p = 0.01. A graph of this dependence on p
appears in S3A Fig.

We point out that, even though the basic model without chromosome scores also yielded

an average number of chromosome copies near 3 for N = 8 (see Table 1), the shape of the limit-

ing distribution in the basic model was unrealistic, with the modal number of copies always

being 1.

The effect of changing the missegregation rate for a fixed chromosome score is shown in

Fig 7B, which gives the limiting distributions obtained by fixing μ = 1.0004 (corresponding to

a score of sk = 1.0242) and letting p range from 0.001 to 0.009.

Next we analyze how these limiting distributions are affected by whole genome duplication.

Considering the Markov chain with transition matrix Agd, Fig 6G–6J shows the limiting distri-

bution of chromosome copy numbers for each of the 23 human chromosomes, for N = 8 and

different values of both p and the genome duplication rate pgd. Comparing these results to

those in Fig 6D–6F, which correspond to the case pgd = 0 (i.e., no genome duplication), we see

that, for rates of pgd below 10−4, the outcomes are very similar to those of the model without

whole genome duplication. On the other hand, larger values of pgd skew the limiting distribu-

tion towards higher copy numbers, with this tendency being more noticeable when the misse-

gregation rate p is low.

It is shown in [20] that certain karyotypes promote cytokinesis failure and thus genome

duplication. In particular, it is suggested that cells with 3 or more copies of chromosome 13

have a higher genome duplication rate. This phenomenon can be incorporated in our model

by using different values of pgd in different rows of the matrix G. For example, making the

value of pgd increase by a factor of 10 when the number of copies of chromosome 13 is at least

3, the limiting distribution of the number of copies of chromosome 13 is shown in S4 Fig for

different values of the parameters. We see that copy numbers 3 and above become more infre-

quent in this modified version, compared to the limiting distributions obtained when pgd is

independent of karyotype. Unfortunately, when pgd is dependent on the number of copies of

chromosome 13, our model cannot keep track of the distributions of other chromosomes.

Evolution of chromosome copy numbers over time in the full model

As discussed above, the normalized rows of the powers of A describe the evolution over time

of the distribution of the number of copies of a chromosome. This evolution is depicted in

Fig 4E–4L for missegregation rates p = 0.0025 and p = 0.001, a founder cell with 2 copies of the

chromosome, and different values of μ.

The number of generations that it takes for the distribution of chromosome copies to be

close to the limiting distribution is determined by the mixing time of the Markov chain. This

mixing time is roughly proportional to ð1 � ~r=rÞ
� 1

, where ρ and ~r are the largest and the sec-

ond largest eigenvalues of A, respectively. S2B Fig plots this quantity as a function of p for dif-

ferent values μ. Whereas the mixing time decreases for larger p, as expected, the dependence

on μ is more subtle: values of μ further from 1 (in either direction) result in smaller mixing

times. In the case μ = 1, which corresponds to the basic model with no chromosome scores, we

have ρ = 1 + pα and ~r ¼ 1þ p~a, where α and ~a are the two largest eigenvalues of J. The quan-

tity ð1 � ~r=rÞ
� 1

is plotted in S2A Fig for different values of N.

Fig 8 shows the evolution of the average number of copies of each of the 23 human chromo-

somes (with the scores from Table 2), as well as the total average number of copies for a ran-

dom cell, with missegregation rates p = 0.001 and p = 0.0025, starting with a founder cell with

2 copies of each chromosome.
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If we instead use the modified Markov chain AX that incorporates the effects of aneuploidy

in early tumor growth, the evolution over time of the distribution of chromosome copy num-

bers is shown in Fig 4M–4P for different values of the parameters p, mr and μ, when starting

with a founder diploid cell with two active copies of gene X. These plots show that there is a

sudden transition from the stage when most cells contain active copies of gene X (that is, states

σ and τ in AX), to the stage when most cells contain no active copies of gene X (that is, states

1, 2, . . ., 8). The value of g when this transition happens, which we call time to inactivation, is

plotted in S5A Fig as a function of p and mr. We see that the time to inactivation is larger when

p and mr are small. S5B Fig displays the fraction of surviving cells (as a fraction of 2g) over time,

showing that the growth rate of the colony sharply increases when inactivation takes place.

Surviving fraction and heterogeneity in the full model

As we did in Fig 2B for the model without scores, we can compute the proportion of surviving

cells, as a fraction of 2g, after g generations as a function of p. The corresponding graphs for dif-

ferent values of g are given in Fig 9A, starting from a cell with 4 copies of each chromosome

and using the standard parameters (that is, c and d from Eq (5) and the chromosome scores

from Table 2). The y-axis has been normalized for each graph so that the maximum surviving

fraction occurs at the same height for each value of g. For g = 1000, a very similar figure appears

in [4], where it was obtained by running lengthy computer simulations. The value of p that

maximizes the fraction of cells that survive after g generations is just under 10−3 for g = 500

and g = 1000. This optimal value of p decreases slowly as the number of generation g increases.

Interestingly, a large surviving fraction of cells is obtained only in a very narrow interval of val-

ues of the missegregation rate p, and this fact is more pronounced for large g.

Another important characteristic of the colony is its heterogeneity, which in [4] is measured

as the Shannon diversity index of its cell scores. Here we propose another related measure of

heterogeneity, based on the Shannon diversity of copy numbers of the different chromosomes.

More precisely, if ak,j denotes the fraction of viable cells in the colony with j copies of

Fig 8. The evolution over 2000 generations of the average number of copies of the 23 human chromosomes, for

N = 8 and two values of p. For each chromosome, the color of the curve depicts how oncogenic (blue) or tumor

suppressive (red) it is. The average of the 23 averages is shown in black.

https://doi.org/10.1371/journal.pcbi.1006447.g008
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Fig 9. Surviving fraction and karyotype diversity index K, for the full model with N = 8 and the standard parameters. Starting with a

founder cell with 4 copies (A—E) or 2 copies (F—I). A, F: Normalized fraction of cells that survive as a function of p (in a logarithmic scale) after

g generations for seven values of g. B, G: Karyotype diversity index K for the same values of p and g. The black curve gives the karyotype diversity

of the limiting distribution as a function of p (see this distribution in Fig 6D–6F for three values of p). As g ! 1, the other curves in the graph

converge to the black curve. C, H: K as a function of g (in a logarithmic scale) for seven fixed values of the missegregation rate p. D, I: K as a

function of g and p (both in a logarithmic scale), for 10� g� 106 and 10−7� p� 10−1. E: The optimal value of p (in a logarithmic scale) that

maximizes the surviving fraction times the karyotype diversity index K after g generations, as a function of g.

https://doi.org/10.1371/journal.pcbi.1006447.g009
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chromosome k, we define its karyotype diversity index

K ¼ �
X23

k¼1

XN

j¼1

ak;jlnak;j:

In our model, the vector ðak;jÞ
N
j¼1

obtained after g generations starting with a founder cell

with i copies of chromosome k can be easily computed by normalizing the ith row of Ag.

Fig 9B plots the karyotype diversity index K as a function of p for the same colonies as in

Fig 9A, as well as the karyotype diversity index in the limiting distribution. After g = 500 and

g = 1000 generations, the karyotype diversity is maximized when p is near 10−3, close to the

value that maximizes the surviving fraction as well. For larger values of g, the curves in Fig 9B

reach a local maximum that is not an absolute maximum, and this local maximum shifts

to the left as g increases. The reason for this phenomenon is understood when considering

K = K(g, p) as a function of two variables g and p. The graph of this function appears in Fig 9D.

The cross sections for fixed g and varying p are the curves in Fig 9B, and the cross sections for

fixed p and varying g are the curves in Fig 9C. For the latter curves, as g ! 1, the karyotype

diversity index K converges to that of the limiting distribution for the given missegregation

rate p. As the colony evolves towards this limiting karyotype distribution, it can attain values

of K that are higher than the limiting value. For each fixed p, if we let g(p) be the value of g that

maximizes K(g, p), then g(p) is a decreasing function of p. In other words, for smaller missegre-

gation rates p it takes longer for the karyotype diversity to reach its maximum value. When fix-

ing g and letting p vary, this effect translates into some of the curves in Fig 9B having a local

maximum at the value of p such that g = g(p).

Fig 9D also illustrates that, in the region g� 103, the value of K(g, p) is nearly stable on the

curves of the form pg = constant, attaining maximum values when this constant is close to 1.

Interestingly, such high values of K(g, p) are only attained for missegregation rates p� 10−3,

after about g� 1/p generations; in contrast, for lower missegregation rates, the karyotype

diversity index does never reach such values, see Fig 9C.

Finally, we observe that, even though large missegregation rates p yield a high karyotype

diversity index K (see Fig 9B), Fig 9A shows that the surviving fraction may be extremely low

for such p. A measure of fitness is given by multiplying the surviving fraction from Fig 9A by

the karyotype diversity index from Fig 9B. The value of p that maximizes this product is plotted

in Fig 9E as a function of g.

If one starts with a founder cell with 2 copies of each chromosome, instead of 4 copies, the

resulting data is shown in Fig 9F–9I, in analogy to Fig 9A–9D, respectively.

Discussion

Herein, we have developed a Markov chain to directly analyze the long-term behavior of chro-

mosome copy numbers in cancer cells whose viability and ability to evolve is shaped by

numerical chromosomal instability—the frequent, yet understudied source of genomic insta-

bility in which cancer cells rapidly vary their karyotype through whole chromosome missegre-

gation events during mitosis. Within the framework of this mathematical model, clonal fitness

is defined by both the chromosomal distribution of oncogenes and tumor suppressor genes

and the karyotype of single cells within the tumor population. Using this model, we directly

obtain—without the need for lengthy computer simulations—the probability that a random

cell after g generations has i copies of a specific chromosome, for any given g, i and an initial

distribution of karyotypes. Further, we directly compute the expected size of a given clonal

population after g generations when subject to selection pressures imparted by chromosomal

instability. From a theoretical perspective, the main advantage of this Markov chain is that its
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stationary distribution can be used to determine the exact expected karyotype distribution of a

population of cells after an infinite number of cell divisions. Conversely, exhaustive computa-

tional models can only approximately guess the behavior of single cell karyotypes in this limit-

ing distribution. We therefore apply this model to precisely describe the limiting distributions

of karyotypes in evolving clonal populations and discover the following:

1. The limiting distribution does not depend on the initial karyotype of founder cells or the

probability of chromosome missegregation when the chromosomal distribution of onco-

genes and tumor suppressor genes does not inform cell viability (i.e. the basic model). The

limiting karyotype distribution of this basic model, is however, strongly affected by the

upper bound placed on the maximum copy number of any specific chromosome that a via-

ble cell can tolerate.

2. When cell viability is determined by the chromosome-specific distribution of tumor sup-

pressor and oncogenes (i.e. the full model with chromosome scores), higher copy numbers

of more oncogenic chromosomes are favored in the limiting distribution. This limiting dis-

tributionis still independent of the karyotype of founder cells. However, it depends now on

the probability of chromosome missegregation.

3. Karyotype diversity within expanding clonal populations grows rapidly as a function of

chromosome missegregation rates; however, very high missegregation rates are lethal to the

cells because highly unstable clones are more likely to lose all copies of a given chromosome

(or gain too many), which can lead to the complete loss of essential genes vital for cell sur-

vival. The selection imparted by the lethal effect of losing all copies of any given chromo-

some (nullisomy) generates an upper limit to karyotypic heterogeneity, which can be

overcome only when given sufficient time for the population to evolve. This depends recip-

rocally on the number of cell divisions and the whole chromosome missegregation rate.

4. In an exponentially expanding clonal population, karyotypic heterogeneity is most exqui-

sitely dependent on chromosome missegregation rates and its upward bounds are con-

strained by the risk for nullisomy. Whereas increased cell division number can lead to

increased heterogeneity, at very low missegregation rates, even 10,000 generations of cell

division fail to achieve maximal heterogeneity. This suggests that chromosome copy num-

ber heterogeneity observed in a given tumor is most likely influenced by chromosome mis-

segregation rather than the age of the tumor.

The observation that maximal heterogeneity is most dependent on chromosome missegre-

gation rates rather than the number of cell divisions has important implications toward our

understanding of tumor evolution and therapy. It suggests that, at sufficiently high missegrega-

tion rates, heterogeneity can be readily obtained even during the early stages of tumorigenesis.

Indeed, recent observations have demonstrated that pre-invasive lesions can achieve high lev-

els of chromosome copy number abnormalities [21]. Furthermore, it was shown that pancre-

atic cancer evolution occurs in punctuated bursts of chromosomal alterations that generate

significant heterogeneity over a short period of time thereby supporting metastatic progression

[22]. This finding is also in line with observations showing that elevated chromosome misse-

gregation rates in human tumors might be an important predictor of therapeutic resistance

and existence of clonal heterogeneity irrespective of tumor stage [23].

Comparison to other models in the literature

This Markov chain has several advantages over the computational models used by Laughney

et al. [4] and in the previous papers [9, 10]. For example, it allows us to determine, without
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having to run lengthy computer simulations, the probability that a random cell after g genera-

tions has i of copies of a certain chromosome, for any given g, i and an initial distribution of

karyotypes. It also yields the expected surviving fraction relative to an exponentially expanding

population that does not undergo any cell death. From a theoretical point of view, the main

advantage of the Markov chain is that its stationary distribution determines the exact expected

distribution of copies of each chromosome as g tends to infinity. Note that the computational

model can only make approximate guesses of the behavior in the limit. In this paper we com-

pute the stationary distribution of the Markov chain, thereby obtaining a precise description

of the limiting distribution of karyotypes, which agrees with prior observations [4].

This basic model is similar to the one considered by Gusev, Kagansky and Dooley [9, 24],

which makes basic assumptions about how cells divide and missegregation events take place.

Their stochastic model is developed whereby short-term simulations are run. That model uses

a semianalytical approach to estimate the long-term behavior of the chromosome copy num-

bers in cancer cells. For this purpose, and to overcome some of the computational constraints

of running the simulations, the authors develop a transition probability model similar to our

Markov chain, which they run for as many as 500 generations, using the data to guess that

there is a stable distribution in the limit.

Let us point out the main differences between the transition probability model used by

Gusev et al. [9] and our Markov chain. The first difference is our simplification 3 described in

the Methods section, which neglects quadratic terms in p. This simplification, which does not

noticeably affect the behavior of the random process for small values of p like the ones

observed in experiments, allows us to give an accurate and simple mathematical description of

the limit behavior of the Markov chain. Another difference is our simplification 2, which

allows us to interpret the entries of our transition matrix as probabilities of a Markov chain,

and therefore apply theoretical results about Markov chains such as Lemma 1. Finally, the

model by Gusev et al. [9] does not impose a realistic upper bound on the number of copies of a

chromosome that a viable cell can have, which further complicates the computations, although

a variation that imposes an upper bound is considered as well.

Based on the figures obtained from their simulations, Gusev et al. [9] observe that after a

large enough number of generations (and for large enough p), the fraction of viable cells with i
copies of a chromosome seems to converge for each i, but they give no mathematical proof of

this phenomenon. One consequence of the analysis of our Markov chain is that we provide a

proof of its convergence, and determine exactly what the limit values are. We also prove that

these values do not depend on the missegregation rate p (in contrast to the “weak dependence

on p” observed in [9] after 500 generations), or on the karyotype of the initial cell (this is also

mentioned with no proof in the Gusev et al. model), although they do depend on the upper

bound N on the number of allowed copies in viable cells.

In trying to remediate the fact that their model predicts a long-term distribution where the

most likely number of copies of a chromosome is 1, which seems to disagree with experiments,

Gusev et al. [9, §4.5.2] propose an alternative model which allows only one missegregation per

chromosome type, as in simplification 3 above. However, this alternative model is significantly

different from ours in that they consider the probability that a cell missegregates to be inde-

pendent on how many copies of the chromosome it has. In practice, in a cell with more copies

of a chromosome, it is more likely that some copy missegregates [25].

We remark that the basic model in this section also suffers from the same problem: it has a

limiting distribution where the most frequent number of copies of a chromosome is 1. How-

ever, once we incorporate chromosome scores in the full model, we will obtain different limit-

ing distributions that match the experimentally observed ones.
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Finally, a continuous time model based on the one from Gusev et al. [9, 24] was developed

by Desper, Difilippantonio, Ried and Schäffer [10]. This model uses an exponential distribu-

tion for the time between cell divisions, and it allows to vary the cell division rates as a function

of the number of copies of the chromosome. In this study, the authors consider the evolution

of the average copy number, and obtain some analytic estimates for it.

Potential uses for our Markov chain model

Predicting tumor behavior from single-cell data is critical to our ability to simulate complex

processes such as therapeutic resistance. Significant effort has been devoted toward simulating

mutational processes in cancer in an attempt to predict resistance to targeted therapies for

example. However, these efforts have not incorporated numerical chromosomal instability, a

major driver of therapeutic resistance. Our Markov chain can be integrated with other models

to account for both mutational heterogeneity as well as chromosome copy number evolution.

Integrated models that combine different modes of genomic instability would undoubtedly be

better at predicting the process of therapeutic resistance. Such models would generate experi-

mentally testable hypothesis in the laboratory and would be used as a guide to inform clinical

management and the selection of anti-cancer therapies.
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S2 Fig. The value of ð1 � ~ρ=ρÞ� 1, which is an estimate of the mixing time of the Markov
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with the lowest curve in A.
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tions for experimentally computed human chromosome scores. A: In the full model (A),
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S4 Fig. The limiting distribution of copies of chromosome 13 in the modified model with

whole genome duplication, with pgd dependent on the number of copies. The dashed line

shows the limiting distribution when the genome duplication rate is p�2
gd or p�3

gd depending on

whether the number of copies of chromosome 13 is at most 2 or at least 3, respectively. The

solid line shows the limiting distribution when the genome duplication rate pgd is constant
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S5 Fig. Time to inactivation and surviving fraction for the model incorporating the effects

of aneuploidy during early tumor growth (AX) with N = 8 and a founder cell with 2 active

copies of gene X. A: Time to inactivation, i.e. the number of generations until the proportion

of cells containing no active copies of gene X is more than half, as a function of p and mr. B:

Surviving fraction over 500 generations.
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