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ABSTRACT

Biological processes (like microbial growth & phys-
iological response) are usually dynamic and require
the monitoring of metabolic variation at different
time-points. Moreover, there is clear shift from case-
control (N=2) study to multi-class (N>2) problem in
current metabolomics, which is crucial for reveal-
ing the mechanisms underlying certain physiolog-
ical process, disease metastasis, etc. These time-
course and multi-class metabolomics have attracted
great attention, and data normalization is essential
for removing unwanted biological/experimental vari-
ations in these studies. However, no tool (including
NOREVA 1.0 focusing only on case-control studies)
is available for effectively assessing the performance
of normalization method on time-course/multi-class
metabolomic data. Thus, NOREVA was updated to
version 2.0 by (i) realizing normalization and evalua-
tion of both time-course and multi-class metabolomic
data, (ii) integrating 144 normalization methods of
a recently proposed combination strategy and (iii)
identifying the well-performing methods by compre-
hensively assessing the largest set of normaliza-
tions (168 in total, significantly larger than those
24 in NOREVA 1.0). The significance of this update
was extensively validated by case studies on bench-
mark datasets. All in all, NOREVA 2.0 is distinguished
for its capability in identifying well-performing nor-
malization method(s) for time-course and multi-class
metabolomics, which makes it an indispensable
complement to other available tools. NOREVA can
be accessed at https://idrblab.org/noreva/.

INTRODUCTION

Unwanted experimental or biological variation is inevitable
in metabolomics-based case-control studies, and adversely
affects the validity of metabolic profiling (1–4). A variety
of normalization methods have been developed to address
this critical problem (5–7), but their performances differ
greatly (7,8) and depend heavily on the nature of the ana-
lyzed data (9). NOREVA 1.0 (10) was, therefore, designed
to (a) enable the identification of well-performing methods
by collectively considering multiple criteria, (b) achieve the
removal of overall unwanted variations using internal stan-
dards (ISs) and quality control metabolites (QCMs) and (c)
allow signal drift correction based on quality control sam-
ples (QCSs), which is followed by data normalization (10).
Due to these unique functions, NOREVA has become an in-
dispensable complement to available tools (11–20) that are
popular in metabolomics-based case-control studies.

However, there is a clear shift in current metabolomics
from case-control (N=2) studies to multi-class (N>2) prob-
lems (21–24), which has revealed the relative abundance of
bile acids in multiple cancerous sites (21), differentiated the
presence of succinate among diverse adipose tissues (22),
and discovered the variation in amino acids across differ-
ent cell lines (24). Moreover, biological processes (such as
physiological response and microbial growth) are usually
dynamic and require the monitoring of metabolic varia-
tion at different time-points to uncover the time depen-
dency of metabolic network (25), measure the accumula-
tion of sterilization effects in microorganisms (26), and de-
pict the dynamics of soil metabolite (27). Compared with
case-control studies, multi-class and time-course studies are
much more complicated in terms of their unwanted varia-
tions, which therefore requires a marked improvement in the
performance of data normalization (28–31).

To date, ∼20 normalization methods (6,32) have been de-
veloped and considered an integral part of metabolomics
data processing (Supplementary Table S1), which include
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Figure 1. Key features added to NOREVA 2.0 which realize the normalization and evaluation of both time-course and multi-class metabolomic data (left
panel), integrate the normalization methods of combination strategy proposed by recent publication (6) (right panel), and identifying the well-performing
methods by assessing the largest set of normalizations to date (168 in total, significantly larger than the 24 methods in NOREVA 1.0, middle panel).

12 sample-, 6 metabolite-, 1 sample & metabolite- and 4 in-
ternal standard-based methods (2,32,33). It remains elusive
whether these methods are effective enough to remove un-
wanted variations from the data of time-course and multi-
class metabolomics (6). When it comes to the further con-
sideration of multiple criteria in performance evaluation
(10), the successful identification of effective method would
be even harder. Thus, it is essential to first improve the quan-
tity and quality of the methods available to choose, and
then identify the well-performing method by strict assess-
ment (8,10). A recent work discovered that a combination
of sample- and metabolite-based methods may greatly en-
hance normalization performance, which led to 144 addi-
tional methods (6). As a result of the significant increase
in the number of methods, it is now possible (and of great
interest) to have a tool that can discover well-performing
method(s) by comprehensive evaluation (8,10).

Several valuable online tools have been constructed as
metabolomic pipelines, and normalization methods are pro-
vided as a step in the analysis chain. These tools include
XCMS (11), MetaboAnalyst (12), NormalyzerDE (14),
Metabolomics workbench (15), Workflow4metabolomics
(34), MetaboGroup S (35), pseudoQC (36), metaX (37),
MetaDB (38), Metandem (39), Metflow (40) and Web-
Specmine (41). Most tools focus on normalizing raw
metabolomic dataset, but offer no performance evalua-
tion. NormalyzerDE (14), MetaboGroup S (35), pseudoQC
(36) and metaX (37) can evaluate normalization outcomes,
but none of them has employed multiple criteria (10) to
assess normalization performances for time-course/multi-
class metabolomics. Moreover, these web servers all utilize
fewer than 15 methods for data normalization, which se-
riously limits the ability of identifying a well-performing
method. Therefore, it is essential to have an online tool that
not only gives a large number of normalization methods
for the time-course and multi-class metabolomics but can
also discover well-performing method(s) through compre-
hensive assessment. However, no such tool is yet available.

Here, NOREVA 2.0 was thus constructed (Figure 1 and
Table 1) by (i) realizing normalization & evaluation of the
time-course and multi-class metabolomics, (ii) integrating
144 normalization methods of a recently reported combi-
nation strategy (6) and (iii) identifying the well-performing
methods by comprehensively assessing the largest set of
normalizations to date (168 methods in total, significantly
larger than the 24 in NOREVA 1.0 (10)). Because of the
rapidly accumulating research interest in time-course and
multi-class metabolomics, this study would make NOREVA
unique in assessing normalization for this emerging field
and could further enhance its popularity in metabolomics.
NOREVA is freely accessible at https://idrblab.org/noreva/.

MATERIALS AND METHODS

Comprehensive Collection of Normalization Methods

Over 20 normalization methods frequently used in current
metabolomics were collected and integrated in NOREVA,
which included 12 sample-, 6 metabolite-, 1 sample
& metabolite- and 4 internal standard-based methods
(2,32,33). Some methods are frequently named by ter-
minological studies (7,42) as ‘scaling’ (metabolite-based
method/column-wise normalization) and ‘normalization’
(sample-based method/row-wise normalization). To be
consistent with the publication (6) describing the new meth-
ods of combination strategy, the definition of the method
class and which class each method belongs to are provided
in Supplementary Table S1 and that report (6). As shown,
an abbreviation (Abbr.) was assigned to each normaliza-
tion method and is adopted to represent the correspond-
ing method throughout the manuscript. In the meantime,
144 methods that combined 12 sample- and 6 metabolite-
based methods were integrated. These new methods are also
indicated by their abbreviations throughout the paper. For
example, the method sequentially applying Cubic Splines
and Power Scaling is depicted as CUB+POW. In total, 168
methods for normalizing the time-course and multi-class
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Table 1. Summarization of and comparison between the functions provided in NOREVA 2.0 and 1.0. The check mark (
√

) indicated that the corresponding
function(s) had been available for using, while the cross (×) denoted the non-existence of such function

No. The unique functions provided NOREVA 2.0 NOREVA 1.0

1 Identifying the well-performing normalizations using multiple criteria
√ √

2 Removing the overall unwanted variations using ISs/QCMs
√ √

3 Correcting the signal drifts based on QCSs and subsequent data normalization
√ √

4 Realizing the normalization and performance evaluation for time-course metabolomics
√ ×

5 Enabling the normalization and performance evaluation for multi-class metabolomics
√ ×

6 Integrating over one hundred novel normalization methods of the combination strategy
√ ×

7 Discovering the best ones by comprehensively assessing the largest set of methods
√ ×

metabolomic data were fully provided and could be evalu-
ated in NOREVA. To the best of our knowledge, these 168
constitute the largest set of normalization methods that has
been provided by available tools so far.

Furthermore, signal drifts and batch effects are fre-
quently encountered in the metabolic profiling, especially
in the long-term and large-scale ones whose time spans are
usually several months or even years (43,44). In such cases,
data normalization is fundamental, but have to be cou-
pled with a careful organization of the analytical run (43).
Thus, a series of quality control samples (QCSs) over the
entire time course of a large-scale study has been adopted
to concatenate data of multiple analytical blocks into single
dataset (45,46), and been considered as an essential mea-
surement in preprocessing large-scale metabolomics data
(19). In other words, the best result of metabolomic data
processing should be achieved through applying the optimal
normalization strategy to a set of data acquired in a well-
designed analytical sequence (47). In NOREVA, a univari-
ate approach termed the QCS-based robust LOESS signal
correction (QCS-RLSC) for correcting signal drifts and re-
moving batch effects from a given large-scale metabolomic
dataset (43), was provided by integrating statTarget pack-
age (19). Such function can be utilized by NOREVA users
by simply indicating the type of their uploaded dataset as
‘Data with Quality Control Samples’. Particularly, the users
should carefully design the analytical sequence, and then
provide the injection order in their uploaded data by strictly
following the sequence of their experiment (injection order
should be provided in the uploaded file as described in the
last section of Materials and Methods).

Multiple Criteria Ensuring Collective Assessment

Performance assessment of each normalization method in
this study was achieved using the same list of criteria (five
well-established criteria in total) as those in NOREVA 1.0
(10), but the specific measures under each criterion were
systematically modified and enhanced to meet the needs of
time-course and multi-class metabolomic analyses. More-
over, under each criterion, one measure was selected to be
representative, and a variety of well-defined cutoffs of this
measure were used to categorize the normalization perfor-
mance into Superior, Good and Poor.

Criterion Ca: Method’s Ability to Reduce Intragroup
Variation among Samples (9)

This criterion is the most widely applied and has been
used by a number of available tools, such as NormalyzerDE

(14), MetaboGroup S (35), pseudoQC (36) and metaX (37).
Herein, the measures used under this criterion are similar
to those in NOREVA 1.0 (10), which included: (i) Pooled
Median Absolute Deviation (PMAD) & Pooled Estimate
of Variance (PEV) (a lower value means a more thorough
removal of experimentally induced noise and indicates a
better normalization) (8); (ii) principal component analy-
sis (PCA), visualizing the differences among multiple time-
points/classes (the more distinct the differences, the better
the performances of the applied method) (9); (iii) relative log
abundance (RLA) plots, illustrating the tightness of sam-
ples across or within multiple time-points/classes (the me-
dian in the plots would be close to zero, and the variation
around the median would be low) (32).

PMAD was selected to be the representative measure un-
der Criterion Ca, and its value was larger than 0. PMAD is
one of the most popular measures for evaluating the capac-
ity of a method in reducing the intragroup variation among
samples (6). A lower value of PMAD denotes a more thor-
ough removal of unwanted variation (8). PMAD within the
ranges of ≤0.3, ≤0.7 & >0.3 and >0.7 indicates Superior,
Good and Poor performances, respectively (8,9,48).

Criterion Cb: Method’s Effect on Differential Metabolic
Analysis (10)

To meet the requirements of the time-course and multi-
class metabolomic analysis, the clustering dendrogram and
heatmap plot provided in NOREVA 1.0 (10) are completely
replaced by the K-means plot (where K denotes the total
number of time-points/classes in the studied dataset. K=2
for case-control studies). For time-course metabolomics,
multivariate empirical Bayes statistics is first applied by
running the mb.long function in timecourse R package
(49). The metabolic biomarkers are then ranked and identi-
fied using HotellingT2 statistics (50). For multi-class data,
the orthogonal partial least squares-discriminant analysis
(OPLS-DA) was first used via running the opls function in
the ropls R package (51), which was optimized by calcu-
lating the number of orthogonal components using cross-
validation (51). Particularly, parameters ‘orthoI’, ‘cross-
valI’ and ‘predI’ in opls function of ropls R package were set
to ‘NA’, ‘2’ and ‘1’, respectively, which made the number of
orthogonal components automatically computed and opti-
mized based on 2-fold cross-validation and one predictive
component (51). The above strategy has been frequently
applied in current metabolomics (51–53). The metabolites
with value of Variable Influence on Projection (VIP) larger
than 1 are then identified as differential metabolic mark-
ers among K classes (28). Based on these markers identified
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Table 2. Eight benchmark datasets collected for case study analysis. Particularly, four time-course & four multi-class metabolomic benchmarks were col-
lected. The number of time-points/classes in each benchmark was provided and described. GC–MS: gas chromatography–mass spectrometry; IS: internal
standard; LC–MS: liquid chromatography–mass spectrometry; QCS: quality control sample

Dataset ID & Platform Remarks on Each Dataset Dataset Description

MTBLS665 (73) Time-course
LC-MS (positive mode)

Untargeted metabolomic dataset of 3
time-points without QCS & IS

4,236 metabolites from people before P.
vivax infection, on the day of positive blood
smear, and three-weeks after treatment

MTBLS518 (74) Time-course
LC-MS (positive mode)

Untargeted metabolomic dataset of 7
time-points with QCS

14,339 metabolites from M. mulatta (rhesus
monkey) after infecting P. sporozoites at days 0,
21, 27, 52, 59, 90, and 98

MTBLS319 (75) Time-course
GC-MS (time-of-flight)

Untargeted metabolomic dataset of 3
time-points with IS

116 metabolites from the mutation strains of P.
putida after the toluene shock at 0 min, 10 mins
and 60 mins

MTBLS656 (76) Time-course
LC-MS (ion-switching)

Targeted metabolomic dataset of 3
time-points without QCS & IS

259 metabolites from the healthy volunteers of
a time-series consecutive sample collections at
0 hr, 12 hrs, and 24 hrs

MTBLS59 (72) Multi-class LC-MS
(positive mode)

Untargeted metabolomic dataset of 4
classes without QCS & IS

1,632 metabolites from 4 types of apple
extracts (control, other 3 spiked with nine
compounds of different concentrations)

MTBLS520 (77) Multi-class
LC-MS (positive mode)

Untargeted metabolomic dataset of 9
classes with QCS

4,172 metabolites from 9 different bryophytes
(B. rutabulum, C. cuspidata, F. taxifolius, G.
pulvinata, etc.)

MTBLS370 (78) Multi-class
GC-MS (Q exactive)

Untargeted metabolomic dataset of 4
classes with IS

885 extracellular metabolites from fresh
medium, C. albicans spent media, S.
aureus spent media and co-culture spent media

MTBLS370 (78) Multi-class
GC-MS (Q exactive)

Targeted metabolomic dataset of 4
classes without QCS & IS

72 extracellular metabolites from fresh
medium, C. albicans spent media, S.
aureus spent media and co-culture spent media

from time-course/multi-class metabolomics data, K-means
clustering is adopted to describe the level of differentiation
among time-points/classes (54), and a method is considered
well-performing when obvious differentiation among time-
points/classes in the clustering outcome was observed.

In order to assess the level of differentiation among time-
points/classes, a well-established index (purity) was calcu-
lated and selected to be the representative measure under
Criterion Cb. Purity is an effective and transparent measure
for evaluating the clustering quality (55,56). A clustering
outcome of bad quality has a purity value close to 0, while
a perfect clustering results in a purity of 1 (55,56). Purity
within the ranges of >0.8, ≤0.8 & >0.5 and ≤0.5 denoted
Superior, Good and Poor performances, respectively (56,57).

Criterion Cc: Method’s Consistency in Markers Discov-
ered from Different Datasets (58)

The low reproducibility among multiple sets of mark-
ers identified from different metabolomics datasets for the
same research issue can raise doubt about reliability (59).
The underlying reason for this lack of reproducibility might
be attributed to the inconsistency of the applied process-
ing methods (especially normalization) (58). Thus, the con-
sistency in the sets of markers discovered from different
datasets is considered to be an essential criterion for eval-
uating the normalization performance (10). Under this cri-
terion, time-course/multi-class data are first divided evenly
into three sub-datasets using the stratified random selection
(60,61). Stratified random sampling (SRS) is a sampling
method that involves the division of all samples into mul-
tiple subgroups known as strata (multiple classes for multi-
class metabolomics, multiple time-points for time-course
ones), and the random samples are then selected from each
stratum and combined among different strata to construct
three subgroups (60,61). In NOREVA, the strata function

in the sampling R package was applied to perform SRS
by setting parameter ‘stratanames’ (vector of stratification
variables) and ‘size’ (number of samples in each subgroup
for a studied stratum) to ‘the label of class/time-point’ and
‘N/3’ (62), respectively. The N denoted the total number of
samples in studied stratum, and the number ‘3’ indicated
the three subgroups. After the subgroup selection, the same
strategy for identifying the differential metabolic markers as
that described in Criterion Cb is applied to each sub-dataset.
Based on the three marker sets identified from these three
sub-datasets, a powerful measure relative weighted consis-
tency (CWrel) is finally used to quantitatively evaluate the
level of consistency among three sets of identified metabolic
markers (63). Moreover, the reason why the studied dataset
was divided into only three subgroups is due to the follow-
ing. First, the CWrel was reported as subset-size-unbiased,
which made it insensitive to the number of subgroups (63).
Second, as provided in MetaboLights (64), a large number
of metabolomic studies were of relatively small sample size.
With the increase of the number of sub-datasets, the appli-
cability of NOREVA can be significantly limited. For exam-
ple, if the number of sub-datasets was set to 3, the minimum
sample number of each class/time-point, considering the 2-
fold cross-validation in marker selection, should equal to 6.
In other words, the dataset with less than six samples in each
class/time-point cannot be analyzed in NOREVA.

Compared with the well-established measure: weighted
consistency (CW), CWrel is found to be powerful in avoid-
ing the subset-size-biased problem (63). Particularly, CWrel
counts the number of times every single metabolite appears
in every single set of markers to represent the robustness
among marker sets from an overall perspective (63). As the
representative measure of Criterion Cc, CWrel is between 0
and 1. CWrel close to 1 referred to the highest robustness of
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the identified markers, and CWrel within the ranges of >0.3,
≤0.3 & >0.15 and ≤0.15 indicates Superior, Good and Poor
performances, respectively (65).

Criterion Cd: Method’s Influence on Classification Accu-
racy (66)

The prime goal of the time-course/multi-class analysis
is to discover and validate a set of markers that could
be employed to describe biological dynamics or differenti-
ate multiple classes (29,31). The classification accuracy of
the model constructed based on a certain normalization
method is thus assessed using area under the curve (AUC)
value and receiver operating characteristic (ROC) analysis,
under this criterion (66). First, the same strategy for identi-
fying the differential markers as that described in Criterion
Cb is applied to a studied time-course/multi-class dataset.
Second, a multiple classification model was constructed us-
ing the support vector machine (SVM) method via run-
ning the svm function in the e1071 R package (67), and
the parameter ‘type’, ‘kernel’ and ‘cross’ were set to ‘C-
classification’, ‘radial basis’ and ‘5’, respectively. In other
words, an RBF-kernel SVM based on 5-fold cross valida-
tion was applied in this study to control the problem of
overfitting (68). The parameters ‘cost’ and ‘gamma’ in svm
function were optimized by applying the tune function in
e1071 R package based on a grid search over supplied pa-
rameter ranges (69). Finally, AUC value for this multiple
classification is calculated using the multi roc function in
multiROC R package (67). As the representative measure
of Criterion Cd, the AUC is between 0 and 1. If a classi-
fier achieves high classification performance on the stud-
ied time-course/multi-class data, it would yield large AUC
value (close to 1). An AUC value in the range of >0.9, ≤0.9
& >0.7 and ≤0.7 represents Superior, Good, and Poor per-
formances, respectively (70,71).

Criterion Ce: Level of Correspondence between Normal-
ized and Reference Data (8)

The measure applied under this criterion is similar to that
in NOREVA 1.0 (10). Log fold changes (logFCs) of the con-
centrations between any two classes of a time-course/multi-
class dataset are calculated, and the degree of correspon-
dence between the normalized data and references is then
estimated. In case of the spike-in data, the relative levels
of multiple spike-in metabolites can be used as references.
Thus, the level of correspondence between the normalized
data and references (spike-in metabolites) can be utilized
as criterion for assessing normalization performance (8,66).
The performance of each method is reflected by how well
the logFCs of the means of normalized data corresponded
to that of references (8). A boxplot illustrating the varia-
tions between any two classes is used as a representative
measure of the Criterion Ce, and the preferred medians in
the boxplot would equal to zero with the minimized vari-
ations (10,72). Moreover, the logFC of the means alone is
not sufficient due to its overlook of data variability. Thus,
in NOREVA, the logFC of standard deviations is calcu-
lated. Performances of each method can be reflected by how
well this logFC of the normalized data corresponded to that
of the references. A boxplot showing the variation between
classes is further adopted as another measure of this crite-
rion, and the preferred medians in the boxplot would equal
to zero with the minimized variations.

Comprehensive Assessment from Multiple Perspectives

NOREVA enabled the comprehensive assessment of nor-
malization performances by a collective ranking from mul-
tiple perspectives, which were based on the representative
measures of different criteria discussed above. Particularly,
these measures included the PMAD, purity, CWrel, and
AUC value. Based on these measures, the performances of
all 168 methods could be ranked separately, and four rank-
ing numbers were assigned to each method by the four cor-
responding criteria. Due to the independent nature of the
four criteria (10), the collective consideration of multiple
criteria was proposed in this study and realized in NOREVA
for providing the overall ranking to all 168 methods. Par-
ticularly, the overall ranking of a given method was de-
fined by the sum of multiple ranking numbers under mul-
tiple criteria (the smaller the sum is, the higher a method
ranks). To realize comprehensive performance assessment,
a local version of NOREVA was constructed. It can be
downloaded to and run on user’s own computer. Particu-
larly, three sequential steps should be followed. First, in-
stall the R and RStudio environment. Second, download
the local NOREVA. Third, run NOREVA by executing the
R commands in User Manual. Exemplar input/output files
could be downloaded directly from the NOREVA website
(https://idrblab.org/noreva/).

Time-course and Multi-class Benchmarks Collected

Eight benchmark datasets were collected from Metabo-
Lights (64) to assess the performance of NOREVA, which
included four time-course together with another four multi-
class benchmarks. As shown in Table 2, these four time-
course datasets consisted of MTBLS665 (73), MTBLS518
(74), MTBLS319 (75), and MTBLS656 (76). MTBLS665
contains untargeted metabolomic data from 18 samples
with an observation from hree time-points (T0: before Plas-
modium vivax infection; T1: on the day of diagnosis; T2:
three-weeks after treatment); MTBLS518 presents longitu-
dinal untargeted metabolomic data from 15 monkeys with
observations from three time-points (T0: on the day of Plas-
modium sporozoites infection; T1: 21 days after infection;
T2: 90 days after infection); MTBLS319 includes untar-
geted data from eight samples of Pseudomonas putida mu-
tation strains at three time-points (T0: at the time of toluene
shock; T1: 10 mins after the toluene shock; T2: 60 min
after the toluene shock); and MTBLS656 gives targeted
metabolomic data from saliva of healthy volunteers of a
consecutive sample collection from three time-points (T0:
0 hour in the morning; T1: 12 h in the evening; T2: 24 h
in the morning). Meanwhile, four multi-class datasets were
collected from MTBLS59 (72), MTBLS520 (77), and MT-
BLS370 (78). Particularly, MTBLS59 has 10 control sam-
ples of apple extract and three spiked sets of the same size
(10 samples in each set, where nine compounds were spiked
in various concentrations); MTBLS520 is composed of nine
bryophyte species (12 samples for each species); and the
remaining two datasets are all collected from MTBLS370
(one untargeted set of data consists of 885 extracellular
metabolites from fresh medium, C. albicans spent media, S.
aureus spent media & co-culture spent media and 6 samples

https://idrblab.org/noreva/
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Table 3. The performances of representative normalization methods on different types of benchmarks (collectively assessed by four different criteria). (a)
assessing results for three untargeted time-course benchmarks: without QCS & IS (73), with QCS (74), with IS (75) and one targeted time-course benchmark
(76); (b) assessing results for three untargeted multi-class benchmarks: without QCS & IS (72), with QCS (77) and with IS (78) and one targeted multi-
class benchmark (78). Based on the ‘Superior’, ‘Good’, and ‘Poor’ performances defined in the second section of MATERIALS AND METHODS, the
background of each assessment result was colored in green, light green, and red for the ‘Superior’, ‘Good’, and ‘Poor’ performances, respectively. The
abbreviations of normalization methods were described in Supplementary Table S1

(a) Time-course Datasets Assessed by Four Different Criteria (b) Multi-class Datasets Assessed by Four Different Criteria

Normalization Method Ca Cb Cc Cd Normalization Method Ca Cb Cc Cd

RAN+EIG 0.09 1.00 0.61 1.00 LEV+EIG 0.04 0.88 0.37 1.00

AUT+EIG 0.48 1.00 0.46 1.00 PQN+POW 0.05 0.85 0.30 1.00

MEA+VAS 2.29 0.53 0.33 0.94 RAN+LIW 0.23 0.33 0.18 1.00

LIN+LEV 0.02 0.58 0.18 0.58 CUB+AUT 0.86 0.75 0.16 1.00

AUT+LIW 0.76 0.59 0.13 0.97 SUM+LEV 0.01 0.35 0.21 0.23
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AUT+SUM 295.35 0.38 0.11 0.33

VAS+MST < 0.01 0.84 0.32 0.94 RAN+EIG 0.08 0.81 0.57 0.94

SUM+RAN 0.02 0.87 0.19 0.94 AUT+EIG 0.43 0.85 0.62 1.00

LIW+LEV 1.53 0.58 0.49 0.96 CUB+RAN 0.10 0.45 0.35 0.88

MED+RAN 0.03 0.47 0.23 0.63 VAS+LIN 0.21 0.24 0.17 0.33

QUA+PAR 0.77 0.49 0.16 0.83 MST+AUT 0.55 0.33 0.28 0.31
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LEV+PQN 7.64 0.27 0.10 0.40

RUVrand 0.46 0.58 0.37 0.73 SIS 0.24 1.00 0.43 0.86

SIS 0.49 0.42 0.37 0.72 RUVrand 0.23 0.78 0.27 1.00

NOMIS 0.57 0.42 0.22 0.49 CCMN 0.21 1.00 0.42 0.61

U
nt

ar
ge

te
d

W
ith

 IS
M

TB
LS

31
9

CCMN 0.57 0.46 0.25 0.42

U
nt

ar
ge

te
d

W
ith

 IS
M

TB
LS

37
0

NOMIS 0.23 0.83 0.27 0.06

for each media; one targeted dataset includes 72 extracellu-
lar metabolites from the same classes, and also six samples
for each class). MTBLS665 and MTBLS59 contain no qual-
ity control sample (QCS) and internal standard (IS), MT-
BLS518 and MTBLS520 consist of QCS, MTBLS319 and
the untargeted MTBLS370 include ISs, and MTBLS656
and targeted MTBLS370 give targeted metabolomic data
without QCS and IS.

Server Implementation Details and Required File Format

NOREVA is deployed on a web server running Cent OS
Linux v6.5, Apache HTTP web server v2.2.15 and Apache
Tomcat servlet container. Its web interface was developed
by R v3.2.2 and Shiny v0.13.1 running on Shiny-server
v1.4.1.759. Various R packages were utilized in the back-
ground processes. NOREVA can be readily accessed by all
users with no login requirement, and by diverse and popular
web browsers including: Google Chrome, Mozilla Firefox,
Safari and Internet Explorer 10 (or later).

A file consisting of a sample-by-feature matrix (samples
in rows and features in columns) in csv format is required
as input. For analyzing time-course metabolomic data, the
first row of the first 5 columns should be sequentially la-

belled as ‘sample’, ‘batch’, ‘class’, ‘order’ and ‘time’, which
indicate sample ID, batch ID, class of sample, injection or-
der, and time-point, respectively. The sample ID should be
unique among all samples; the batch ID refers to differ-
ent analytical blocks or batches, which should be labeled
with an ordinal number (e.g. 1, 2, 3, . . . ); the class of sam-
ples indicates the QC sample (labeled as ‘NA’); the injec-
tion order strictly follows the sequence of the experiment;
and the time-point refers to explicit time-points (T0, T1,
T2, . . . ) for each sample. The remaining columns give the
mass-to-charge ratios and retention times of all metabolites.
For analyzing multi-class data, the first row of the first 4
columns should be sequentially labelled as ‘sample’, ‘batch’,
‘class’ and ‘order’, which represent sample ID, batch ID,
class of sample, and injection order, respectively. The sam-
ple ID should be unique among all samples; the batch ID
indicates different analytical blocks or batches; the class of
samples denotes QC sample (labeled as ‘NA’); and the in-
jection order strictly follows the experiment. Detail file for-
mat requirements for data with/without IS/QCS are the
same as that of NOREVA 1.0. Moreover, an additional file
containing the reference metabolite data required in eval-
uating Criterion Ce must be in the same format as that in
NOREVA 1.0 (10). Various exemplar files strictly following
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Figure 2. Comparing the performances of three normalization methods on the time-course benchmark MTBLS665 (73) based on the well-established
metabolic marker (kynurenine) elevated in the patient plasma after malaria infection and then declined after treatment (80,81). (A) the normalization
method (Mean) applied in the original study of the MTBLS665 benchmark (73); (B) the normalization method (range scaling+EigenMS) identified to be
consistently well-performing under all four criteria by NOREVA as shown in Table 3A; (C) the normalization method (contrast+level scaling) identified
to be consistently poorly-performing under all four criteria by NOREVA as shown in Table 3A. The violin plots were used to illustrate the concentration
distribution of kynurenine among individuals, and the dots indicated the exact concentrations of kynurenine in an individual at certain time-points (T0,
T1 and T2). All concentrations were scaled into the range between 0 and 1.

these requirements are fully provided and can be directly
downloaded from the NOREVA website.

RESULTS AND DISCUSSION

Exploration of Time-course Metabolomics by NOREVA

To evaluate the capability of NOREVA to identify well-
performing method(s), three time-course datasets were col-
lected: MTBLS665 (73), MTBLS518 (74) and MTBLS656
(76). These datasets were employed for demonstrating the
performance of NOREVA on (i) processing the untargeted
metabolomic data without quality control sample (QCS)
& internal standard (IS), (ii) correcting the signal drifts
in untargeted metabolomics based on QCS and (iii) nor-
malizing the targeted data. Table 3A showed the perfor-
mances of six representative normalization methods on
each of those three benchmark datasets (collectively eval-
uated by four different criteria). For all three datasets, the
performances of different normalizations varied substan-
tially. Particularly, the performances of some methods were
consistently Superior (such as: RAN+EIG, VAS+MST, and
RAN+MED, highlighted by the green background under
all criteria in Table 3A); the performances of another some
were found as consistently Poor for all criteria (CON+LEV,
AUT+CON and CON+NON, highlighted in red in Table
3A); the majority of these representative methods showed
Good (light green in Table 3A) or Superior performance un-
der some criteria but exhibited Poor performance under the
others. Thus, it is highly possible that a certain method is
poorly-performing under one or more criteria for a time-
course dataset, and it is key to systematically evaluate the
performance of the studied method based on the multi-
ple criteria proposed in NOREVA. Moreover, four well-
known IS-based methods (CCMN, NOMIS, RUV-random
and SIS in Supplementary Table S1) were assessed using
MTBLS319 (75). As shown in Table 3A, the performances

of these methods differed substantially, which denoted that
they should also be assessed by multiple criteria.

Proper application of normalization methods could also
be reflected by their levels of success in preserving the ‘true’
biological variation (10,79). These true variations, used
as the gold standard in performance assessments, include
clinically/experimentally well-established markers, spiking
compounds, and so on (10,79). As the metabolite of amino
acid tryptophan, kynurenine has been reported to be a
well-established marker that is elevated in patient plasma
after malaria infection and then decline after treatment
(80,81). MTBLS665 consisted of the metabolomic data
from 18 samples with observations at three time-points:
before malaria infection, on the day of diagnosis, and
three-weeks after treatment (73). Based on this benchmark,
the normalization performances of the different methods
are explicitly illustrated in Figure 2. Three normalization
methods were assessed: (a) the method (mean) applied in
the original study of the MTBLS665 benchmark (73) (its
performance was found by NOREVA to be consistently
Good under all four criteria), (b) the method (Range Scal-
ing+EigenMS) whose performance was found to be consis-
tently Superior in all criteria (shown in Table 3A) and (c)
the method (Contrast+Level Scaling) whose performance
was identified as consistently Poor under all criteria (Ta-
ble 3A). It is clear to see in Figure 2 that both MEA and
RAN+EIG could effectively preserve the ‘true’ biological
variation of kynurenine (elevated in plasma after malaria
infection, and then declined after treatment (80,81)). In con-
trast, CON+LEV could hardly preserve this variation.

Insights into Multi-class Metabolomics by NOREVA

For multi-class metabolomics, three benchmarks were con-
sidered: MTBLS59 (72), MTBLS520 (77) and MTBLS370
(78). These datasets were employed for demonstrating the
performance of NOREVA on (i) processing the untargeted
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Figure 3. Comparison of two representative normalization methods based on nine spiking compounds. (A) the concentration distribution among four
studied groups after the normalization using level scaling+EigenMS (LEV+EIG); (B) the concentration distribution among all studied groups after the
normalization via auto scaling+total sum (AUT+SUM). Base on the comprehensive performance assessments of all 168 normalization methods, LEV+EIG
demonstrated consistently Superior performance across all criteria, while AUT+SUM was identified to be consistently poorly-performing under all four
criteria (as demonstrated in Table 3). Particularly, two out of the nine spiking compounds (trans-resveratrol & cyanidin-3-galactoside) are not naturally
present in the studied extract, so the constant concentrations were spiked for each compound (0.4 and 0.57 mg/l, respectively). Six out of the remaining seven
compounds (catechin, phloridzin, epicatechin, quercetin-3-galactoside, quercetin-3-rhamnoside & quercetin-3-glucoside) were spiked into three groups
with the gradual increase of concentration (from control to an increase of 20%, then 40%, and finally 100%). The last compound (quercetin) was also
spiked with a variation of concentration (from control to an increase of 20%, then 40%, and finally 40%).

multi-class metabolomic data without QCS & IS, (ii) cor-
recting the signal drifts in the untargeted metabolomics
using QCSs and (iii) normalizing the targeted multi-class
metabolomic data. Table 3B showed the performances of
six representative methods on each of these datasets. For
all datasets, the performances of different methods var-
ied significantly. Particularly, the performances of some
methods (like: LEV+EIG, RAN+EIG and MST+POW)
were consistently Superior under all four criteria; the per-
formance of another some (AUT+SUM, LEV+PQN &
VAS+PQN) was consistently Poor; the remaining meth-
ods showed Good/Superior performance under some crite-
ria but Poor under the others. Moreover, IS-based methods
were also assessed based on the multi-class benchmark MT-
BLS370 (78). As shown in Table 3B, the performances of the
methods also differed substantially for this dataset. There-
fore, similar to the time-course dataset, the normalization
of multi-class metabolomic dataset requires a systematical
evaluation based on the multiple criteria.

MTBLS59 (72) consists of a control set of apple extracts
and three spiked sets of the same size (where nine spik-
ing compounds were added at different concentrations).
These spiking compounds were the ‘true’ biological vari-
ations for assessing whether a normalization was prop-
erly applied (10,79). Particularly, two spiking compounds
(trans-resveratrol & cyanidin-3-galactoside) were not nat-
urally present in the studied extracts, so a constant con-
centration was spiked for each (0.4 and 0.57 mg/L, respec-
tively); six out of the remaining seven compounds (catechin,
epicatechin, phloridzin, quercetin-3-galactoside, quercetin-
3-rhamnoside and quercetin-3-glucoside) had been spiked
into three groups with a gradual increase in concentration
(from control to an increase of 20%, then 40%, and finally

100%); the last compound (quercetin) was spiked into an-
other three groups with different variations in concentra-
tion (from control to an increase of 20%, then 40%, and
finally 40%) (72). Based on MTBLS59, the performance
of different normalization methods was shown in Fig-
ure 3. Particularly, two representative normalization meth-
ods in Table 3 were assessed (a) a method (Level Scal-
ing+EigenMS) whose performance was consistently Su-
perior under four criteria (Table 3B) and (b) a method
(Auto Scaling+Total Sum) whose performance was consis-
tently Poor under all four criteria (Table 3B). It was clear
that LEV+EIG could effectively preserve the true biologi-
cal variations of nine spiking compounds (Figure 3A), but
AUT+SUM could hardly preserve this variation for the ma-
jority of the spiking compounds (Figure 3B).

Comprehensive Performance Assessment by NOREVA

To discover the well-performing normalization methods,
NOREVA 2.0 proposes a new strategy that comprehen-
sively assesses the performances of 168 normalization meth-
ods. As illustrated in Figure 4 and Supplementary Figure
S1, this strategy was applied to 6 benchmarks: MTBLS665
(73), MTBLS518 (74), MTBLS656 (76), MTBLS59 (72),
MTBLS520 (77) and MTBLS370 (78) (top-100 ranked
methods were illustrated, and the detail results of perfor-
mance assessments were provided in Supplementary Tables
S2–S4. Particularly, the assessing results under each crite-
rion were first calculated and colored into green, light green,
and red for Superior, Good, and Poor performances, respec-
tively. Then, all methods were comprehensively ranked by
collectively considering the assessment of all criteria. As
shown in Figure 4 and Supplementary Figure S1, the capac-
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Figure 4. Comprehensive assessment among all normalization methods (the top-100 were shown) based on the collective evaluations using four different
criteria. The assessing outcomes for time-course datasets: (A) MTBLS665 without QCS & IS (73) & (B) MTBLS518 with QCS (74), and multi-class
benchmarks: (C) MTBLS59 without QCS & IS (72) & (D) MTBLS520 with QCS (77) were comprehensively ranked and colored using performances.
Based on the description in the second section of MATERIALS AND METHODS, the background of each evaluation result was shown in green, light
green and red for Superior, Good and Poor performance, respectively. The abbreviations of the normalization methods were described in Supplementary
Table S1. Criteria Ca, Cb, Cc and Cd were measured by PMAD, purity, CWrel and AUC, respectively.
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ity of only 5 (3.0%), 2 (1.2%), 1 (0.6%), 4 (2.4%), 1 (0.6%)
and 23 (13.7%) out of all 168 methods were discovered as
consistently Superior under all criteria for MTBLS665 (73),
MTBLS518 (74), MTBLS656 (76), MTBLS59 (72), MT-
BLS520 (77) and MTBLS370 (78), respectively. A further
analyses revealed that all the ‘consistently Superior’ meth-
ods were of the combination strategy reported by a recent
study (6) and integrated by NOREVA. As reported (6),
this strategy was proposed to create novel normalization
method(s) through combining a sample-based normaliza-
tion with a metabolite-based one (shown in Supplementary
Table S1) or vice versa. Although it might not be capable of
drawing any decisive conclusion using only four datasets,
these results above did indicate the necessity of conducting
comprehensive performance evaluation on all methods, and
those methods of the combination strategy in NOREVA
could be the promising candidates of good performance.

In the meantime, the performances of 67 (39.9%), 69
(41.1%), 58 (34.5%), 57 (33.9%), 10 (6.0%) and 53 (31.5%)
out of the 168 methods were discovered as Good/Superior
under all criteria for MTBLS665, MTBLS518, MT-
BLS656, MTBLS59, MTBLS520 and MTBLS370, respec-
tively. Among the newly identified ‘Good/Superior’ meth-
ods, 54 (80.6%), 66 (95.7%), 46 (79.3%), 45 (78.9%), 9
(90.0%) and 48 (90.6%) methods were of the combination
strategy. The results above demonstrated that the tradi-
tional methods (as provided in Supplementary Table S1)
popular in current metabolomics could also be effective
in removing the unwanted variation for time-course and
multi-class metabolomic datasets, but a systematic assess-
ment based on multiple criteria was required for the dis-
covery of well-performing method(s). Moreover, the meth-
ods of combination strategy consisted of the majority of the
identified ‘Good/Superior’ methods, which denoted that the
combined methods could be promising candidates of good
performance for a studied dataset.

CONCLUSIONS AND PERSPECTIVES

This update made NOREVA capable of normalizing and
evaluating time-course and multi-class metabolomic data,
and identifying well-performing method(s) by comprehen-
sively assessing the largest set of normalizations. The case
studies based on benchmark datasets extensively validated
the significance and originality of this update. However, the
analysis of metabolomic experiment with a small amount
of classes (e.g. 3–5 classes) is different from that of rela-
tively diverse classes (e.g. >10 classes). Moreover, the time-
course metabolomics are even more complicated than the
multi-class one, since it follows a ‘longitudinal’ design where
the same sampling unit is followed over time. Because of
such complex nature of time-course and multi-class studies,
the application of NOREVA may be greatly limited. To as-
sess the level of possible limitation, all datasets (∼700) in
MetaboLights (64) were first systematically reviewed, and
the datasets, (i) with unnormalized raw data available and
(ii) with no less than six samples in each class/time-point,
were collected. Among all the collected datasets, two were
identified as with the largest number of classes/time-points
in MetaboLights, which included MTBLS187 of 14 time-
points (82) & MTBLS338 of 19 classes (83). Then, the well-

performing normalizations for these two datasets were iden-
tified using NOREVA, and their results of comprehensive
evaluation were shown in Supplementary Figure S1C (MT-
BLS187) and Supplementary Figure S1D (MTBLS338). As
illustrated, no method was identified to be consistently Su-
perior for either MTBLS187 or MTBLS338, which demon-
strated the difficulty of the proposed NOREVA strategy in
assessing the two datasets of complex nature. Moreover, it is
easy to understand that, with the aggravation of data com-
plexity (the increase of the number of classes/time-points),
the ability of NOREVA to identify well-performing meth-
ods may be gradually limited. However, as illustrated in
Supplementary Figure S1C and D, NOREVA was still capa-
ble of identifying the methods of consistently Good perfor-
mances (light green/green). Considering that the assessed
datasets are among the ones of the largest number of classes
and time-points in the latest MetaboLights (64), it would be
expected that this version of NOREVA could be used for the
majority of current time-course/multi-class problems. With
the advent of big data era (especially OMIC studies (84–
88), precision medicine (89–94), and so on), NOREVA and
other available tools could collectively contribute to vari-
ous aspects of scientific research, such as pathological study,
drug discovery and biomarker identification.
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FUNDING

National Key Research and Development Program of
China [2018YFC0910500]; National Natural Science
Foundation of China [81872798, U1909208]; Fundamental
Research Funds for Central University [2018QNA7023,
10611CDJXZ238826, 2018CDQYSG0007, CD-
JZR14468801]; Key R&D Program of Zhejiang Province
[2020C03010]; Leading Talent of ‘ChinaTen Thousand
Plan’ - National High-Level Talents Special Support Plan.
Funding for open access charge: National Natural Science
Foundation of China [81872798].
Conflict of interest statement. None declared.

REFERENCES
1. Giskeodegard,G.F., Andreassen,T., Bertilsson,H., Tessem,M.B. and

Bathen,T.F. (2019) The effect of sampling procedures and day-to-day
variations in metabolomics studies of biofluids. Anal. Chim. Acta,
1081, 93–102.

2. De Livera,A.M., Sysi-Aho,M., Jacob,L., Gagnon-Bartsch,J.A.,
Castillo,S., Simpson,J.A. and Speed,T.P. (2015) Statistical methods
for handling unwanted variation in metabolomics data. Anal. Chem.,
87, 3606–3615.

3. De Livera,A.M., Olshansky,G., Simpson,J.A. and Creek,D.J. (2018)
NormalizeMets: assessing, selecting and implementing statistical
methods for normalizing metabolomics data. Metabolomics, 14, 54.

4. Rathahao-Paris,E., Alves,S., Debrauwer,L., Cravedi,J.P. and Paris,A.
(2017) An efficient data-filtering strategy for easy metabolite detection
from the direct analysis of a biological fluid using Fourier transform
mass spectrometry. Rapid Commun. Mass Spectrom., 31, 485–494.

5. Boysen,A.K., Heal,K.R., Carlson,L.T. and Ingalls,A.E. (2018)
Best-matched internal standard normalization in liquid
chromatography-mass spectrometry metabolomics applied to
environmental samples. Anal. Chem., 90, 1363–1369.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa258#supplementary-data


W446 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

6. Yang,Q., Hong,J., Li,Y., Xue,W., Li,S., Yang,H. and Zhu,F. (2019) A
novel bioinformatics approach to identify the consistently
well-performing normalization strategy for current metabolomic
studies. Brief. Bioinform., doi:10.1093/bib/bbz137.

7. Craig,A., Cloarec,O., Holmes,E., Nicholson,J.K. and Lindon,J.C.
(2006) Scaling and normalization effects in NMR spectroscopic
metabonomic data sets. Anal. Chem., 78, 2262–2267.

8. Valikangas,T., Suomi,T. and Elo,L.L. (2018) A systematic evaluation
of normalization methods in quantitative label-free proteomics. Brief.
Bioinform., 19, 1–11.

9. Chawade,A., Alexandersson,E. and Levander,F. (2014) Normalyzer:
a tool for rapid evaluation of normalization methods for omics data
sets. J. Proteome Res., 13, 3114–3120.

10. Li,B., Tang,J., Yang,Q., Li,S., Cui,X., Li,Y., Chen,Y., Xue,W., Li,X.
and Zhu,F. (2017) NOREVA: normalization and evaluation of
MS-based metabolomics data. Nucleic Acids Res., 45, W162–W170.

11. Forsberg,E.M., Huan,T., Rinehart,D., Benton,H.P., Warth,B.,
Hilmers,B. and Siuzdak,G. (2018) Data processing, multi-omic
pathway mapping, and metabolite activity analysis using XCMS
Online. Nat. Protoc., 13, 633–651.

12. Chong,J., Soufan,O., Li,C., Caraus,I., Li,S., Bourque,G.,
Wishart,D.S. and Xia,J. (2018) MetaboAnalyst 4.0: towards more
transparent and integrative metabolomics analysis. Nucleic Acids
Res., 46, W486–W494.

13. Hong,J., Luo,Y., Zhang,Y., Ying,J., Xue,W., Xie,T., Tao,L. and
Zhu,F. (2019) Protein functional annotation of simultaneously
improved stability, accuracy and false discovery rate achieved by a
sequence-based deep learning. Brief. Bioinform.,
doi:10.1093/bib/bbz081.

14. Willforss,J., Chawade,A. and Levander,F. (2019) NormalyzerDE:
online tool for improved normalization of omics expression data and
high-sensitivity differential expression analysis. J. Proteome Res., 18,
732–740.

15. Sud,M., Fahy,E., Cotter,D., Azam,K., Vadivelu,I., Burant,C.,
Edison,A., Fiehn,O., Higashi,R., Nair,K.S. et al. (2016)
Metabolomics Workbench: an international repository for
metabolomics data and metadata, metabolite standards, protocols,
tutorials and training, and analysis tools. Nucleic Acids Res., 44,
D463–D470.

16. Yang,Q., Li,B., Tang,J., Cui,X., Wang,Y., Li,X., Hu,J., Chen,Y.,
Xue,W., Lou,Y. et al. (2019) Consistent gene signature of
schizophrenia identified by a novel feature selection strategy from
comprehensive sets of transcriptomic data. Brief. Bioinform.,
doi:10.1093/bib/bbz049.

17. Madrid-Gambin,F., Oller-Moreno,S., Fernandez,L., Bartova,S.,
Giner,M.P., Joyce,C., Ferraro,F., Montoliu,I., Moco,S. and Marco,S.
(2020) AlpsNMR: an R package for signal processing of fully
untargeted NMR-based metabolomics. Bioinformatics,
doi:10.1093/bioinformatics/btaa022.

18. Hong,J., Luo,Y., Mou,M., Fu,J., Zhang,Y., Xue,W., Xie,T., Tao,L.,
Lou,Y. and Zhu,F. (2019) Convolutional neural network-based
annotation of bacterial type IV secretion system effectors with
enhanced accuracy and reduced false discovery. Brief. Bioinform.,
doi:10.1093/bib/bbz120.

19. Luan,H., Ji,F., Chen,Y. and Cai,Z. (2018) statTarget: a streamlined
tool for signal drift correction and interpretations of quantitative
mass spectrometry-based omics data. Anal. Chim. Acta, 1036, 66–72.

20. Peters,K., Bradbury,J., Bergmann,S., Capuccini,M., Cascante,M., de
Atauri,P., Ebbels,T.M.D., Foguet,C., Glen,R., Gonzalez-Beltran,A.
et al. (2019) PhenoMeNal: processing and analysis of metabolomics
data in the cloud. Gigascience, 8, giy149.

21. Lee,C.K., Jeong,S.H., Jang,C., Bae,H., Kim,Y.H., Park,I., Kim,S.K.
and Koh,G.Y. (2019) Tumor metastasis to lymph nodes requires
YAP-dependent metabolic adaptation. Science, 363, 644–649.

22. Mills,E.L., Pierce,K.A., Jedrychowski,M.P., Garrity,R., Winther,S.,
Vidoni,S., Yoneshiro,T., Spinelli,J.B., Lu,G.Z., Kazak,L. et al. (2018)
Accumulation of succinate controls activation of adipose tissue
thermogenesis. Nature, 560, 102–106.

23. Li,Y.H., Li,X.X., Hong,J.J., Wang,Y.X., Fu,J.B., Yang,H., Yu,C.Y.,
Li,F.C., Hu,J., Xue,W.W. et al. (2019) Clinical trials,
progression-speed differentiating features and swiftness rule of the
innovative targets of first-in-class drugs. Brief. Bioinform.,
doi:10.1093/bib/bby130.

24. Yan,W., Wu,X., Zhou,W., Fong,M.Y., Cao,M., Liu,J., Liu,X.,
Chen,C.H., Fadare,O., Pizzo,D.P. et al. (2018) Cancer-cell-secreted
exosomal miR-105 promotes tumour growth through the
MYC-dependent metabolic reprogramming of stromal cells. Nat. Cell
Biol., 20, 597–609.

25. Yurkovich,J.T., Zielinski,D.C., Yang,L., Paglia,G., Rolfsson,O.,
Sigurjonsson,O.E., Broddrick,J.T., Bordbar,A., Wichuk,K.,
Brynjolfsson,S. et al. (2017) Quantitative time-course metabolomics
in human red blood cells reveal the temperature dependence of
human metabolic networks. J. Biol. Chem., 292, 19556–19564.

26. Tiwari,S., van Tonder,A.J., Vilcheze,C., Mendes,V., Thomas,S.E.,
Malek,A., Chen,B., Chen,M., Kim,J., Blundell,T.L. et al. (2018)
Arginine-deprivation-induced oxidative damage sterilizes
Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A., 115,
9779–9784.

27. Swenson,T.L., Karaoz,U., Swenson,J.M., Bowen,B.P. and
Northen,T.R. (2018) Linking soil biology and chemistry in biological
soil crust using isolate exometabolomics. Nat. Commun., 9, 19.

28. Yang,Q., Xu,L., Tang,L.J., Yang,J.T., Wu,B.Q., Chen,N., Jiang,J.H.
and Yu,R.Q. (2018) Simultaneous detection of multiple inherited
metabolic diseases using GC-MS urinary metabolomics by
chemometrics multi-class classification strategies. Talanta, 186,
489–496.

29. Peeters,L., Beirnaert,C., Van der Auwera,A., Bijttebier,S., De
Bruyne,T., Laukens,K., Pieters,L., Hermans,N. and Foubert,K.
(2019) Revelation of the metabolic pathway of hederacoside C using
an innovative data analysis strategy for dynamic multiclass
biotransformation experiments. J. Chromatogr. A, 1595, 240–247.

30. Li,F., Zhou,Y., Zhang,X., Tang,J., Yang,Q., Zhang,Y., Luo,Y., Hu,J.,
Xue,W., Qiu,Y. et al. (2020) SSizer: determining the sample
sufficiency for comparative biological study. J. Mol. Biol.,
doi:10.1016/j.jmb.2020.01.027.

31. Peters,S., Janssen,H.G. and Vivo-Truyols,G. (2010) Trend analysis of
time-series data: a novel method for untargeted metabolite discovery.
Anal. Chim. Acta, 663, 98–104.

32. De Livera,A.M., Dias,D.A., De Souza,D., Rupasinghe,T., Pyke,J.,
Tull,D., Roessner,U., McConville,M. and Speed,T.P. (2012)
Normalizing and integrating metabolomics data. Anal. Chem., 84,
10768–10776.

33. Warrack,B.M., Hnatyshyn,S., Ott,K.H., Reily,M.D., Sanders,M.,
Zhang,H. and Drexler,D.M. (2009) Normalization strategies for
metabonomic analysis of urine samples. J. Chromatogr. B, 877,
547–552.

34. Guitton,Y., Tremblay-Franco,M., Le Corguille,G., Martin,J.F.,
Petera,M., Roger-Mele,P., Delabriere,A., Goulitquer,S.,
Monsoor,M., Duperier,C. et al. (2017) Create, run, share, publish,
and reference your LC-MS, FIA-MS, GC-MS, and NMR data
analysis workflows with the Workflow4Metabolomics 3.0 Galaxy
online infrastructure for metabolomics. Int. J. Biochem. Cell Biol., 93,
89–101.

35. Wang,S., Chen,X., Dan,D., Zheng,W., Hu,L., Yang,H., Cheng,J. and
Gong,M. (2018) MetaboGroup S: a group entropy-based web
platform for evaluating normalization methods in blood
metabolomics data from maintenance hemodialysis patients. Anal.
Chem., 90, 11124–11130.

36. Wang,S. and Yang,H. (2019) pseudoQC: a regression-based
simulation software for correction and normalization of complex
metabolomics and proteomics datasets. Proteomics, 19, e1900264.

37. Wen,B., Mei,Z., Zeng,C. and Liu,S. (2017) metaX: a flexible and
comprehensive software for processing metabolomics data. BMC
Bioinformatics, 18, 183.

38. Franceschi,P., Mylonas,R., Shahaf,N., Scholz,M., Arapitsas,P.,
Masuero,D., Weingart,G., Carlin,S., Vrhovsek,U., Mattivi,F. et al.
(2014) MetaDB a data processing workflow in untargeted MS-based
metabolomics experiments. Front. Bioeng. Biotechnol., 2, 72.

39. Hao,L., Zhu,Y., Wei,P., Johnson,J., Buchberger,A., Frost,D.,
Kao,W.J. and Li,L. (2019) Metandem: an online software tool for
mass spectrometry-based isobaric labeling metabolomics. Anal.
Chim. Acta, 1088, 99–106.

40. Shen,X. and Zhu,Z.J. (2019) MetFlow: an interactive and integrated
workflow for metabolomics data cleaning and differential metabolite
discovery. Bioinformatics, 35, 2870–2872.



Nucleic Acids Research, 2020, Vol. 48, Web Server issue W447

41. Cardoso,S., Afonso,T., Maraschin,M. and Rocha,M. (2019)
WebSpecmine: a website for metabolomics data analysis and mining.
Metabolites, 9, E237.

42. Xia,J. and Wishart,D.S. (2011) Web-based inference of biological
patterns, functions and pathways from metabolomic data using
MetaboAnalyst. Nat. Protoc., 6, 743–760.

43. Dunn,W.B., Broadhurst,D., Begley,P., Zelena,E.,
Francis-McIntyre,S., Anderson,N., Brown,M., Knowles,J.D.,
Halsall,A., Haselden,J.N. et al. (2011) Procedures for large-scale
metabolic profiling of serum and plasma using gas chromatography
and liquid chromatography coupled to mass spectrometry. Nat.
Protoc., 6, 1060–1083.

44. Zelena,E., Dunn,W.B., Broadhurst,D., Francis-McIntyre,S.,
Carroll,K.M., Begley,P., O’Hagan,S., Knowles,J.D., Halsall,A.,
Consortium,H. et al. (2009) Development of a robust and repeatable
UPLC-MS method for the long-term metabolomic study of human
serum. Anal. Chem., 81, 1357–1364.

45. van der Kloet,F.M., Bobeldijk,I., Verheij,E.R. and Jellema,R.H.
(2009) Analytical error reduction using single point calibration for
accurate and precise metabolomic phenotyping. J. Proteome Res., 8,
5132–5141.

46. Brunius,C., Shi,L. and Landberg,R. (2016) Large-scale untargeted
LC-MS metabolomics data correction using between-batch feature
alignment and cluster-based within-batch signal intensity drift
correction. Metabolomics, 12, 173.

47. Gagnebin,Y., Tonoli,D., Lescuyer,P., Ponte,B., de Seigneux,S.,
Martin,P.Y., Schappler,J., Boccard,J. and Rudaz,S. (2017)
Metabolomic analysis of urine samples by UHPLC-QTOF-MS:
impact of normalization strategies. Anal. Chim. Acta, 955, 27–35.

48. Fu,J., Tang,J., Wang,Y., Cui,X., Yang,Q., Hong,J., Li,X., Li,S.,
Chen,Y., Xue,W. et al. (2018) Discovery of the consistently
well-performed analysis chain for SWATH-MS based
pharmacoproteomic quantification. Front. Pharmacol., 9, 681.

49. Tai,Y.C. and Speed,T.P. (2009) On gene ranking using replicated
microarray time course data. Biometrics, 65, 40–51.

50. Li,P., Tang,H., Shi,C., Xie,Y., Zhou,H., Xia,B., Zhang,C., Chen,L.
and Jiang,L. (2019) Untargeted metabolomics analysis of
Mucorracemosus Douchi fermentation process by gas
chromatography with time-of-flight mass spectrometry. Food Sci.
Nutr., 7, 1865–1874.

51. Thevenot,E.A., Roux,A., Xu,Y., Ezan,E. and Junot,C. (2015)
Analysis of the human adult urinary metabolome variations with age,
body mass index, and gender by implementing a comprehensive
workflow for univariate and OPLS statistical analyses. J. Proteome
Res., 14, 3322–3335.

52. Hu,D.Y., Luo,Y., Li,C.B., Zhou,C.Y., Li,X.H., Peng,A. and Liu,J.Y.
(2018) Oxylipin profiling of human plasma reflects the renal
dysfunction in uremic patients. Metabolomics, 14, 104.

53. Yuan,F., Cheng,K., Gao,J. and Pan,S. (2018) Characterization of
cultivar differences of blueberry wines using GC-QTOF-MS and
metabolic profiling methods. Molecules, 23, 2376.

54. Jacob,S., Nodzenski,M., Reisetter,A.C., Bain,J.R., Muehlbauer,M.J.,
Stevens,R.D., Ilkayeva,O.R., Lowe,L.P., Metzger,B.E., Newgard,C.B.
et al. (2017) Targeted metabolomics demonstrates distinct and
overlapping maternal metabolites associated with BMI, glucose, and
insulin sensitivity during pregnancy across four ancestry groups.
Diabetes Care., 40, 911–919.

55. Jiang,H., Sohn,L.L., Huang,H. and Chen,L. (2018) Single cell
clustering based on cell-pair differentiability correlation and variance
analysis. Bioinformatics, 34, 3684–3694.

56. Huang,S., Cheng,Y., Lang,D., Chi,R. and Liu,G. (2014) A formal
algorithm for verifying the validity of clustering results based on
model checking. PLoS One, 9, e90109.

57. Huang,A. (2008) Similarity measures for text document clustering.
Proc. N Z Comput. Sci. Res. Stud. Conf., 2008, 49–56.

58. Wang,X., Gardiner,E.J. and Cairns,M.J. (2015) Optimal consistency
in microRNA expression analysis using reference-gene-based
normalization. Mol. Biosyst., 11, 1235–1240.

59. Wang,Y., Klijn,J.G., Zhang,Y., Sieuwerts,A.M., Look,M.P., Yang,F.,
Talantov,D., Timmermans,M., Meijer-van Gelder,M.E., Yu,J. et al.
(2005) Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer. Lancet, 365, 671–679.

60. Onderwater,G.L.J., Ligthart,L., Bot,M., Demirkan,A., Fu,J., van der
Kallen,C.J.H., Vijfhuizen,L.S., Pool,R., Liu,J., Vanmolkot,F.H.M.

et al. (2019) Large-scale plasma metabolome analysis reveals
alterations in HDL metabolism in migraine. Neurology, 92,
1899–1911.

61. Setia,M.S. (2016) Methodology series module 5: sampling strategies.
Indian J. Dermatol., 61, 505–509.

62. Huber,W., Carey,V.J., Gentleman,R., Anders,S., Carlson,M.,
Carvalho,B.S., Bravo,H.C., Davis,S., Gatto,L., Girke,T. et al. (2015)
Orchestrating high-throughput genomic analysis with Bioconductor.
Nat. Methods, 12, 115–121.

63. Somol,P. and Novovicova,J. (2010) Evaluating stability and
comparing output of feature selectors that optimize feature subset
cardinality. IEEE Trans. Pattern Anal. Mach. Intell., 32, 1921–1939.

64. Haug,K., Cochrane,K., Nainala,V.C., Williams,M., Chang,J.,
Jayaseelan,K.V. and O’Donovan,C. (2020) MetaboLights: a resource
evolving in response to the needs of its scientific community. Nucleic
Acids Res., 48, D440–D444.

65. Song,X., Waitman,L.R., Hu,Y., Yu,A.S.L., Robins,D. and Liu,M.
(2019) Robust clinical marker identification for diabetic kidney
disease with ensemble feature selection. J. Am. Med. Inform. Assoc.,
26, 242–253.

66. Risso,D., Ngai,J., Speed,T.P. and Dudoit,S. (2014) Normalization of
RNA-seq data using factor analysis of control genes or samples. Nat.
Biotechnol., 32, 896–902.

67. Ihaka,R. and Gentleman,R. (1995) R: a language for data analysis
and graphics. J. Comput. Graph. Stat., 5, 299–314.

68. Jia,Z. (2017) Controlling the overfitting of heritability in genomic
selection through cross validation. Sci. Rep., 7, 13678.

69. Cinelli,M., Sun,Y., Best,K., Heather,J.M., Reich-Zeliger,S.,
Shifrut,E., Friedman,N., Shawe-Taylor,J. and Chain,B. (2017)
Feature selection using a one dimensional naive Bayes’ classifier
increases the accuracy of support vector machine classification of
CDR3 repertoires. Bioinformatics, 33, 951–955.

70. Jiang,J., Yin,X.Y., Song,X.W., Xie,D., Xu,H.J., Yang,J. and Sun,L.R.
(2018) EgoNet identifies differential ego-modules and pathways
related to prednisolone resistance in childhood acute lymphoblastic
leukemia. Hematology, 23, 221–227.

71. Gillis,J. and Pavlidis,P. (2011) The role of indirect connections in gene
networks in predicting function. Bioinformatics, 27, 1860–1866.

72. Franceschi,P., Masuero,D., Vrhovsek,U., Mattivi,F. and Wehrens,R.
(2012) A benchmark spike-in data set for biomarker identification in
metabolomics. J. Chemom., 26, 16–24.

73. Gardinassi,L.G., Arevalo-Herrera,M., Herrera,S., Cordy,R.J.,
Tran,V., Smith,M.R., Johnson,M.S., Chacko,B., Liu,K.H.,
Darley-Usmar,V.M. et al. (2018) Integrative metabolomics and
transcriptomics signatures of clinical tolerance to Plasmodium vivax
reveal activation of innate cell immunity and T cell signaling. Redox.
Biol., 17, 158–170.

74. Lee,K.J., Yin,W., Arafat,D., Tang,Y., Uppal,K., Tran,V.,
Cabrera-Mora,M., Lapp,S., Moreno,A., Meyer,E. et al. (2014)
Comparative transcriptomics and metabolomics in a Rhesus macaque
drug administration study. Front. Cell Dev. Biol., 2, 54.

75. Sayqal,A., Xu,Y., Trivedi,D.K., AlMasoud,N., Ellis,D.I.,
Muhamadali,H., Rattray,N.J., Webb,C. and Goodacre,R. (2016)
Metabolic analysis of the response of Pseudomonas putida DOT-T1E
strains to toluene using Fourier transform infrared spectroscopy and
gas chromatography mass spectrometry. Metabolomics, 12, 112.

76. Skarke,C., Lahens,N.F., Rhoades,S.D., Campbell,A., Bittinger,K.,
Bailey,A., Hoffmann,C., Olson,R.S., Chen,L., Yang,G. et al. (2017) A
pilot characterization of the human chronobiome. Sci. Rep., 7, 17141.

77. Peters,K., Gorzolka,K., Bruelheide,H. and Neumann,S. (2018)
Seasonal variation of secondary metabolites in nine different
bryophytes. Ecol. Evol., 8, 9105–9117.

78. Weidt,S., Haggarty,J., Kean,R., Cojocariu,C.I., Silcock,P.J.,
Rajendran,R., Ramage,G. and Burgess,K.E. (2016) A novel
targeted/untargeted GC-Orbitrap metabolomics methodology
applied to Candidaalbicans and Staphylococcus aureus biofilms.
Metabolomics, 12, 189.

79. Li,B., Tang,J., Yang,Q., Cui,X., Li,S., Chen,S., Cao,Q., Xue,W.,
Chen,N. and Zhu,F. (2016) Performance evaluation and online
realization of data-driven normalization methods used in LC/MS
based untargeted metabolomics analysis. Sci. Rep., 6, 38881.

80. Dos Santos,R.O., Goncalves-Lopes,R.M., Lima,N.F.,
Scopel,K.K.G., Ferreira,M.U. and Lalwani,P. (2019) Kynurenine
elevation correlates with T regulatory cells increase in acute



W448 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Plasmodium vivax infection: a pilot study. Parasite Immunol., 42,
e12689.

81. Hunt,N.H., Too,L.K., Khaw,L.T., Guo,J., Hee,L., Mitchell,A.J.,
Grau,G.E. and Ball,H.J. (2017) The kynurenine pathway and
parasitic infections that affect CNS function. Neuropharmacology,
112, 389–398.

82. Kim,Y.M., Nowack,S., Olsen,M.T., Becraft,E.D., Wood,J.M.,
Thiel,V., Klapper,I., Kuhl,M., Fredrickson,J.K., Bryant,D.A. et al.
(2015) Diel metabolomics analysis of a hot spring chlorophototrophic
microbial mat leads to new hypotheses of community member
metabolisms. Front. Microbiol., 6, 209.

83. Monchgesang,S., Strehmel,N., Trutschel,D., Westphal,L.,
Neumann,S. and Scheel,D. (2016) Plant-to-plant variability in root
metabolite profiles of 19 Arabidopsis thaliana accessions is
substance-class-dependent. Int. J. Mol. Sci., 17, E1565.

84. Lee,E.M., Park,S.J., Lee,J.E., Lee,B.M., Shin,B.K., Kang,D.J.,
Choi,H.K., Kim,Y.S. and Lee,D.Y. (2019) Highly geographical
specificity of metabolomic traits among Korean domestic soybeans
(Glycine max). Food Res. Int., 120, 12–18.

85. Tang,J., Fu,J., Wang,Y., Luo,Y., Yang,Q., Li,B., Tu,G., Hong,J.,
Cui,X., Chen,Y. et al. (2019) Simultaneous improvement in the
precision, accuracy, and robustness of label-free proteome
quantification by optimizing data manipulation chains. Mol. Cell.
Proteomics, 18, 1683–1699.

86. Werner,A., Broeckling,C.D., Prasad,A. and Peebles,C.A.M. (2019) A
comprehensive time-course metabolite profiling of the model
cyanobacterium Synechocystissp. PCC 6803 under diurnal light:dark
cycles. Plant J., 99, 379–388.

87. Tang,J., Fu,J., Wang,Y., Li,B., Li,Y., Yang,Q., Cui,X., Hong,J., Li,X.,
Chen,Y. et al. (2019) ANPELA: analysis and performance assessment

of the label-free quantification workflow for metaproteomic studies.
Brief. Bioinform., doi:10.1093/bib/bby127.

88. Habchi,B., Alves,S., Jouan-Rimbaud Bouveresse,D., Appenzeller,B.,
Paris,A., Rutledge,D.N. and Rathahao-Paris,E. (2018) Potential of
dynamically harmonized Fourier transform ion cyclotron resonance
cell for high-throughput metabolomics fingerprinting: control of data
quality. Anal. Bioanal. Chem., 410, 483–490.

89. Attard,G. and Beltran,H. (2015) Prioritizing precision medicine for
prostate cancer. Ann. Oncol., 26, 1041–1042.

90. Wang,Y., Zhang,S., Li,F., Zhou,Y., Zhang,Y., Wang,Z., Zhang,R.,
Zhu,J., Ren,Y., Tan,Y. et al. (2020) Therapeutic target database 2020:
enriched resource for facilitating research and early development of
targeted therapeutics. Nucleic Acids Res., 48, D1031–D1041.

91. Lee,N.Y., Yoon,S.J., Han,D.H., Gupta,H., Youn,G.S., Shin,M.J.,
Ham,Y.L., Kwak,M.J., Kim,B.Y., Yu,J.S. et al. (2020) Lactobacillus
and Pediococcus ameliorate progression of non-alcoholic fatty liver
disease through modulation of the gut microbiome. Gut Microbes,
doi:10.1080/19490976.2020.1712984.

92. Yin,J., Sun,W., Li,F., Hong,J., Li,X., Zhou,Y., Lu,Y., Liu,M.,
Zhang,X., Chen,N. et al. (2020) VARIDT 1.0: variability of drug
transporter database. Nucleic Acids Res., 48, D1042–D1050.

93. Xue,W., Yang,F., Wang,P., Zheng,G., Chen,Y., Yao,X. and Zhu,F.
(2018) What contributes to serotonin-norepinephrine reuptake
inhibitors’ dual-targeting mechanism? The key role of
transmembrane domain 6 in human serotonin and norepinephrine
transporters revealed by molecular dynamics simulation. ACS Chem.
Neurosci., 9, 1128–1140.

94. Gupta,H., Youn,G.S., Shin,M.J. and Suk,K.T. (2019) Role of gut
microbiota in hepatocarcinogenesis. Microorganisms, 7, E121.


