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a b s t r a c t

Chronic kidney disease (CKD) causes irreversible damage to kidney structure and function. Arising from 
various etiologies, risk factors for CKD include hypertension and diabetes. With a progressively increasing 
global prevalence, CKD is an important public health problem worldwide. Medical imaging has become an 
important diagnostic tool for CKD through the non-invasive identification of macroscopic renal structural 
abnormalities. Artificial intelligence (AI)-assisted medical imaging techniques aid clinicians in the analysis 
of characteristics that cannot be easily discriminated by the naked eye, providing valuable information for 
the identification and management of CKD. Recent studies have demonstrated the effectiveness of AI-as-
sisted medical image analysis as a clinical support tool using radiomics- and deep learning-based AI al-
gorithms for improving the early detection, pathological assessment, and prognostic evaluation of various 
forms of CKD, including autosomal dominant polycystic kidney disease. Herein, we provide an overview of 
the potential roles of AI-assisted medical image analysis for the diagnosis and management of CKD.
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1. Introduction 

With a incidence rising faster than most other chronic diseases, 
chronic kidney disease (CKD) is expected to become the fifth-leading 
cause of death globally by 2040. Early detection and timely inter-
vention for CKD is critical for preventing the progression to end- 
stage renal disease (ESRD) [1–6]. Each year worldwide, approxi-
mately 1.5 million patients with ESRD undergo dialysis while 
awaiting kidney transplantation, all of which contribute huge eco-
nomic burdens for patients and health care systems [7]. 

The Kidney Disease Improving Global Outcomes (KDIGO) guidelines 
define CKD as abnormalities of kidney structure or function persisting 
for over 3 months with implications for health [8]. In clinical practice, 
renal dysfunction is usually marked by albuminuria or reduced esti-
mated glomerular filtration rate (eGFR), whereas renal structural ab-
normalities are primarily identified by medical imaging. Early detection 
of CKD is often confounded by the technical challenges associated with 
identifying microscopic structural changes in kidney tissues, leading to 
the diagnosis of most CKD patients in more advanced stages of disease  
[9]. In recent years, studies have used artificial intelligence (AI) in the 
form of radiomics-based machine learning and deep learning (DL) al-
gorithms to acquire quantitative diagnostic information from medical 
imaging data that cannot be easily identified by visual inspection of 
digitized images with the naked eye. These novel, AI-discriminated 
biomarkers provide an important supplement to the conventional 
evaluation of imaging data for improving early detection of CKD and 
clinical disease management. 

Our review herein will describe the findings of recent studies of the 
application of radiomics-based machine learning and DL algorithms in 
AI-assisted medical image analysis for the detection, management, and 
prognosis of CKD, such as the diagnosis and evaluation of autosomal 
dominant polycystic kidney disease (ADPKD). This information was re-
trieved through searches of the PubMed, Embase, and Cochrane data-
bases for relevant literature published from January 1, 2018 to January 1, 
2023. The key words were targeted at different imaging modalities, as 
shown in Appendix 1. We also performed a manual search of the refer-
ences cited in the retrieved articles to identify additional relevant re-
search reports. We selected publications for review that met the 
following criteria: 1) CKD patients; 2) radiomics or DL algorithms on 
medical images applied for CKD assessment; 3) published in English. 
Studies with animals or pediatric subjects were excluded. Given the lack 
of quality assessment tools specifically designed for AI studies, the 
modified Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS- 
2) checklist was used to assess the quality of the enrolled articles, re-
ferring to Zheng et al. [10]. For the assessment of patients selection bias, 
15 studies had a high risk of bias (56%), 1 study had a low bias (4%) and 11 
studies were unclear (40%). The high risk of bias was mainly due to the 
lack of a randomized or consecutive sample of patients enrolled. For the 
domain of index, most studies (56%) were considered to have high risk of 
bias attributed to the lack of independent external validation. Detailed 
assessment results are shown in Table 1 and Fig. 1. 

2. AI in medical image analysis 

Applications of AI are designed to imitate human behavior and 
cognitive processes [11]. Given the ever-increasing breadth of data 

that current clinical research encompasses, including health records, 
diagnostic and treatment data, and extensive genomic databases, a 
major advantage of AI lies in its ability to efficiently analyze big data  
[12]. The use of AI technology has been widely accepted for diag-
nosis, treatment, and prognosis in a range of diseases and clinical 
scenarios. Studies have applied AI techniques to multiple aspects of 
CKD-related health care, including an alert system for identifying 
patients at risk for CKD onset, diagnosis based on digital imaging 
data, and biopsy evaluation based on DL models [11,13–15]. Among 
CKD-related AI applications, AI-assisted medical image analysis has 
been studied most extensively. 

The progression of CKD is characterized by the gradual loss of 
renal cells with replacement by extracellular matrix proteins, re-
sulting in fibrosis. Renal fibrosis represents a hallmark of end stage 
CKD that occurs independent of the etiology. The pathological fea-
tures include excessive deposition of extracellular matrix proteins, 
peritubular capillary atrophy, and the epithelial-to-mesenchymal 
transition of renal tissue resulting in scarring. These pathological 
changes can be mapped to the heterogeneity of texture, volume, and 
shape of kidney tissues in digital medical images [16]. Slight differ-
ences in these image characteristics are difficult to discern visually, 
thereby demonstrating the utility of AI-assisted medical image 
analysis. 

In clinical practice, various modalities are used for kidney ima-
ging to directly observe anatomical structure or to indirectly detect 
pathophysiological aberrations [17–21]. Regardless of whether di-
agnosis is empirically based on morphological alterations or it 
considers traditional quantitative imaging parameters, there exists 
great potential for the under-utilization of valuable imaging in-
formation due simply to the limitations of human vision [22–24]. By 
mining imaging features and using mathematical algorithms to 
analyze the characteristics of training data, AI can identify and 
evaluate the extent of disease pathology. In medical image analysis, 
the use of AI is broadly divided into two categories: hand-crafted 
radiomics and DL. 

2.1. Hand-crafted radiomics 

The concept of radiomics was first proposed in 2012 by the Dutch 
scholar Lambin Equals. Radiomics refers to the application of 
mathematical methods to extract quantitative features from medical 
images. Learning algorithms can be designed to identify patterns in 
the heterogeneity and spatial distribution of pixels within pre-
defined regions of images as selected by the user, which have been 
shown to reflect different disease states [25–27]. 

In the radiomic workflow (Fig. 2), image acquisition and pre-
processing most often involve medical imaging data recorded in the 
Digital Imaging and Communications in Medicine (DICOM) format. 
Following acquisition, preprocessing removes digital noise and 
preserves structural information by enhancement and normal-
ization. In image segmentation, regions of interest (ROIs) are speci-
fied for subsequent image analysis, which begins with feature 
extraction and selection. PyRadiomics, an open-source python 
package is specially designed for feature extraction applying to 
medical images. Several open-source software platforms can also be 
used to extract image features without the need for programming. 
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Radiomics features are typically categorized as statistical (including 
texture-based and histogram-based), transform-based, model- 
based, or shape-based features, which represent different types of 
information that are extracted directly or statistically calculated 
from the imaging data (Table 2) [28,29]. 

Much of the information contained within the acquired features 
might not be associated with target variables [30]. Feature reduction, 
which most often uses linear discriminant or principal component 
analysis, removes irrelevant or redundant information in features, 
and combines multiple relevant features into new, individual fea-
tures. Multiple characteristics of the resulting features serve as 

designated imaging biomarkers, which are often then analyzed to 
build prediction models using machine learning algorithms, known 
as a branch of AI. The algorithm is chosen based on the type of target 
variable (categorical or continuous) and certain data characteristics, 
such as sample size, dimensions, and so on, as well as the experience 
and preferences of the clinician. 

Model validation is also an integral part of a comprehensive 
radiomics analysis, especially external validation in large, in-
dependent, prospective datasets. The receiver operator character-
istics curve (ROC), sensitivity, and specificity can also be used to 
evaluate model performance. Radiomics analyses based on different 
medical imaging modalities have been used for the diagnosis of a 
wide range of diseases, thereby demonstrating the power of com-
puter-aided diagnostic tools [31–34]. However, potential limitations 
lie in the predefined nature of radiomic features and their de-
pendency on the current domain of knowledge. Therefore, the full 
advantages of AI for developing diagnostic tools through the analysis 
of big data might not be perfectly represented due to the hand-
crafting of features. 

2.2. DL 

The branch of AI known as DL uses multiple layers of artificial 
neural networks with interconnecting nodes that simulate learning 
and cognition in the human brain. Convolution neural networks 
(CNN) are DL neural networks with a convolution structure that si-
mulates information processing in the human visual cortex [35–37]. 

Fig. 1. Risk of bias assessments of selected publications through the modified 
QUADAS-2. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2. 

Fig. 2. Flowchart of radiomics and deep learning. (A). Basic steps in radiomics, including medical images acquisition, regions of interest (ROIs), features extraction, features 
selection and classifier construction. (B) Deep learning directly generates deep neural networks (f) after medical image acquisition, replacing steps b-e in radiomics in Figure A, 
thus enabling end-to-end learning. 
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Using the whole image as a direct input to the network, the CNN 
automatically extracts features using the deep convolution and 
pooled sampling layers, avoiding the manual feature extraction and 
data reconstruction of traditional radiomics analysis (Fig. 2). With 
the deepening of network layers, higher-level abstract features can 
be learned that improve the sensitivity of identification. Compared 
with traditional radiomics, CNNs are more automated due to the 
implementation of end-to-end learning patterns throughout the 
training process, from image input to recognition output, without 
the need for human intervention [38]. A comparison of radiomics 
and DL is summarized in Table 3. 

Transfer learning (TL) is a new framework based on DL that aims 
to solve the fundamental problem of insufficient training data. Based 
on the similarity between the source task and target task, model 
parameters can be obtained by pretraining on a source task com-
prising a larger data set, and these parameters are then migrated to 
the target task with a smaller sample size to construct a robust CNN 
model [39]. Various factors contribute to the difficulty associated 
with acquiring a large sample of renal images, such as the com-
paratively low prevalence of CKD, the skewed distribution of pa-
tients toward advanced disease, and the lack of a universal kidney 
image-sharing platform. Hence, TL can enhance the potential benefit 
of AI-based image analysis for CKD patients [40]. 

The rapid development of DL has brought innovation to tradi-
tional radiomics. The segmentation of ROIs using DL algorithms in-
creases the automation of radiomics [41–44]. A recently described 
radiomics method uses a deep transfer network in the feature ex-
traction algorithm, thereby replacing or integrating handcrafted 
features, which not only reduces the amount of data required, but 
also provides the advantages of DL [45–47]. Zheng et al. [48] de-
monstrated that classification of kidney ultrasound (US) images 
based on a combination of TL and handcrafted features was more 
effective than that based on TL or handcrafted features alone. In the 
future, AI will bring more innovations and breakthroughs in this type 
of medical image analysis. 

3. AI-assisted medical image analysis in CKD 

3.1. Evaluation of renal function 

As CKD is usually occult at onset, regular screening of renal 
function is highly recommended by the American Society of 
Nephrology [49,50]. At present, serum creatinine and albuminuria 

are the most commonly accepted biomarkers for CKD screening, but 
neither provides accurate assessment of glomerular structural in-
tegrity. AI-based medical image analysis can use eGFR or serum 
creatinine as ground truth references for the development of models 
for noninvasive renal function assessment. 

3.1.1. US-based evaluation of renal function 
The availability, cost-effectiveness, and convenience of medical 

US make it a first-line diagnostic tool in nephrology. Moreover, 
compared to some techniques, it does not expose patients to io-
nizing radiation. Ardakani et al. [51] were the first researchers to 
apply radiomics to the analysis of renal US images in the diagnosis of 
renal failure after transplantation. For each ROI, they extracted up to 
270 texture features, 14 of which were closely associated with the 
level of serum creatinine. Chen et al. [52] built support vector ma-
chine models based on the grey level co-occurrence matrix (GLCM) 
of renal US images that demonstrated an accuracy of 75.95% in 
discriminating CKD stages 1–5. Studies have also used transformed- 
based features extracted from US images. Bandara et al. [30] ex-
tracted second-order features from wavelet-transformed images to 
identify CKD. They found that the 10 most significant features were 
sensitive to the directionality of US speckle patterns. Iqbal et al. [53] 
demonstrated that Fourier transform-based features reflecting spa-
tial frequencies could successfully identify patients with CKD, 
whereas the GLCM-based features could not. 

To date, all DL models for evaluating renal dysfunction have been 
based on US images. A US-based CNN model developed by Kuo et al.  
[40] demonstrated a high proficiency for identifying CKD (eGFR <  
60 ml/min/1.73 m2; AUC = 0.904, specificity = 92.1%, and accuracy = 
85.6%), surpassing that of experienced nephrologists and traditional 
machine learning models. A novel CNN framework was also pro-
posed by Hao et al. [54] in which texture branching was introduced 
into the CNN network, simultaneously extracting texture features 
and new deep features from input images, which demonstrated an 
accuracy of 96.01% and a sensitivity of 99.44%. Lee et al. [55] in-
troduced measurable features and clinical variables into a CNN 
network which also improved the accuracy of identifying CKD. 

3.1.2. Magnetic resonance imaging (MRI)-based evaluation of renal 
function 

MRI has become the most common second-line imaging option 
for evaluating CKD, due in large part to its high resolution of soft 
tissues, the lack of ionizing radiation, and multiple sequence choices. 

Table 2 
Classification and description of radiomic features.    

Classification Description  

first-order describing the distribution of pixels or voxels in an image, including minimum, maximum, mean, median, range, etc. 
Texture-based describing the relationship of pixels or voxels in an image, including GLCM, GLRLM, GLSZM, NGTDM, GLDM and Absolute Gradient. 
Model-based A parameterized model of texture generation is calculated and fitted to the ROIs, and the estimated parameters are used as radiomic features. 
Transform-based extracting features from the transformed images, including fourier transform, Gabor transform, wavelet transform, laplace transform, etc. 
Shape-based describing the geometric properties of ROIs, including diameter, shaft, volume, area, ratio, etc. 

Abbreviation: GLCM, Gray-level Co-occurrence Matrix; GLRLM, Gray-level Run-length Matrix; GLSZM, Gray-level Size Zone Matrix; NGTDM, Gray-level Size Zone Matrix; GLDM, 
Gray level dependence matrix; ROIs: regions of interest;  

Table 3 
Comparison of radiomics and deep learning.      

Radiomics Deep learning  

sample size less label data relatively demanding large label data, usually through transfer learning, data 
augmentation, etc. 

features extraction predefined or hand-crafted quantitative features massive layered features derived from autonomous learning of neural 
networks 

classifier conventional statistical or machine learning models deep neural networks 
Image segmentation drawing regions of interest manually The whole images can be used as direct input 
interpretability results can be attributed to single predictor included in machine 

learning models 
"black box" models mostly, which can be explained by shaply-value, etc. 
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Grzywińska et al. [56] explored the relationship between renal 
function and radiomics features from T2WI images. They found that 
features from the renal cortex were more significantly associated 
with serum creatinine level and eGFR, compared with that of the 
whole kidney, which could be attributed to the abundance of func-
tional glomeruli in the cortex. Building upon such findings, Kline 
et al. [57] combined radiomic features extracted from T2WI images 
with age, baseline eGFR, and total kidney volume to construct a 
multivariable linear regression model that successfully predicted the 
risk of CKD progression to stage 3 in ADPKD patients after 8 years of 
follow-up. 

Compared with traditional MRI technology, emerging functional 
MRI (fMRI) can better reflect micropathophysiological changes, and 
has greater potential to evaluate renal dysfunction. Numerous stu-
dies [58–60] have confirmed that conventional quantitative fMRI 
parameters are significantly correlated with indicators of renal 
function, such as serum creatinine, albuminuria, and eGFR. However, 
these parameters reflect only the average signal strength within the 
selected ROIs, and do not mine abundant hidden information in fMRI 
images. Studies have investigated whether AI-based fMRI analysis 
can provide a better assessment of renal dysfunction. Li et al. [61] 
performed a diffusion-weighted imaging-based radiomics analysis 
of fMRI. They constructed a logistic regression model to distinguish 
patients with CKD from healthy individuals that demonstrated a 
sensitivity of 93% and specificity of 70%. 

Ding et al. [31] compared the use of radiomic features from 
susceptibility-weighted imaging, blood oxygen level-dependent 
(BOLD) imaging, and diffusion-weighted imaging data to dis-
criminate between different stages of CKD. Their results showed that 
the use of features extracted from BOLD and susceptibility-weighted 
imaging data demonstrated similar discriminating abilities, and 
were more suitable for early recognition of renal dysfunction, 
compared with that of diffusion-weighted imaging. Deng et al. [62] 
and Rossi et al. [63] explored the use of feature extractions from 
diffusion tensor imaging and arterial spin-labelling MRI, respec-
tively, and both demonstrated proficiency for the early detection of 
CKD. However, considering the limited sample sizes of these studies, 
the ability of AI-based fMRI analyses to evaluate renal dysfunction 
requires further validation in large-scale clinical studies Tables 4–6. 

3.1.3. Computed tomography (CT)-based evaluation of renal function 
To date, relatively few studies have reported the use of AI-as-

sisted CT image analysis for renal function assessment. One study 
explored the effectiveness of AI-assisted CT image analysis for pre-
dicting radiation-induced CKD in patients undergoing radiation 
therapy for abdominal tumors [33]. Due to the exposure of patients 
to ionizing radiation, the use AI-assisted CT assessment might be 
limited to specific types of patients, rather than for continuous 
monitoring of renal function status in all types of CKD patients. 

3.1.4. Retinal imaging-based evaluation of renal function 
Some recent studies of the evaluation of renal function have 

shifted focus to AI-assisted retinal imaging analysis due to the si-
milarity of pathophysiological changes that occur in both the retinal 
and renal microcirculations during the early stages of diabetes. 
Patients with microvascular retinal signs are also more likely to 
develop CKD in clinical practice, suggesting that retinal imaging 
might provide supplementary information for CKD screening  
[64–66]. Xu et al. [67] analyzed retinal images from 1925 patients 
with type 2 diabetes, and found that texture features reflecting en-
hanced homogeneity and contrast were strongly associated with 
renal dysfunction. Sabanayagam et al. [68] built a CNN model based 
on retinal images to detect CKD, resulting in an AUC of 0.911. This 
model was also validated in two independent cohorts with AUCs of 
0.835 and 0.733. These studies provide a new direction for the 
identification of renal dysfunction. The integration of CKD screening 

into the retinal imaging-based screening of diabetes patients not 
only improves the efficiency and cost-effectiveness of the process, it 
also improves early detection of renal disease in high-risk popula-
tions [3]. 

3.2. Pathological diagnosis of CKD 

Renal tissue pathology provides an objective basis for etiological 
determination, prognosis, and personalization of treatment [69,70]. 
With advancements in digital pathology, whole-slide image tech-
nology allows high-resolution scans of complete tissue biopsy slides 
that can also be subjected to AI-based images analysis. Examples of 
applications of AI in digital pathology include the detection and 
segmentation of kidney structures, the auxiliary diagnosis of renal 
pathological changes, and CKD prognosis [71–74]. The application of 
AI to whole-slide image analysis increases the power of detecting 
subtle changes, compared with visual assessment by clinicians, and 
overcomes the subjectivity of manual classification induced by dif-
ferences in visual perceptions and preference. However, methods 
requiring biopsy are not ideal for evaluating CKD due to the inva-
siveness and risks of hemorrhage, arteriovenous fistula, and infec-
tion [75–78]. Needle biopsy acquires less than 1% of the kidney 
tissue volume, providing limited evidence of the overall pathological 
changes that may be present in the entire kidney. Therefore, AI 
technology has been primarily used for noninvasive pathological 
diagnosis based on medical imaging results. 

3.2.1. Identification of micropathological changes 
The examination of renal tissue biopsy can provide important 

information regarding glomerular number, micromorphology, mi-
crovascular pathology, and cell proliferation to guide etiological 
determination, treatment choices, and prognosis of CKD. Shi et al.  
[79] constructed a Fisher linear discriminant formula based on GLCM 
features extracted from BOLD MRI images of patients with lupus 
nephritis. Their model correctly identified the pathologic types of 
77.8% of the biopsy samples from lupus nephritis patients, providing 
guidance for therapeutic decisions and prognosis. Beeman et al. [80] 
used non-toxic cationic ferritin as an MRI contrast agent to evaluate 
the number and volume of glomeruli in the kidneys of patients 
based on texture analysis, and demonstrated the ability to identify 
glomerular pathology in patients with CKD. AI-based medical image 
analysis for the pathological diagnosis of CKD is presently in the 
early stages of development. The existing studies have, however, 
already shown broad prospects for clinical translation of these 
techniques. 

3.2.2. Diagnosis of renal fibrosis 
Arising from various etiologies, tissue fibrosis is a fundamental 

pathological change contributing to CKD onset and a major risk 
factor for CKD progression to ESRD [81–84]. In recent years, AI-based 
medical image analysis has been explored primarily for the detec-
tion of tissue fibrosis of the liver [85–87]. Radiomics and DL features 
derived from MRI and CT images have been shown to be strongly 
associated with the extent of fibrosis in liver disease, and have de-
monstrated diagnostic proficiencies superior to the evaluation of 
traditional imaging biomarkers by clinicians [88–93]. Chantaduly 
et al. [94] were the first to use DL-based analysis for the noninvasive 
detection of renal fibrosis. They developed two different CNN models 
for kidney CT images that distinguished mild fibrosis from severe 
fibrosis (< 50% fibrosis versus ≥ 50% fibrosis) with greater than 85% 
accuracies for both classifications. This provides a promising starting 
point for future advancements in AI-assisted imaging analysis for the 
noninvasive diagnosis of renal fibrosis. 
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3.3. Evaluation of ADPKD 

Total kidney volume (TKV) is an important imaging biomarker for 
assessing the severity and progression of ADPKD[57,95]. However, 
computing TKV is challenging due to the high degree of variability 
caused by the abnormal growth of polycystic kidneys. Despite a high 
level of accuracy, traditional TKV calculation relies on manually 
tracking the kidney boundaries, which is time-consuming and sus-
ceptible to inter- and intraoperator variability. By learning from 
input images, DL networks can accurately discriminate between 
renal parenchyma and pathological cysts, without the need for 
manual tracking, producing estimates comparable to that of auto-
mated kidney segmentation for TKV computation. Recent studies 
have applied DL algorithms to US, CT, and MRI imaging modalities to 
calculate TKV in ADPKD patients, achieving high levels of accuracy 
that were similar those of manual methods. Japtop et al. [96] de-
veloped a CNN model based on three-dimensional US images for the 
segmentation of polycystic kidney regions for TKV computation that 
achieved a Dice score of 0.80 in the test set. Daniel et al. [97], Gastel 
et al. [98] and Kim et al. [99] constructed different deep learning (DL) 
network models based on T2-weighted (T2WI) magnetic resonance 
imaging (MRI) imaging respectively, and all of their Dice coefficients 
could reach more than 0.90. Among them, Gastel et al. [98] extended 
their techniques to segment the liver and hepatic cysts in autosomal 
dominant polycystic kidney disease (ADPKD) patients and con-
structed an efficient and accurate model that could simultaneously 
calculate the liver and kidney volume. On the basis of accurate 
segmentation of renal parenchyma and cysts, further signal intensity 
or texture analysis of cysts can be performed for identifying complex 
structures of cysts, which assists in disease classification. 

4. Future prospects 

To date, the application of novel quantitative imaging biomarkers 
obtained by AI methods for CKD assessment has been studied in a 
preliminarily fashion. And it is fair to say that the predictive accuracy 
of existing models has not met the clinical needs. In order to con-
struct more robust models and transform them into efficient and 
accurate computer-aided diagnosis and treatment tools, future re-
search will focus on the following directions. 

First, standardization of image acquisition: Since image quality is 
a key factor in AI-based medical image analysis, the image acquisi-
tion process should be normalized through standardized protocols 
that reduce noise interference caused by image heterogeneity, which 
will be particularly important in future multicenter clinical studies. 

Second, data sharing: It has been shown that sample size for 
machine training is positively correlated with the robustness of the 
constructed models, but most of them are built on retrospective 
studies involving single center small samples, so even if the models 
perform well in the original training set, the generalization of per-
formance with other sample sets remains limited. The future aim is 
to unlock data silos by developing a multicenter image-sharing 
platform or the Grand Challenges (such as KiTS21, KiTS19 for seg-
mentation of kidney tumor) for renal imaging in CKD patients, which 
will facilitate the emergence of more models with high accurate and 
robust. 

Third, pattern diversification: Novel imaging biomarkers ex-
tracted from single modality renal images alone are far from suffi-
cient to assess CKD, so it will be necessary to continue to explore 
whether the combination of features obtained from multiple mod-
alities, including the combination of features based on multi-
modality-based renal images extraction, the combination of 
radiomics and depth features, and the combination of imaging bio-
markers and clinical information, can further improve the model 
power. Ta
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Fourth, process automation: A small number of studies  
[100–102] have applied the kidney autonomous segmentation al-
gorithm to preliminarily realize the "end-to-end" automatic eva-
luation process, which may help to apply these AI models in areas 
with limited health care resources in the future and realize remote 
diagnosis and treatment, to meaningfully advance the noninvasive 
evaluation of CKD nationwide. 

Fifth, Refinement of research: The research of AI-based medical 
image analysis in the field of CKD has mainly contributed to the 
assessment of renal function status and shown great potential for 
this application, thus future studies should focus on the molecular 
level to map out the association between novel imaging biomarkers 
and microscopic pathological changes to provide a basis for the 
personalized diagnosis and treatment of CKD. 

5. Conclusions 

The early detection and evaluation of CKD has long been pro-
blematic due to the limitations of traditional imaging and biopsy 
methods. With the arrival of the big data era, the application of AI 
technology to existing imaging modalities can improve the diag-
nostic value of imaging procedures. AI-based analysis of kidney US 
data is the most common AI-assisted imaging technique used in the 
field of CKD due to its cost-effectiveness and wide availability. These 
qualities make AI-assisted US a prime candidate for use in mobile 
telecare and telemedicine, and promote its introduction in settings 
with limited health care resources, thus improving the efficiency and 
sustainability of health care systems. In clinical scenarios in which 
the need for high resolution imaging justifies greater health care 
expenditures, such as the pathological classification of CKD and the 
investigation of pathophysiological mechanisms, AI-assisted MRI can 
provide optimal improvement in diagnostic imaging results. Though 
AI-based medical image analysis holds great promise for CKD diag-
nosis and management, the development of algorithms suitable for 
routine clinical application will require nephrologists to work to-
gether for the standardization of image acquisition specifications, 
improvement of image-sharing platform accessibility, and validation 
of these techniques in multicenter prospective studies. 
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