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ARTICLE INFO ABSTRACT
Articl_e history: Chronic kidney disease (CKD) causes irreversible damage to kidney structure and function. Arising from
Received 28 October 2022 various etiologies, risk factors for CKD include hypertension and diabetes. With a progressively increasing
Received in revised form 28 May 2023 global prevalence, CKD is an important public health problem worldwide. Medical imaging has become an
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Available online 30 May 2023 important diagnostic tool for CKD through the non-invasive identification of macroscopic renal structural

abnormalities. Artificial intelligence (Al)-assisted medical imaging techniques aid clinicians in the analysis
of characteristics that cannot be easily discriminated by the naked eye, providing valuable information for

ii{i‘ngisintelligence the identification and management of CKD. Recent studies have demonstrated the effectiveness of Al-as-
Radiomics sisted medical image analysis as a clinical support tool using radiomics- and deep learning-based Al al-
Deep learning gorithms for improving the early detection, pathological assessment, and prognostic evaluation of various
Chronic kidney disease forms of CKD, including autosomal dominant polycystic kidney disease. Herein, we provide an overview of

the potential roles of Al-assisted medical image analysis for the diagnosis and management of CKD.
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1. Introduction

With a incidence rising faster than most other chronic diseases,
chronic kidney disease (CKD) is expected to become the fifth-leading
cause of death globally by 2040. Early detection and timely inter-
vention for CKD is critical for preventing the progression to end-
stage renal disease (ESRD) [1-6]. Each year worldwide, approxi-
mately 1.5 million patients with ESRD undergo dialysis while
awaiting kidney transplantation, all of which contribute huge eco-
nomic burdens for patients and health care systems [7].

The Kidney Disease Improving Global Outcomes (KDIGO) guidelines
define CKD as abnormalities of kidney structure or function persisting
for over 3 months with implications for health [8]. In clinical practice,
renal dysfunction is usually marked by albuminuria or reduced esti-
mated glomerular filtration rate (eGFR), whereas renal structural ab-
normalities are primarily identified by medical imaging. Early detection
of CKD is often confounded by the technical challenges associated with
identifying microscopic structural changes in kidney tissues, leading to
the diagnosis of most CKD patients in more advanced stages of disease
[9]. In recent years, studies have used artificial intelligence (Al) in the
form of radiomics-based machine learning and deep learning (DL) al-
gorithms to acquire quantitative diagnostic information from medical
imaging data that cannot be easily identified by visual inspection of
digitized images with the naked eye. These novel, Al-discriminated
biomarkers provide an important supplement to the conventional
evaluation of imaging data for improving early detection of CKD and
clinical disease management.

Our review herein will describe the findings of recent studies of the
application of radiomics-based machine learning and DL algorithms in
Al-assisted medical image analysis for the detection, management, and
prognosis of CKD, such as the diagnosis and evaluation of autosomal
dominant polycystic kidney disease (ADPKD). This information was re-
trieved through searches of the PubMed, Embase, and Cochrane data-
bases for relevant literature published from January 1, 2018 to January 1,
2023. The key words were targeted at different imaging modalities, as
shown in Appendix 1. We also performed a manual search of the refer-
ences cited in the retrieved articles to identify additional relevant re-
search reports. We selected publications for review that met the
following criteria: 1) CKD patients; 2) radiomics or DL algorithms on
medical images applied for CKD assessment; 3) published in English.
Studies with animals or pediatric subjects were excluded. Given the lack
of quality assessment tools specifically designed for Al studies, the
modified Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-
2) checklist was used to assess the quality of the enrolled articles, re-
ferring to Zheng et al. [10]. For the assessment of patients selection bias,
15 studies had a high risk of bias (56%), 1 study had a low bias (4%) and 11
studies were unclear (40%). The high risk of bias was mainly due to the
lack of a randomized or consecutive sample of patients enrolled. For the
domain of index, most studies (56%) were considered to have high risk of
bias attributed to the lack of independent external validation. Detailed
assessment results are shown in Table 1 and Fig. 1.

2. Al in medical image analysis

Applications of Al are designed to imitate human behavior and
cognitive processes [11]. Given the ever-increasing breadth of data
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that current clinical research encompasses, including health records,
diagnostic and treatment data, and extensive genomic databases, a
major advantage of Al lies in its ability to efficiently analyze big data
[12]. The use of Al technology has been widely accepted for diag-
nosis, treatment, and prognosis in a range of diseases and clinical
scenarios. Studies have applied Al techniques to multiple aspects of
CKD-related health care, including an alert system for identifying
patients at risk for CKD onset, diagnosis based on digital imaging
data, and biopsy evaluation based on DL models [11,13-15]. Among
CKD-related Al applications, Al-assisted medical image analysis has
been studied most extensively.

The progression of CKD is characterized by the gradual loss of
renal cells with replacement by extracellular matrix proteins, re-
sulting in fibrosis. Renal fibrosis represents a hallmark of end stage
CKD that occurs independent of the etiology. The pathological fea-
tures include excessive deposition of extracellular matrix proteins,
peritubular capillary atrophy, and the epithelial-to-mesenchymal
transition of renal tissue resulting in scarring. These pathological
changes can be mapped to the heterogeneity of texture, volume, and
shape of kidney tissues in digital medical images [16]. Slight differ-
ences in these image characteristics are difficult to discern visually,
thereby demonstrating the utility of Al-assisted medical image
analysis.

In clinical practice, various modalities are used for kidney ima-
ging to directly observe anatomical structure or to indirectly detect
pathophysiological aberrations [17-21]. Regardless of whether di-
agnosis is empirically based on morphological alterations or it
considers traditional quantitative imaging parameters, there exists
great potential for the under-utilization of valuable imaging in-
formation due simply to the limitations of human vision [22-24]. By
mining imaging features and using mathematical algorithms to
analyze the characteristics of training data, Al can identify and
evaluate the extent of disease pathology. In medical image analysis,
the use of Al is broadly divided into two categories: hand-crafted
radiomics and DL.

2.1. Hand-crafted radiomics

The concept of radiomics was first proposed in 2012 by the Dutch
scholar Lambin Equals. Radiomics refers to the application of
mathematical methods to extract quantitative features from medical
images. Learning algorithms can be designed to identify patterns in
the heterogeneity and spatial distribution of pixels within pre-
defined regions of images as selected by the user, which have been
shown to reflect different disease states [25-27].

In the radiomic workflow (Fig. 2), image acquisition and pre-
processing most often involve medical imaging data recorded in the
Digital Imaging and Communications in Medicine (DICOM) format.
Following acquisition, preprocessing removes digital noise and
preserves structural information by enhancement and normal-
ization. In image segmentation, regions of interest (ROIs) are speci-
fied for subsequent image analysis, which begins with feature
extraction and selection. PyRadiomics, an open-source python
package is specially designed for feature extraction applying to
medical images. Several open-source software platforms can also be
used to extract image features without the need for programming.
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Fig. 1. Risk of bias assessments of selected publications through the modified
QUADAS-2. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2.

Radiomics features are typically categorized as statistical (including
texture-based and histogram-based), transform-based, model-
based, or shape-based features, which represent different types of
information that are extracted directly or statistically calculated
from the imaging data (Table 2) [28,29].

Much of the information contained within the acquired features
might not be associated with target variables [30]. Feature reduction,
which most often uses linear discriminant or principal component
analysis, removes irrelevant or redundant information in features,
and combines multiple relevant features into new, individual fea-
tures. Multiple characteristics of the resulting features serve as

Computational and Structural Biotechnology Journal 21 (2023) 3315-3326

designated imaging biomarkers, which are often then analyzed to
build prediction models using machine learning algorithms, known
as a branch of Al The algorithm is chosen based on the type of target
variable (categorical or continuous) and certain data characteristics,
such as sample size, dimensions, and so on, as well as the experience
and preferences of the clinician.

Model validation is also an integral part of a comprehensive
radiomics analysis, especially external validation in large, in-
dependent, prospective datasets. The receiver operator character-
istics curve (ROC), sensitivity, and specificity can also be used to
evaluate model performance. Radiomics analyses based on different
medical imaging modalities have been used for the diagnosis of a
wide range of diseases, thereby demonstrating the power of com-
puter-aided diagnostic tools [31-34]. However, potential limitations
lie in the predefined nature of radiomic features and their de-
pendency on the current domain of knowledge. Therefore, the full
advantages of Al for developing diagnostic tools through the analysis
of big data might not be perfectly represented due to the hand-
crafting of features.

22. DL

The branch of Al known as DL uses multiple layers of artificial
neural networks with interconnecting nodes that simulate learning
and cognition in the human brain. Convolution neural networks
(CNN) are DL neural networks with a convolution structure that si-
mulates information processing in the human visual cortex [35-37].
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Fig. 2. Flowchart of radiomics and deep learning. (A). Basic steps in radiomics, including medical images acquisition, regions of interest (ROIs), features extraction, features
selection and classifier construction. (B) Deep learning directly generates deep neural networks (f) after medical image acquisition, replacing steps b-e in radiomics in Figure A,

thus enabling end-to-end learning.
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Table 2
Classification and description of radiomic features.
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Classification Description

first-order
Texture-based
Model-based
Transform-based
Shape-based

describing the distribution of pixels or voxels in an image, including minimum, maximum, mean, median, range, etc.

describing the relationship of pixels or voxels in an image, including GLCM, GLRLM, GLSZM, NGTDM, GLDM and Absolute Gradient.

A parameterized model of texture generation is calculated and fitted to the ROIs, and the estimated parameters are used as radiomic features.
extracting features from the transformed images, including fourier transform, Gabor transform, wavelet transform, laplace transform, etc.
describing the geometric properties of ROIs, including diameter, shaft, volume, area, ratio, etc.

Abbreviation: GLCM, Gray-level Co-occurrence Matrix; GLRLM, Gray-level Run-length Matrix; GLSZM, Gray-level Size Zone Matrix; NGTDM, Gray-level Size Zone Matrix; GLDM,

Gray level dependence matrix; ROIs: regions of interest;

Using the whole image as a direct input to the network, the CNN
automatically extracts features using the deep convolution and
pooled sampling layers, avoiding the manual feature extraction and
data reconstruction of traditional radiomics analysis (Fig. 2). With
the deepening of network layers, higher-level abstract features can
be learned that improve the sensitivity of identification. Compared
with traditional radiomics, CNNs are more automated due to the
implementation of end-to-end learning patterns throughout the
training process, from image input to recognition output, without
the need for human intervention [38]. A comparison of radiomics
and DL is summarized in Table 3.

Transfer learning (TL) is a new framework based on DL that aims
to solve the fundamental problem of insufficient training data. Based
on the similarity between the source task and target task, model
parameters can be obtained by pretraining on a source task com-
prising a larger data set, and these parameters are then migrated to
the target task with a smaller sample size to construct a robust CNN
model [39]. Various factors contribute to the difficulty associated
with acquiring a large sample of renal images, such as the com-
paratively low prevalence of CKD, the skewed distribution of pa-
tients toward advanced disease, and the lack of a universal kidney
image-sharing platform. Hence, TL can enhance the potential benefit
of Al-based image analysis for CKD patients [40].

The rapid development of DL has brought innovation to tradi-
tional radiomics. The segmentation of ROIs using DL algorithms in-
creases the automation of radiomics [41-44]. A recently described
radiomics method uses a deep transfer network in the feature ex-
traction algorithm, thereby replacing or integrating handcrafted
features, which not only reduces the amount of data required, but
also provides the advantages of DL [45-47]. Zheng et al. [48] de-
monstrated that classification of kidney ultrasound (US) images
based on a combination of TL and handcrafted features was more
effective than that based on TL or handcrafted features alone. In the
future, Al will bring more innovations and breakthroughs in this type
of medical image analysis.

3. Al-assisted medical image analysis in CKD
3.1. Evaluation of renal function

As CKD is usually occult at onset, regular screening of renal
function is highly recommended by the American Society of

Nephrology [49,50]. At present, serum creatinine and albuminuria

Table 3
Comparison of radiomics and deep learning.

are the most commonly accepted biomarkers for CKD screening, but
neither provides accurate assessment of glomerular structural in-
tegrity. Al-based medical image analysis can use eGFR or serum
creatinine as ground truth references for the development of models
for noninvasive renal function assessment.

3.1.1. US-based evaluation of renal function

The availability, cost-effectiveness, and convenience of medical
US make it a first-line diagnostic tool in nephrology. Moreover,
compared to some techniques, it does not expose patients to io-
nizing radiation. Ardakani et al. [51] were the first researchers to
apply radiomics to the analysis of renal US images in the diagnosis of
renal failure after transplantation. For each ROI, they extracted up to
270 texture features, 14 of which were closely associated with the
level of serum creatinine. Chen et al. [52] built support vector ma-
chine models based on the grey level co-occurrence matrix (GLCM)
of renal US images that demonstrated an accuracy of 75.95% in
discriminating CKD stages 1-5. Studies have also used transformed-
based features extracted from US images. Bandara et al. [30] ex-
tracted second-order features from wavelet-transformed images to
identify CKD. They found that the 10 most significant features were
sensitive to the directionality of US speckle patterns. Igbal et al. [53]
demonstrated that Fourier transform-based features reflecting spa-
tial frequencies could successfully identify patients with CKD,
whereas the GLCM-based features could not.

To date, all DL models for evaluating renal dysfunction have been
based on US images. A US-based CNN model developed by Kuo et al.
[40] demonstrated a high proficiency for identifying CKD (eGFR <
60 ml/min/1.73 m?; AUC = 0.904, specificity = 92.1%, and accuracy =
85.6%), surpassing that of experienced nephrologists and traditional
machine learning models. A novel CNN framework was also pro-
posed by Hao et al. [54] in which texture branching was introduced
into the CNN network, simultaneously extracting texture features
and new deep features from input images, which demonstrated an
accuracy of 96.01% and a sensitivity of 99.44%. Lee et al. [55] in-
troduced measurable features and clinical variables into a CNN
network which also improved the accuracy of identifying CKD.

3.1.2. Magnetic resonance imaging (MRI)-based evaluation of renal
function

MRI has become the most common second-line imaging option
for evaluating CKD, due in large part to its high resolution of soft
tissues, the lack of ionizing radiation, and multiple sequence choices.

Radiomics

Deep learning

sample size less label data relatively

features extraction predefined or hand-crafted quantitative features
classifier

Image segmentation
interpretability

conventional statistical or machine learning models
drawing regions of interest manually

learning models

results can be attributed to single predictor included in machine

demanding large label data, usually through transfer learning, data
augmentation, etc.

massive layered features derived from autonomous learning of neural
networks

deep neural networks

The whole images can be used as direct input

"black box" models mostly, which can be explained by shaply-value, etc.
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Grzywinska et al. [56] explored the relationship between renal
function and radiomics features from T2WI images. They found that
features from the renal cortex were more significantly associated
with serum creatinine level and eGFR, compared with that of the
whole kidney, which could be attributed to the abundance of func-
tional glomeruli in the cortex. Building upon such findings, Kline
et al. [57] combined radiomic features extracted from T2WI images
with age, baseline eGFR, and total kidney volume to construct a
multivariable linear regression model that successfully predicted the
risk of CKD progression to stage 3 in ADPKD patients after 8 years of
follow-up.

Compared with traditional MRI technology, emerging functional
MRI (fMRI) can better reflect micropathophysiological changes, and
has greater potential to evaluate renal dysfunction. Numerous stu-
dies [58-60] have confirmed that conventional quantitative fMRI
parameters are significantly correlated with indicators of renal
function, such as serum creatinine, albuminuria, and eGFR. However,
these parameters reflect only the average signal strength within the
selected ROIs, and do not mine abundant hidden information in fMRI
images. Studies have investigated whether Al-based fMRI analysis
can provide a better assessment of renal dysfunction. Li et al. [61]
performed a diffusion-weighted imaging-based radiomics analysis
of fMRI. They constructed a logistic regression model to distinguish
patients with CKD from healthy individuals that demonstrated a
sensitivity of 93% and specificity of 70%.

Ding et al. [31] compared the use of radiomic features from
susceptibility-weighted imaging, blood oxygen level-dependent
(BOLD) imaging, and diffusion-weighted imaging data to dis-
criminate between different stages of CKD. Their results showed that
the use of features extracted from BOLD and susceptibility-weighted
imaging data demonstrated similar discriminating abilities, and
were more suitable for early recognition of renal dysfunction,
compared with that of diffusion-weighted imaging. Deng et al. [62]
and Rossi et al. [63] explored the use of feature extractions from
diffusion tensor imaging and arterial spin-labelling MRI, respec-
tively, and both demonstrated proficiency for the early detection of
CKD. However, considering the limited sample sizes of these studies,
the ability of Al-based fMRI analyses to evaluate renal dysfunction
requires further validation in large-scale clinical studies Tables 4-6.

3.1.3. Computed tomography (CT)-based evaluation of renal function
To date, relatively few studies have reported the use of Al-as-
sisted CT image analysis for renal function assessment. One study
explored the effectiveness of Al-assisted CT image analysis for pre-
dicting radiation-induced CKD in patients undergoing radiation
therapy for abdominal tumors [33]. Due to the exposure of patients
to ionizing radiation, the use Al-assisted CT assessment might be
limited to specific types of patients, rather than for continuous
monitoring of renal function status in all types of CKD patients.

3.1.4. Retinal imaging-based evaluation of renal function

Some recent studies of the evaluation of renal function have
shifted focus to Al-assisted retinal imaging analysis due to the si-
milarity of pathophysiological changes that occur in both the retinal
and renal microcirculations during the early stages of diabetes.
Patients with microvascular retinal signs are also more likely to
develop CKD in clinical practice, suggesting that retinal imaging
might provide supplementary information for CKD screening
[64-66]. Xu et al. [67] analyzed retinal images from 1925 patients
with type 2 diabetes, and found that texture features reflecting en-
hanced homogeneity and contrast were strongly associated with
renal dysfunction. Sabanayagam et al. [68] built a CNN model based
on retinal images to detect CKD, resulting in an AUC of 0.911. This
model was also validated in two independent cohorts with AUCs of
0.835 and 0.733. These studies provide a new direction for the
identification of renal dysfunction. The integration of CKD screening
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into the retinal imaging-based screening of diabetes patients not
only improves the efficiency and cost-effectiveness of the process, it
also improves early detection of renal disease in high-risk popula-
tions [3].

3.2. Pathological diagnosis of CKD

Renal tissue pathology provides an objective basis for etiological
determination, prognosis, and personalization of treatment [69,70].
With advancements in digital pathology, whole-slide image tech-
nology allows high-resolution scans of complete tissue biopsy slides
that can also be subjected to Al-based images analysis. Examples of
applications of Al in digital pathology include the detection and
segmentation of kidney structures, the auxiliary diagnosis of renal
pathological changes, and CKD prognosis [71-74]. The application of
Al to whole-slide image analysis increases the power of detecting
subtle changes, compared with visual assessment by clinicians, and
overcomes the subjectivity of manual classification induced by dif-
ferences in visual perceptions and preference. However, methods
requiring biopsy are not ideal for evaluating CKD due to the inva-
siveness and risks of hemorrhage, arteriovenous fistula, and infec-
tion [75-78]. Needle biopsy acquires less than 1% of the kidney
tissue volume, providing limited evidence of the overall pathological
changes that may be present in the entire kidney. Therefore, Al
technology has been primarily used for noninvasive pathological
diagnosis based on medical imaging results.

3.2.1. Identification of micropathological changes

The examination of renal tissue biopsy can provide important
information regarding glomerular number, micromorphology, mi-
crovascular pathology, and cell proliferation to guide etiological
determination, treatment choices, and prognosis of CKD. Shi et al.
[79] constructed a Fisher linear discriminant formula based on GLCM
features extracted from BOLD MRI images of patients with lupus
nephritis. Their model correctly identified the pathologic types of
77.8% of the biopsy samples from lupus nephritis patients, providing
guidance for therapeutic decisions and prognosis. Beeman et al. [80]
used non-toxic cationic ferritin as an MRI contrast agent to evaluate
the number and volume of glomeruli in the kidneys of patients
based on texture analysis, and demonstrated the ability to identify
glomerular pathology in patients with CKD. Al-based medical image
analysis for the pathological diagnosis of CKD is presently in the
early stages of development. The existing studies have, however,
already shown broad prospects for clinical translation of these
techniques.

3.2.2. Diagnosis of renal fibrosis

Arising from various etiologies, tissue fibrosis is a fundamental
pathological change contributing to CKD onset and a major risk
factor for CKD progression to ESRD [81-84]. In recent years, Al-based
medical image analysis has been explored primarily for the detec-
tion of tissue fibrosis of the liver [85-87]. Radiomics and DL features
derived from MRI and CT images have been shown to be strongly
associated with the extent of fibrosis in liver disease, and have de-
monstrated diagnostic proficiencies superior to the evaluation of
traditional imaging biomarkers by clinicians [88-93]. Chantaduly
et al. [94] were the first to use DL-based analysis for the noninvasive
detection of renal fibrosis. They developed two different CNN models
for kidney CT images that distinguished mild fibrosis from severe
fibrosis (< 50% fibrosis versus > 50% fibrosis) with greater than 85%
accuracies for both classifications. This provides a promising starting
point for future advancements in Al-assisted imaging analysis for the
noninvasive diagnosis of renal fibrosis.
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Table 6

Deep learning in Autosomal dominant polycystic kidney disease.

Repositories

Results

Classifier

Imaging Modality

Sample Size

Study

not publicly available

The CNN model facilitated fast and reproducible measurements of kidney volumes

in agreement with manual segmentations from clinical experts.

CNN

=165 Testing:

Training: n

Sharma et al.[102], 2017

79
Training: n

not publicly available

The fully automated segmentation method that measured TKV, TLV, and changes in

these parameters as accurately as manual tracing.

440 T2WI DL

100

Gastel et al.[98], 2019

Testing: n

not publicly available

Both CNN models were reliable for the semantic segmentation of polycystic

kidneys with an accuracy higher than 85%.

R-CNN

TIWI

=165
79

Training: n

Bevilacqua et al.[14],

Testing: n

2019
Onthoni et al.[103],

not publicly available

The contstructed model outperformed other DL detectors in terms of AP and mAP.

Contrast CNN

=88
22

Training: n

enhanced CT
T2WI

Testing: n

2020
Daniel et al.[97],

not publicly available

The 2D CNN method provides fully automated segmentation of the left and right

kidney and calculation of TKV in < 10s

U-Net

=50
50

Training: n

Testing: n

2021
Kim et al.[104],

not publicly available

The model was able to measure TKV that excluded exophytic cysts and had an

accuracy similar to that of a human expert.

3D U-Net

T2WI

=157
53

Training: n

Testing: n

2022
Raj et al.[105],

https://repository.niddk.nih.gov/studies/

crisp1/

Combining loss and SAM could achieve better accuracy in small datasets

U-Net

TIWI

100)

CKD stage 1-3 ( n

2022
Kline et al.[106],

not publicly available

The accuracy of kidney segmentation and volume calculation in the CNN model

was similar to that of 2 readers

CNN

T2WI

=40
20

Training: n

Testing: n

2022
Jagtap et al.[96] ,

not publicly available

Using 3D US to measure TKV for auto-segmentation of kidneys showed promising

performance, close to human tracing and MRI measurement.

CNN

3D US

22

2022
Sharbatdaran et al.[107] ,

not publicly available

The method reduced the time required to perform multiorgan segmentations in

ADPKD and reduced measurement variability

2D U-Net

T2WI

151

64

Validating: n

Training: n

Testing: n

2022

=60

Abbreviation: CT: Computed tomography; CNN: convolutional neural network; DL: deep learning; TKV: total kidney volume; AP: average precision; mAP: mean average precision; SAM: sharpness aware minimization; US: ultrasound;

ADPKD: Autosomal dominant polycystic kidney disease.
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3.3. Evaluation of ADPKD

Total kidney volume (TKV) is an important imaging biomarker for
assessing the severity and progression of ADPKD[57,95]. However,
computing TKV is challenging due to the high degree of variability
caused by the abnormal growth of polycystic kidneys. Despite a high
level of accuracy, traditional TKV calculation relies on manually
tracking the kidney boundaries, which is time-consuming and sus-
ceptible to inter- and intraoperator variability. By learning from
input images, DL networks can accurately discriminate between
renal parenchyma and pathological cysts, without the need for
manual tracking, producing estimates comparable to that of auto-
mated kidney segmentation for TKV computation. Recent studies
have applied DL algorithms to US, CT, and MRI imaging modalities to
calculate TKV in ADPKD patients, achieving high levels of accuracy
that were similar those of manual methods. Japtop et al. [96] de-
veloped a CNN model based on three-dimensional US images for the
segmentation of polycystic kidney regions for TKV computation that
achieved a Dice score of 0.80 in the test set. Daniel et al. [97], Gastel
etal.[98] and Kim et al. [99] constructed different deep learning (DL)
network models based on T2-weighted (T2WI) magnetic resonance
imaging (MRI) imaging respectively, and all of their Dice coefficients
could reach more than 0.90. Among them, Gastel et al. [98] extended
their techniques to segment the liver and hepatic cysts in autosomal
dominant polycystic kidney disease (ADPKD) patients and con-
structed an efficient and accurate model that could simultaneously
calculate the liver and kidney volume. On the basis of accurate
segmentation of renal parenchyma and cysts, further signal intensity
or texture analysis of cysts can be performed for identifying complex
structures of cysts, which assists in disease classification.

4. Future prospects

To date, the application of novel quantitative imaging biomarkers
obtained by Al methods for CKD assessment has been studied in a
preliminarily fashion. And it is fair to say that the predictive accuracy
of existing models has not met the clinical needs. In order to con-
struct more robust models and transform them into efficient and
accurate computer-aided diagnosis and treatment tools, future re-
search will focus on the following directions.

First, standardization of image acquisition: Since image quality is
a key factor in Al-based medical image analysis, the image acquisi-
tion process should be normalized through standardized protocols
that reduce noise interference caused by image heterogeneity, which
will be particularly important in future multicenter clinical studies.

Second, data sharing: It has been shown that sample size for
machine training is positively correlated with the robustness of the
constructed models, but most of them are built on retrospective
studies involving single center small samples, so even if the models
perform well in the original training set, the generalization of per-
formance with other sample sets remains limited. The future aim is
to unlock data silos by developing a multicenter image-sharing
platform or the Grand Challenges (such as KiTS21, KiTS19 for seg-
mentation of kidney tumor) for renal imaging in CKD patients, which
will facilitate the emergence of more models with high accurate and
robust.

Third, pattern diversification: Novel imaging biomarkers ex-
tracted from single modality renal images alone are far from suffi-
cient to assess CKD, so it will be necessary to continue to explore
whether the combination of features obtained from multiple mod-
alities, including the combination of features based on multi-
modality-based renal images extraction, the combination of
radiomics and depth features, and the combination of imaging bio-
markers and clinical information, can further improve the model
power.
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Fourth, process automation: A small number of studies
[100-102] have applied the kidney autonomous segmentation al-
gorithm to preliminarily realize the "end-to-end" automatic eva-
luation process, which may help to apply these Al models in areas
with limited health care resources in the future and realize remote
diagnosis and treatment, to meaningfully advance the noninvasive
evaluation of CKD nationwide.

Fifth, Refinement of research: The research of Al-based medical
image analysis in the field of CKD has mainly contributed to the
assessment of renal function status and shown great potential for
this application, thus future studies should focus on the molecular
level to map out the association between novel imaging biomarkers
and microscopic pathological changes to provide a basis for the
personalized diagnosis and treatment of CKD.

5. Conclusions

The early detection and evaluation of CKD has long been pro-
blematic due to the limitations of traditional imaging and biopsy
methods. With the arrival of the big data era, the application of Al
technology to existing imaging modalities can improve the diag-
nostic value of imaging procedures. Al-based analysis of kidney US
data is the most common Al-assisted imaging technique used in the
field of CKD due to its cost-effectiveness and wide availability. These
qualities make Al-assisted US a prime candidate for use in mobile
telecare and telemedicine, and promote its introduction in settings
with limited health care resources, thus improving the efficiency and
sustainability of health care systems. In clinical scenarios in which
the need for high resolution imaging justifies greater health care
expenditures, such as the pathological classification of CKD and the
investigation of pathophysiological mechanisms, Al-assisted MRI can
provide optimal improvement in diagnostic imaging results. Though
Al-based medical image analysis holds great promise for CKD diag-
nosis and management, the development of algorithms suitable for
routine clinical application will require nephrologists to work to-
gether for the standardization of image acquisition specifications,
improvement of image-sharing platform accessibility, and validation
of these techniques in multicenter prospective studies.
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