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Abstract. The Semliki Forest virus (SFV) directs the
synthesis of a heterodimeric membrane protein com-
plex which is used for virus membrane assembly dur-
ing budding at the surface of the infected cell, as well
as for low pH-induced membrane fusion in the endo-
somes when particles enter new host cells. Existing
evidence suggests that the El protein subunit carries
the fusion potential of the heterodimer, whereas the
E2 subunit, or its intracellular precursor p62, is re-
quired for binding to the nucleocapsid. We show here
that during virus uptake into acidic endosomes the

original E2E] heterodimer is destabilized and the El
proteins form new oligomers, presumably
homooligomers, with altered El structure. This altered
structure of El is specifically recognized by a mono-
clonal antibody which can also inhibit penetration of
SFV into host cells as well as SFV-mediated cell-cell
fusion, thus suggesting that the altered El structure is
important for the membrane fusion. These results give
further support for a membrane protein
oligomerization-mediated control mechanism for the
membrane fusion potential in alphaviruses.

and Sindbis virus, are enveloped animal viruses

which mature by budding at the plasma membrane
(PM) of infected cells and enter new cells by an acid-induced
membrane fusion process inside the endosomal compartment
(Kielian and Helenius, 1986; Schlesinger and Schlesinger,
1986). Because of their simple structure and efficient repli-
cation these viruses represent useful systems for studying the
molecular mechanisms of membrane budding and fusion.
SFV directs the synthesis of three structural proteins, the
capsid protein and two transmembrane glycoproteins, p62
and El (Garoff et al., 1982). The capsid protein associates
in the cell cytoplasm with the viral RNA genome into nu-
cleocapsids (NCs). The two membrane proteins oligomerize
soon after synthesis in the ER into p62El heterodimers and
are then transported to the cell surface in order to take part
in the budding process (Ziemiecki et al., 1980; Wahlberg et
al., 1989). In the released virus particles the heterodimers
are clustered into groups of three, each representing a spike-
like projection on the virus surface (Vogel et al., 1986;
Fuller, 1987). Furthermore, the original p62El heterodimer
is processed by a limited proteolytic attack 66 residues from
the NH, terminus of p62 to form mature E2El complexes.
This cleavage occurs at a very late stage during cell surface
transport of the heterodimer and is probably mediated by a
host protease (de Curtis and Simons, 1988).

SLPHAVIRUSES, such as Semliki Forest virus (SFV)!

1. Abbreviations used in this paper: HA, hemagglutinin; NC, nucleocapsid;
pfu, plaque-forming units; PM, plasma membrane; SFV, Semliki Forest
virus.
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There exists substantial evidence that the envelopment of
the NC at the cell surface is driven by the binding of the cyto-
plasmic protein domains of E2 (p62) to the NC. The prox-
imity of these two structures has been demonstrated in virus
particles by chemical cross-linking, their structural com-
plementarity has been shown by immunological techniques,
and the binding has been verified biochemically in in vitro
assays (Garoff and Simons, 1974; Vaux et al., 1988; Met-
sikk6 and Garoff, 1990). The last studies have furthermore
emphasized the possible importance of the trimerization
reaction for the formation of the spike structures as a way to
obtain strong multivalent binding of membrane proteins to
the NC. The entry functions of the virus (that is, receptor
binding and membrane fusion activity) are, on the other
hand, carried by the El subunit of the heterodimer. The most
direct evidence for this was obtained in studies using virus
particles from which essentially all of the E2 subunits had
been digested by trypsin. Such particles were shown to be
able to infect cells almost as efficiently as the control virus
(Omar and Koblet, 1988). In addition, the hemagglutinating
activity of the virus has been shown to be a specific function
of the El subunit (Helenius et al., 1976).

The actual mechanism by which El catalyzes membrane
fusion is not yet solved. This problem is of particular interest
as the El-mediated membrane fusion process involves sev-
eral differences as compared with that of the extensively
studied hemagglutinin molecule (HA) of orthomyxoviruses
as well as those of many other viral fusion proteins. First,
the El fusion protein is made as part of a protein heterodimer
as opposed to a homooligomer in the other cases. Second,
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in contrast to most other viral fusion proteins, the El protein
of the alphaviruses is not processed by a cleavage reaction.
This host-mediated cleavage reaction of a fusion protein
seems to represent a fundamental control mechanism by
which many viruses prevent activation of their entry func-
tions during the assembly phase of the virus life cycle. With-
out such a control mechanism fusion proteins might cause
aberrant fusion inside the mildly acidic compartments of the
biosynthetic transport pathway (Anderson and Orci, 1988).
Third, El-catalyzed membrane fusion requires the presence
of cholesterol in the acceptor membrane (White and
Helenius, 1980; Kielian and Helenius, 1984). This absolute
restriction in lipid composition has not been observed for
other viral fusion proteins. Apart from these unique features
of the SFV fusogen it is well established that it requires in-
duction by mildly acidic pH (Helenius et al., 1980). By anal-
ogy with the low pH-induced changes of HA it is believed
that the acidic pH alters the El structure into a form that is
competent to perform a membrane fusion reaction. The fact
that El changes into a trypsin-resistant form during entry
into acidic endosomes and exposes new immunological epi-
topes as a result of low pH treatment might reflect this con-
formational change (Edwards et al., 1983; Helenius et al.,
1985; Kielian and Helenius, 1985; Kielian et al., 1986,
1990).

In the accompanying paper (Salminen et al., 1992) and in
recent published reports we have shown that, despite the lack
of El fusion protein processing, SFV still exerts a protein
cleavage-mediated control of entry functions, similar to other
viruses (Wahlberg et al., 1989; Lobigs and Garoff, 1990;
Lobigs et al., 1990). This control is, however, directed by
the p62 protein with which the El protein is associated. Thus,
in the intracellular p62El form of the complex, the fusion
function of El cannot be activated by mildly acidic condi-
tions. This is not possible until after formation of the E2El
complex through p62 cleavage. The control mechanism ap-
pears to involve a p62 cleavage-facilitated disruption of the
heterodimeric association by mildly acidic pH. This suggests
that the heterodimer has to dissociate before the El can be
induced by low pH to convert into its fusion-active form.

In this work we have followed the structure of the viral
membrane spike proteins during SFV entry into BHK-21
cells, and have found that the E2E] heterodimeric associa-
tion is indeed destabilized soon after the virus enters the en-
docytic pathway. Furthermore, we found that the El subunit
reorganizes itself into higher oligomeric forms, probably
homooligomers. These show increased trypsin resistance
and expose unique epitopes recognized by a monoclonal
anti-El antibody which is able to inhibit virus penetration
into cells as well as SFV-mediated cell-cell fusion.

Materials and Methods

Virus, Cells, and Monoclonal Antibodies

Stocks of SFV were propagated in BHK-21 cells as described earlier (Wahl-
berg et al., 1989). BHK-21 cells were grown in Glasgow minimal essential
medium supplemented with 10% tryptose phosphate broth, 5% FCS, and
2 mM glutamine (GIBCO Laboratories Life Technologies Ltd., Paisley,
Scotland). For the internalization experiments the cells were either grown
in 60-mm dishes or on 18 x 18-mm coverslips in 35-mm dishes.

The monoclonal antibodies UM 8.139 (anti-El), UM 8.47 (anti-El), UM
8.64 (anti-E1"), and UM 5.1 (anti-E2) were all used as mouse ascites prepa-
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rations (Boere et al., 1984). The IgG fraction from the UV 8.64 ascites
preparation was purified using the InmunoPure® (A/G) IgG Purification Kit
(Pierce Chemical Co., Rockford, IL) according to the manufacturer’s in-
structions. The monoclonal antibody OKT-9 reacting with the human trans-
ferrin receptor (anti-TR) was provided by T. Ebel in our laboratory and used
as mouse ascites fluid.

Growth and Purification of Radioactively
Labeled Virus

[33S]Methionine-labeled SFV (150000-500000 cpm/ul, 1-2 x 10!
plaque-forming units [pful/ml) was prepared by infecting confluent
monolayers of BHK-21 cells in 75-cm? bottles (Costar Corp., Cambridge,
MA) with SFV (10 pfu/cell) in 1 ml MEM supplemented with 10 mM
Hepes, 2 mM glutamine, and 0.2% BSA (GIBCO). After 1 h adsorption
in 37°C, 9 ml MEM with 0.2 % BSA was added and the incubation was con-
tinued. At 6 h after infection the cells were labeled for 15 h at 37°C with
{*5S}methionine (1,000 Ci/mmol; Amersham International, Amersham,
UK) at a final concentration of 200 xCi/ml in methionine-free MEM sup-
plemented with 1% FCS. The virus-containing medium was cleared from
cell debris by centrifugation at 2,500 g for 15 min at 4°C. The supernatant
was applied to the top of a two-step sucrose density gradient (1 ml 55%
[wt/wt] and 3 ml 20% [wt/wt] sucrose in 50 mM Tris-HCl [pH 7.4], 100
mM NaCl, and 0.5 mM EDTA [TNE]) in an SW40 tube, and centrifuged
at 30,000 rpm for 90 min at 4°C in an ultracentrifuge (model L8-60M;
Beckman Instruments, Inc., Fullerton, CA). After collecting the gradients
from below with a fraction collector (model 023 Micro Fraction Collector,
Gilson Co., Inc., Worthington, OH), the fractions containing radioactive
virus were pooled and diluted in TNE. The purified, labeled virus stock
was plaque titrated using carboxymethyl cellulose in the overlay and the
plaques were visualized after staining with crystal violet. The protein con-
centration in the sample was determined according to Lowry et al. (1951).
The number of virus particles in the sample was calculated using MW 488
X 106 for the total protein of one virus particle (Fuller, 1987).

Binding and Internalization Assays

The assays for [*>S]methionine-labeled SFV binding to, and endocytosis
into, BHK cells were performed essentially as described (Marsh and
Helenius, 1980; Helenius et al., 1985). Typically, 80% confiuent BHK cells
in 60-mm dishes were washed and preincubated with cold MEM containing
0.2% BSA, 10 mM Hepes, and 2 mM glutamine for 20 min on ice. The
radiolabeled virus (10 pfu/cell) was bound to the cells in 0.5 ml MEM, pH
7.4, for 1 h on ice with continuous shaking. Free virus particles were re-
moved by washing the cells twice with cold MEM. To assay for bound virus
particles (0 min sample) the cells were solubilized at this stage in 400 pl
of lysis buffer (1% NP-40, 50 mM Tris {pH 7.4], 150 mM NaCl, 2 mM
EDTA, and 10 ug/ml PMSF). Endocytosis of bound virus was initiated by
adding prewarmed (37°C) medium and incubating at 37°C. At different time
points the cells were cooled on ice, the medium was removed, and 2 ml of
cold PBS containing 0.5 mg/ml proteinase K (Bethesda Research Laborato-
ries, Gaithersburg, MD) was added, followed by an incubation on ice for
45 min. In control experiments this treatment removed 96% of the virus par-
ticles that had been bound to the surface of the cell and kept on ice. The
reaction was stopped by adding 2 ml cold PBS containing 30 mg/ml BSA
(Sigma Chemical Co., St. Louis, MO) and 1 mM PMSF. The cells were
pelleted (400 g for 3 min at 4°C), washed once with PBS containing 0.2%
BSA and 1 mM PMSE, and solubilized in 400 ul lysis buffer. Nuclei were
removed (2,000 g for 5 min at 4°C) and the radioactivity in the solubilized
cell samples was measured in a scintillation counter. The lysates were used
for immunoprecipitation analyses, trypsin digestions, and sedimentation
analyses as described below. For the experiments using lysosomotrophic
agents, 25 uM monensin (Sigma Chemical Co., St. Louis, MO) was present
during all incubation steps (Marsh et al., 1982).

Analysis of Solubilized Cell and Virus Samples

The samples used for these analyses were (a) [>>S]methionine-labeled vi-
rus particles solubilized in lysis buffer at pH 7.4, (b) [**S]methionine-
labeled virus particles treated with 20 mM Na-succinate buffer, pH 5.5, for
10 min at 4°C followed by solubilization in lysis buffer and neutralization,
and (c) solubilized BHK cells containing bound as well as internalized
[*S)methionine-labeled SFV particles.

Sucrose gradient centrifugation. The 150-u] samples were loaded on
gradients consisting of 5-20% (wt/wt) sucrose in TNE, pH 7.4, containing
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0.1% NP-40 and 10 xg/ml PMSF, and centrifuged in an SW40 rotor at
39,000 rpm for 24 h at 4°C. The gradients were fractionated and the radio-
activity was measured from each collected fraction as described (Wahlberg
et al., 1989). The fractions containing peaks of viral protein radioactivity
were pooled and analyzed using the assays described below.

Immunoprecipitation analysis. Solubilized SFV particles or cells with
virus were diluted in lysis buffer and used in a final volume of 100-500 nl
for the analyses. Precleaning using rabbit anti-mouse IgG was done for 30
min at 4°C and the incubations with the monoclonal antibodies for 16 h at
4°C using protein A Sepharose (Pharmacia LKB Biotechnology, Uppsala,
Sweden) as carrier (Wahlberg et al., 1989). Precipitates were solubilized
in SDS-PAGE sample buffer for 2 min at 70°C and the proteins were
resolved on a 10% SDS-PAGE gel (Cutler and Garoff, 1986). For visualiza-
tion of 3S-labeled proteins we used fluorography with 1 M sodium salicy-
late (Chamberlain, 1979). Quantitation of the bands in the gels was done
by cutting these out and counting the radioactivity as described earlier
(Wahlberg et al., 1989).

Trypsin digestions. The appearance of the trypsin-resistant form of El
during entry of SFV was assayed as described earlier (Helenius et al.,
1985). At various times after starting the 37°C incubation virus cell samples
were solubilized and treated with a final concentration of 200 ug/ml trypsin
(Sigma Chemical Co.) for 10 min at 37°C. The reaction was stopped by add-
ing a threefold excess of soybean trypsin inhibitor (Boehringer Mannheim
Corp., Indianapolis, IN), and samples were used for immunoprecipitation.
The trypsin-resistant fraction of E1 was recovered by immunoprecipitation
with a mixture of the monoclonal antibodies anti-El, anti-El’, and anti-E1"
and subjected to SDS-PAGE analysis.

Fusion Assays

Fusion of SFV at the PM was done by using a variation of the procedure
described in White et al. (1980). Confluent BHK cells grown on coverslips
were washed with MEM, pH 7.4, and left on ice for 20 min in MEM. SFV
(3 pfu/cell) was bound to the cells in 50 ul MEM, pH 6.5, containing 200
M chloroquine (Sigma Chemical Co.) for 1 h on ice at 4°C. Unbound virus
particles were removed by washing the cells twice with PBS while kept on
ice. Each coverslip was then placed on a 50-1 drop of MEM without bicar-
bonate, supplemented with either 20 mM MOPS (pH 7.4), 20 mM MES
(pH 6.0), or 20 mM Na-succinate (pH 5.5), and incubated for 1 min at 37°C.
The low pH flash was stopped by adding an excess of pH 7.4 medium (0.2
ml) under each coverslip. These were then washed in warm pH 7.4 medium
and transferred to dishes containing 3 ml MEM, pH 7.4, with 0.2% BSA
and incubated at 37°C for 3 h. 200 uM chloroquine was present throughout
all incubations described above. In the antibody inhibition experiments 1:10
dilutions of the ascites preparations of the antibodies anti-El, anti-El, anti-
El", anti-E2, and anti-TR were added to the different incubations, as de-
scribed in the figure legends. BSA (I mg/ml) was present during some of
the antibody treatments. After the final 3-h incubation the cells were fixed
in ice-cold methanol for 6 min (de Curtis and Simons, 1988) and prepared
for indirect immunofluorescence staining of the infected cells, essentially
as described previously (Lobigs and Garoff, 1990) using the anti-E2 mono-
clonal antibody in combination with sheep anti-mouse IgG fluorescein
(FITC) (Biosys, Compiégne, France).

Cell-cell fusion was induced by treatment of infected celis with buffers
of varying pH. BHK cells were infected with SFV (100 pfu/cell). 4 h after
infection the cells were washed and the coverslips placed on a 50-ul drop
of MEM titrated to pH 7.4, 6.0, or 5.5 with the buffers described above.
Monoclonal antibodies were included as 1:10 dilutions of the ascites prepa-
rations or as a purified IgG fraction (350 ug/ml) and incubation was done
for 1 min at 37°C. After washing with pH 7.4 medium the coverslips were
incubated further for 2 h in complete BHK medium at 37°C, then fixed in
ice-cold methanol and analyzed for the formation of polykaryons using
phase-contrast.

Results

Rearrangement of the Membrane Protein
Tertiary Structure

To study the entry of SFV into cells we used [*S]methio-
nine-labeled virus which was bound to BHK cells at 0°C for
1 h. The bound virus particles were then allowed to enter the
cells by incubation at 37°C for various times. Virus particles
that had not entered during the incubation at 37°C were re-

Wahlberg and Garoff Structural Rearrangements in SFV Fusion Protein

100 Figure 1. The kinetics of SFV uptake

g 8 into BHK cells. [**S]Methionine-
£ 60| labeled SFV (10 pfu/cell) was bound
§ & to BHK cells at 0°C. After incuba-
. % tion in 37°C for the indicated times
the uninternalized virus particles

2 4 6 8 10 were removed by treatment with 0.5

min mg/ml proteinase K and the radioac-

tivity in the cell lysates was mea-

sured. The uptake is expressed as the amount of proteinase K-resis-

tant radioactivity in percent of the total amount of labeled material
bound to the cells.

moved by proteinase K digestion before cell samples were
solubilized and measured for S radioactivity (Helenius et
al., 1980). The kinetics of the SFV uptake are shown in
Fig. 1. 40% of the bound particles had entered the cells after
2 min incubation at 37°C, and by 10 min 63 % was internal-
ized. This corresponds to ~1 pfu/cell.

Using this virus internalization protocol we first followed
the fate of the viral spike protein oligomer E2EIl by perform-
ing sedimentation analyses in sucrose density gradients of
cell samples that had been solubilized in an NP-40-contain-
ing buffer. These analyses enable the separation of different
oligomeric forms of the spike subunits. Controls in Fig. 2 a
show the separation of intact E2El heterodimers from solu-
bilized virus (sedimentation coefficient of ~4.5 S) and the
dissociated subunits that derive from virus that has been
treated with an acidic (pH 5.5) buffer (Simons et al., 1973;
Wahlberg et al., 1989). Analysis of the solubilized spike pro-
teins in virus particles that had been bound to cells and kept
at 0°C showed that these migrated as the heterodimers in the
control sample (Fig. 2 b). However, this sedimentation profile
underwent major changes upon 37°C incubation of the cell-
bound virus. Already after a 2-min incubation a consider-
able fraction of the spike proteins was distributed partly into
monomers and partly into forms that were larger than the di-
meric forms (Fig. 2 ¢). This shift became even more pro-
nounced in the cell sample that was incubated with virus for
5 or 10 min (Fig. 2, d and e, and quantitation in Fig. 6). After
longer times of incubation (20 and 30 min) the monomeric
and dimeric material disappeared, whereas the larger oligo-
mers were still clearly visible as a distinct peak (Fig. 2, fand
&). Fig. 2 h shows a control experiment that was done to ex-
clude an artefactual reorganization of the SFV spike oligomer
in the sample during solubilization. Here virus particles
were mixed with a cell solubilizate in vitro and then analyzed
in a sucrose gradient. The result shows the presence of di-
meric material only. Fig. 3 shows analyses by SDS-PAGE of
the pooled fractions corresponding to each peak region of
the gradient (Fig. 2 c) where the spike subunits were found
(large oligomer, dimer, monomer regions). These indicate
that the dimer region contained both El and E2 subunits
(lane 4), whereas the monomer region contained mainly E2
(lane 5) and the large oligomer contained only El (lane 3).
The trace amounts of faster migrating material also found in
the monomer region represented El protein fragments corre-
sponding to the lumenal domain of this protein. It reacted
with the E1 antibody and could not be precipitated with TX-
114 (data not shown). These sedimentation analyses suggest
that the E2E1 heterodimer in the virus particle is rearranged
during virus uptake. The original E2E1 interaction is dis-
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Figure 2. Sedimentation profiles of solubilized, [**S]methionine-
labeled membrane proteins from virus that had been bound to (b)
or bound and internalized into BHK cells (c-g). The samples were
run in a 5-20% (wt/wt) sucrose gradient for 24 h at 39,000 rpm
and at 4°C in a SW40 rotor. Top fraction to the right. Control sam-
ple analyses in a represent unbound virus particles that were treated
with buffers of neutral or acid pH before solubilization. Control
sample in k shows free virus particles that were mixed with a solu-
bilized cell sample before sedimentation.
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rupted and El forms new oligomers, whereas E2 stays in a
monomeric form.

This was further corroborated by coimmunoprecipitation
of E2 and El using a monoclonal anti-El antibody (UM
8.139). We used this assay earlier to demonstrate the
destabilizing effect of mildly acidic pH on the E2El interac-
tion in virus particles (Wahlberg et al., 1989). As shown in
Fig. 4, the anti-El antibody coprecipitated almost quantita-
tively the E2 subunit from solubilized virus particles (lanes
1 and 2) as well as from solubilized cells that had viruses
bound to the cell surface (lanes 5 and 6). However, after a
2-min incubation of cells and virus at 37°C only a subfrac-
tion (24 %) of the E2 subunits could be coprecipitated with
the anti-El antibody (lane 8) and after 10 min even less (8 %)
could be coprecipitated (lane /2). The quantitation of the
fraction of heterodimers found in this experiment is shown
in Fig. 6.

The EI Subunit Changes Its Antigenicity
during Internalization

The immunoprecipitation analyses described above also
showed that the reactivity of the El subunit for the monoclo-
nal antibody anti-El decreased with prolonged incubation
times of virus and cells. In Fig. 5 we show that concomi-
tantly with this reduction in reactivity the El protein exposed
a new epitope for another monoclonal anti-El antibody
called anti-E1” (UM 8.64). After 10 min at 37°C almost 80%
of the E1 proteins of internalized virus had obtained this new
conformation (quantitation is shown in Fig. 6). This anti-El”
antibody didn't significantly react with mature (Fig. 5, lane
2) or newly synthesized (not shown) El proteins, nor with
El from virus treated with low pH buffer at 4°C (lane 4). It
clearly differs from the anti-El' antibody (UM 8.47) de-

SFV SFV

pH 7 pH 5 0 min 2 min 5 min 10 min
luE1 aE1laE1 aE1l laE1 aE1YaE1aEaE1 aE1VaEl oE1)
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- ar ab-a
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1.2 3 4 5 6 7 8 9 1011 12

Figure 4. Immunoprecipitation analyses of the E2El1 association
during SFV uptake. [**S]Methionine-labeled SFV was bound to
BHK cells for 1 h at 0°C (0 min) and incubated at 37°C for the indi-
cated times (2, 5, or 10 min). Cell and virus samples were then
treated with 0.5 mg/ml proteinase K at 0°C. After this the cells were
solubilized and immunoprecipitated with anti-El and anti-E2 to-
gether (EVaE2) or with anti-El alone («El) and analyzed ona 10%
SDS-PAGE gel which was processed for fluorography. Immunopre-
cipitation analyses shown in lanes /-4 represent controls and cor-
respond to free virus particles treated with buffers of pH 7 and 5.
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Figure 5. The appearance of a new epitope on El during virus up-
take. Cell samples with virus which had been allowed to be inter-
nalized for different times (0, 2, 5, or 10 min) were solubilized and
used for immunoprecipitation with a mixture of the monoclonal an-
tibodies anti-El and anti-E1" to follow the total (T") El protein or
with the anti-El” alone («EI") to follow only El with the anti-E1”
epitope. Immunoprecipitates were dissolved in SDS sample buffer
and run on a 10% SDS-PAGE gel. The control samples (analyzed
in lanes 7-4) have been treated as described in the legend to Fig. 4.

scribed previously, which reacts specifically with El in virus
particles after treatment with a low ph buffer (Wahlberg et
al., 1989) but not with El in virus that has entered cells (not
shown).

The Exposure of the Anti-El" Epitope Correlates
with E1 Becoming Resistant Toward Trypsin and with
the Formation of Its Higher Oligomeric Form

The El subunit has earlier been shown to become trypsin
resistant both in virus particles that enter cells and in virions
that have been treated with a low pH buffer (Helenius et al.,
1985; Kielian and Helenius, 1985). To see how the genera-
tion of the trypsin-resistant form of El correlated with the
generation of the anti-E1” epitope, we performed El immu-
noprecipitation reactions with cell samples that had been in-

[T i Figure 6. Quantitation of the
B0 = - 7 fraction of viral membrane
o ! o proteins that remain as hetero-
[/ il
0 min 2min Smin 10 min

dimers (0), and the amount of
El protein that carries the
Anti-El” epitope (&), and is
trypsin resistant (&) in virus
particles that have been al-
lowed to enter into BHK cells for different times. The quantitation
was done by measuring the radioactivity in the bands cut out from
SDS-PAGE gels corresponding to autoradiographs as shown in
Figs. 4, 5, and 7. All values represent the mean of three experi-
ments. The heterodimer fraction was calculated as the amount of
E2 protein that was precipitable with the anti-E1 antibody. The anti-
EY” epitope-carrying fraction corresponds to the amount of El pro-
tein that was reactive toward the anti-E1” antibody (percentage of
total E1 in the sample that was precipitated with a mixture of mono-
clonal antibodies against El). The trypsin-resistant fraction rep-
resents the amount of El protein that was precipitable with the mix-
ture of monoclonal antibodies against El (percentage of total El in
the sample).
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cubated with virus for different times, solubilized, and then
treated with trypsin, using the anti-El” antibody alone as well
as a mixture of anti-El antibodies reacting with all forms of
El. The quantitation in Fig. 6 shows that up to 45% of El
of the cell-bound virus became resistant with increasing
times of incubation. Fig. 7 a shows that the material precipi-
tated with the anti-El” antibody is also trypsin resistant.
Thus, the trypsin-resistant E1 form that appears during entry
seems to correspond to the El that presents the anti-E1” epi-
tope. To see how the trypsin-resistant and anti-El” antibody
binding form of E1 was migrating in the sucrose density gra-
dients, sedimentation analyses were performed and the ma-
terial in the peak fractions of a separation as shown in Fig.
2 ¢ was digested with trypsin and analyzed by immunopre-
cipitation. The results shown in Fig. 7 b demonstrate that
only the El of the higher oligomers corresponds to the
trypsin-resistant and anti-El” antibody binding form.

The Changes in the Quaternary and Tertiary
Structure of SFV Spike Protein Are Induced by
Low pH in Endosomes

To assess the importance of the acidic milieu of the endo-
somes for the observed alteration in SFV membrane protein
structure, we analyzed the effect of monensin treatment of
cells on these changes. Monensin treatment is known to raise
the pH in intracellular organelles (Marsh et al., 1982). For
this reason cells with bound virus were incubated at 37°C
in the presence of 25 yM monensin before solubilization. Vi-
ral proteins were then analyzed for the E2EI heterodimer as-
sociation using the coprecipitation assay with the anti-El an-
tibody for reactivity toward the anti-El” antibody and for
trypsin resistance. Fig. 8 a shows that the presence of
monensin caused E2 to coprecipitate with El and most of the
El to stay trypsin-sensitive and unreactive to anti-El”. Thus
we conclude that the observed tertiary and quaternary
changes in El structure require the low pH which the virus
encounters when entering the endosomes of the cell. This
was further confirmed by indirect immunofluorescence anal-
yses of cells incubated with SFV (Fig. 8 ). The anti-E1” anti-
body gave a punctal staining pattern which probably repre-
sented the endosomal structures-(leff). This staining was
completely abolished when 25 uM monensin was present
during the incubation (right). The control anti-El antibody
showed no difference in reactivity towards the El subunits of
internalized virus particles in the presence or absence of
monensin (not shown).

The Rearranged Form of El Is Involved in the Low
pH-induced Fusion and Penetration Processes

If the structural alterations in the SFV spike, as described
above, are important for virus entry and hence membrane fu-
sion, then the binding of the anti-E1” antibody to the new
form of El might be expected to interfere with these
processes. To test this we first made use of a previously de-
scribed experimental protocol which allowed virus penetra-
tion to occur solely at the cell surface (White et al., 1980).
Virus particles were bound to cells and penetration was in-
duced directly at the PM by a 1-min incubation at 37°C in
a pH 74, 6, or 5.5 buffer. Concomitantly, the activation of
fusion in the endosomes was inhibited by the presence of 200
uM chloroquine. The efficiency of virus penetration was es-
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Figure 7. (a) Analysis of trypsin-resistant E1 in SFV after uptake. [**S]Methionine-labeled SFV was allowed to be internalized for various
times 0-10 min) into BHK cells. The samples were then solubilized and treated with trypsin and the resistant fraction was recovered by
immunoprecipitation using the monoclonal antibody anti-El”. Samples analyzed in lanes 1, 3, 5, and 7 represent controls that have not
been trypsin treated. The immunoprecipitates were analyzed on 10% SDS-PAGE. (b) Correlation of reactivity toward the anti-El” monoclo-
nal antibody and trypsin resistance with the SFV spike protein material found in the peak regions (fractions defined in Fig. 3) of the sedimen-
tation analyses shown in Fig. 2 ¢. Portions of pooled samples were reacted either with a mixture of anti-El, anti-EY, and anti-E1" (T or
with anti-El" alone (lanes I-6), or treated with trypsin followed by precipitation with a mixture of the monoclonal antibodies against E1

(lanes 7-9).

timated after 3 h of further incubation at 37°C by screening
for infected cells using indirect immunofluorescence stain-
ing of newly synthesized spike proteins. Under conditions (3
pfu/cell and pH 5.5 flash) in which virtually all of the cells
could be infected via the PM route (Fig. 9 i), we could dem-
onstrate a significant inhibition when the anti-E1” monoclo-
nal antibody was present during the flash (Fig. 9 j and Table
I). This inhibitory effect was also evident after a wash with
a pH 6.0 buffer (Fig. 9 f). However, as pH 6.0 is close to the
pH threshold for SFV fusion, the overall efficiency of SFV
entry via the pM was lower. Without antibody the efficiency
was ~v50% of the efficiency of infection after a pH 5.5 treat-
ment (Fig. 9, e and {). At both pH conditions the antibody
had to be present during the low pH treatment in order to
cause inhibition. No inhibition of infection was observed if
the anti-El" antibody was present during binding of the virus
particles to the PM and then removed before the low pH flash
(Fig. 9 b). In contrast, the control monoclonal antibodies
anti-El and anti-E2 (neutralizing antibodies; UM 8.139 and
UM 5.1; Boere et al., 1984) inhibited infection when present
before as well as during the low pH treatment (Fig. 9, c, g,
k; Table I). Additionally, the anti-TR antibody did not de-
crease the number of infected cells if present during any of
the incubations (Fig. 9, d, h, I; Table I). No inhibition was
observed for either a rabbit anti-mouse IgG preparation or
a monoclonal antibody against the VSV G protein (not
shown).

To relate the inhibitory effect of the anti-El” antibody on
SFV infectivity more directly to the actual fusion process,
we studied its effect on the SFV-mediated cell-cell fusion
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event (White et al., 1981). A brief wash of SFV-infected cells
with a buffer of pH 6 or 5.5 induced massive polykaryon for-
mation (Table I; Fig. 9 m). The presence of the anti-E” or the
anti-El antibody during the low pH treatment prevented the
formation of polykaryons (Fig. 9 n and 0), whereas the anti-
TR, did not inhibit the cell-cell fusion (Fig. 9 p and Table
I). Inhibition was observed both by the anti-E1” ascites prepa-
ration and by a IgG preparation (350 ug/ml) purified from
the anti-El” ascites preparation (not shown). We conclude
that the anti-E1” antibody can interfere with virus penetration
at the stage of membrane fusion, suggesting that the altera-
tions in the spike proteins that we have observed are impor-
tant for virus entry.

Discussion

In this work we have shown that the heterodimeric E2E1 pro-
tein complex of the SFV spike undergoes a major change in
both its quaternary and tertiary structure when entering the
acidic milieu of the endosome in a cell. The heterodimeric
interactions are interrupted and the El subunits are orga-
nized into new oligomers, whereas the E2 subunits appear
to remain monomeric. Concomitant with the change in ter-
tiary structure of the spike proteins, the El subunit under-
goes conformational alterations as detected by the exposure
of the anti-El" epitope and by the previously described in-
creased resistance of El towards trypsin digestion (Helenius
et al., 1985).

The exact composition of the new E1 oligomer is presently
under investigation. In preliminary experiments we have
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Figure 8. Effect of monensin on changes in the quaternary and ter-
tiary structure of El during virus uptake. (a) SFV particles were
allowed 10 min internalization into BHK cells in the absence
(lanes I-3) or presence (lanes 4-6) of 25 uM monensin. Cells were
solubilized and the samples were used for immunoprecipitation
with anti-E1 (lanes 7 and 4) or anti-E1” (lanes 2 and 5), or digestion
with trypsin before immunoprecipitation with a mixture of the
monoclonal antibodies against El (lanes 3 and 6). (b) Immunofluo-
rescence staining of BHK cells into which SFV has been allowed
to enter (1.5°'h, 20°C) in the absence (left) or presence (righr) of
25 uM monensin. The cells were stained using a combination of
the anti-E1” antibody and sheep anti-mouse-conjugated FITC. Bar
represents 15 pm.

used cross-linking with glutaraldehyde and obtained some
covalently linked oligomers of El as visualized by SDS-
PAGE (Wahlberg, J., and H. Garoff, unpublished observa-
tions). We have also labeled host cells with [**S]methionine
before incubation with virus and analyzed whether any host
proteins were coprecipitating with the El oligomers from

Wahlberg and Garoff Structural Rearrangements in SFV Fusion Protein

cell lysates that had been fractionated by sedimentation in a
sucrose gradient. No host proteins were detected as com-
pared with a control cell sample lacking internalized virus.
One possibility is that the El oligomer corresponds to an El
homotrimer. Such a structure might be formed from the
three heterodimers in a spike by the simultaneous disruption
of the heterodimeric interactions and strengthening of inter-
molecular El interactions.

The fact that the monoclonal antibody anti-E1” inhibited
virus penetration in experiments where virus entry was
manipulated to occur at the cell surface, as well as fusion of
SFV-infected cells suggests that the new El oligomers repre-
sent important structures that are required for the membrane
fusion step of the entry process. It is possible that the El
oligomer represents a fusion-competent form which cor-
responds to the low pH-activated form of the influenza vi-
rus HA molecule observed at 0°C (Stegmann et al., 1990).
In this fusion-competent HA the most prominent structural
change appears to be the exposure of the hydrophobic pep-
tide which constitutes the new NH,-terminus after matura-
tion cleavage of HA. This so-called fusion peptide has been
suggested to play a critical role in initiating the membrane
fusion process of orthomyxoviruses. In the case of the SFV
El protein the hydrophobic peptide spanning amino acid
residues 79-97 might have an analogous function. This
finding is supported by the fact that this amino acid sequence
is very conserved between alphaviruses and also by the re-
cent characterization of a Sindbis virus variant which has a
mutation close to the gene region encoding the putative fu-
sion peptide of El (Garoff et al., 1980; Rice and Strauss,
1981; Dalgarno et al., 1983; Boggs et al., 1989). This muta-
tion lowers the pH for fusion in in vitro assays from the nor-
mal value of 6.0 to 5.5. However, so far we have no informa-
tion about whether this hydrophobic peptide is exposed in the
new oligomeric form of the El protein.

It is interesting to note that the E1 oligomers carrying the
anti-El” epitope are very efficiently expressed in virus that
has been taken up into cells, but only to a very insignificant
degree in free virus that has been treated with low pH buffers
at 4°C. This is in clear contrast to the low pH-mediated dis-
ruption of the E2E] interaction and the induction of El resis-
tance to trypsin, both of which occur in vitro as well as in
virus that has entered new cells. Apparently, acid treatment
of SFV alone is not sufficient to induce all the conforma-
tional changes that take place in the viral spike proteins dur-
ing entry. To accomplish these changes, simultaneous inter-
action with host membranes may be required. This might be
related to the finding that the fusion process requires the
presence of cholesterol or a 38-hydroxysterol in the target
membrane (White and Helenius, 1980; Kielian and Helenius,
1984). Recently, Flynn and co-workers have described sev-
eral epitopes on the membrane proteins of Sindbis virus
which react transiently with corresponding monoclonal anti-
bodies. The exposure of this transient epitope also required
prior binding of the virus particles to host membranes as
well as incubation at 37°C (Flynn et al., 1990).

So far we and others have characterized several defined
changes in the quaternary and tertiary structure of the al-
phavirus membrane proteins which appear to be important
for virus penetration into new host cells. These include the
p62 cleavage at the stage of virus maturation (Lobigs and
Garoff, 1990; Lobigs et al., 1990), the exposure of unique
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Table I. Inhibition of Fusion Using Monoclonal Antibodies
% Infected cells*

Polykaryon formationt

Antibody pH 7 pH 6 pH 5.5¢% pH7 pH 6 pHS.S
- 0 50 100 - + +
«El” 0 <5 <5 - - -
aEl 0 <5 <5 - - -
«El 0 ND 30 - ND -
«E2 0 <5 <5 - - -
oTR 0 50 80 - + +

* BHK cells were infected with SFV (3 pfu/cell) for 1 h at 0°C and incubated
at the indicated pH values for 1 min at 37°C in the presence of the respective
monoclonal antibodies and 200 uM chloroquine as described in Materials and
Methods. The values represent the percentage of cells that had been infected
through the PM.

+ BHK cells were infected with SFV (100 pfu/cell) and analyzed for poly-
karyon formation 4 h after infection by incubating for 1 min at 37°C at the indi-
cated pH values in the presence of the respective antibodies as described in
Materials and Methods. —, no polykaryons; +, polykaryons formed; ND, not
determined.

§ Experiments were done with or without 1 mg/ml BSA in the low pH incuba-
tion mixture.

epitopes transiently on virus particles that have been bound
to the cell surface (Flynn et al., 1990), and the low pH~in-
duced changes observed during virus uptake, such as disrup-
tion of the E2E1 interaction, reorganization of the El pro-
tein, exposure of the epitope for the anti-El” monoclonal
antibody (this report), and the increased resistance of El to-
ward trypsin digestion (Helenius et al., 1985). These results
are in agreement with a model for the activation of the El
fusion protein in which the El subunit disrupts its original
heterodimeric association and builds up a new oligomer, pre-
sumably a homooligomer, consisting of structurally altered
El subunits. Thus the El fusion protein uses first heter-
odimerization with p62 as a means to become incorporated
into the viral envelope and then dissociation from the cleaved
p62 (E2) and reorganization, possibly with itself, as a way
to become activated. This process of fusion protein matura-
tion and activation differs considerably from that among
most other enveloped viruses. For instance, in the cases of
orthomyxo-, paramyxo-, retro-, and coronaviruses the pro-
teins carrying entry functions already form homooligomeric
structures soon after being synthesized within the ER of the
infected cell. These preformed oligomers are then incorpo-
rated into the viral envelope and activated for fusion by ei-
ther limited proteolysis or acidic pH or both (reviewed in
Stegmann et al., 1989; White, 1990).

The membrane protein oligomerization-mediated control
mechanism of entry functions that we propose for al-
phaviruses might also be used by some other viruses, such

as flaviviruses, bunyaviruses, and Rubella virus. In these
cases the virus directs the synthesis of a heterodimeric mem-
brane protein oligomer which apparently carries both as-
sembly and entry functions (Wengler and Wengler, 1989;
Persson and Pettersson, 1991; Baron, M. D., and K. Forsell,
manuscript submitted for publication). Consequently, the
control mechanisms of the SFV entry process that we have
proposed are possibly not unique for alphaviruses, but are
applicable to a whole group of different viruses.
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