
cancers

Article

Cyathus striatus Extract Induces Apoptosis in Human Pancreatic
Cancer Cells and Inhibits Xenograft Tumor Growth In Vivo
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Simple Summary: The main aim of the present study is to test the effect of Cyathus striatus extract
on the cell growth of human pancreatic cancer cells in vitro and in vivo. In addition, the effect of
the extract on the gene expression was detected. The results indicated that Cyathus striatus extract
significantly inhibited the cell viability and induced apoptosis. The treatment of xenograft mice har-
boring human pancreatic cancer cells significantly inhibited tumor growth through the induction of
apoptosis. RNAseq experiments revealed the involvement of the MAPK and P53 signaling pathways
and pointed toward endoplasmic reticulum stress induced apoptosis. These results may suggest
that Cyathus striatus extract may contain pro-apoptotic factors that can be identified and used for the
treatment of human cancer.

Abstract: Pancreatic cancer is a highly lethal disease with limited options for effective therapy and
the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment
is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent
antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract
(CSE ) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay
(XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell
growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement
of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the
involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum
stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring
pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV
injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating
pancreatic cancer.

Keywords: pancreatic cancer; apoptosis; in vivo; RNAseq; mushroom extract

1. Introduction

Pancreatic cancer is the fourth leading cause of cancer-related deaths in the US and
the seventh worldwide, with a 5-year survival rate of 9% [1,2].

The prognosis of the majority of pancreatic cancer patients is very low due to its
aggressive nature and the lack of early diagnosis and effective therapy. The median sur-
vival of patients diagnosed with the most advanced stage is 4.5 months, increasing to
a median survival of only 24.1 months for those diagnosed with early stage disease [3].
Pancreatic cancer responds poorly to most chemotherapeutic agents, and the effectiveness
of radiotherapy remains controversial. Several immunotherapeutic strategies have also
been tested in patients with pancreatic cancer; however, most of them failed to show any
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clinically meaningful effects [4]. The lack of response to conventional treatment may be due
to the high resilience of pancreas cancer cells to chemotherapy. Hence, the development
of new, safe and effective drugs for the treatment of this cancer may help confront this
challenging disease. In the past 70 years, out of all anticancer drugs approved for cancer
treatment by the FDA, 74.9% can be classified as naturally inspired agents [5,6]. Advances
in synthetic chemistry have allowed natural products to serve as leading compounds in
the development of new drugs based on their chemical structures, in addition to optimized
pharmacological properties. A good example is paclitaxel (Taxol) and its formulations first
isolated in 1971 from the Pacific yew used for the treatment of a several types of cancer.
This includes pancreatic cancer, ovarian cancer, breast cancer, lung cancer, esophageal
cancer, Kaposi sarcoma and cervical cancer. Other drugs used for cancer treatment include
etoposide, topotecan, fluorouracil, temozolomide and more [5,6]. Traditionally, a variety of
mushrooms have been used in many different cultures for the maintenance of health and
in the prevention and treatment of various diseases [7]. Cyathus striatus (CS) is a higher
Basidiomycetes mushroom, a member of the Nidulariaceae family. CS is known to contain
several biologically active compounds. In 1971, it was reported that CS contain indolic sub-
stances [8,9] and a complex of diterpenoid antibiotic compounds, cyathins [9]. Furthermore,
it was found that CS also possess sesquiterpene compounds called schizandronols [10] and
several triterpene compounds: glochidone, glochidonol, glochidiol and glochidiol diacetate.
Sesquiterpene compounds are a class of natural chemicals that are commonly synthesized
by plant species. Certain types of sesquiterpenes have a unique chemical structure that can
target a precise protein required for mitosis. Therefore, some sesquiterpenes can induce
cell cycle and mitotic arrest [11,12]. Four triterpene compounds, cyathic acid, striatic acid,
cyathadonic acid and epistriatic acid, were unknown prior to their isolation from CS [13].
Triterpenes hold numerous biological activities, such as anticancer, anti-inflammatory,
antioxidative, antiviral, antibacterial and antifungal properties [14]. Moreover, it was re-
ported that triterpenes can stimulate the immune response by increasing the expression
of IL-6 and TNF-α, G2/M cell arrest, apoptosis induction by decreasing the expression
of the antiapoptotic protein Bcl-2 and increase the levels of cleaved caspase-9 [15]. These
compounds hold important beneficial influences against gastric, hepatic, colorectal, lung
and breast cancers [16].

Drug treatments or chemotherapy are crucial parts of PDAC treatment. The standard
adjuvant chemotherapy for pancreatic cancer treatment offers a limited median overall
survival/disease-free survival, and chemotherapy with or without surgery is part of the
standard care. Therefore, there is a need to develop new strategies for PDAC therapy.
In the present study, we demonstrated that CSE decreases the viability and growth of
human pancreatic cancer cells both in vitro and in vivo. The antiproliferative effect was
found to be mediated through the induction of apoptosis via the intrinsic and extrinsic
caspase pathways. In addition, a transcriptome analysis following the treatment with
CSE suggests the involvement of both p53 and mitogen-activated protein kinase (MAPK)
signaling pathways and may point to stress-induced apoptosis as the mechanism leading
to cell death.

2. Materials and Methods
2.1. Preparations of Mushroom Extracts

Mycelial culture of the investigated mushroom, Cyathus striatus, was obtained from
the culture collection (HAI) of the Institute of Evolution, University of Haifa, Israel. The
selected mushroom strain was grown first on a solid medium and then transferred onto
submerged conditions, as described before by Zaidman et al. [17,18]. The strain was grown
in submerged conditions for 10 days for biomass production. Culture liquid (CL) of the
strain was extracted with ethyl acetate )EAC( (SDFCL, Mumbai, India) in the ratio of 1 (CL):
500 mL (EAC), as described before [19]. The extract was dried, diluted with dimethyl sul-
foxide (DMSO) (Sigma-Aldrich, St. Louis, MO, USA) to reach a concentration of 50 mg/mL
and stored at −20 ◦C.
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2.2. Cell Cultures

The human pancreatic cancer cell lines HPAF-II and PL45 (ATCC, Rockville, MD, USA)
were maintained in MEM-EAGLE and DMEM mediums, respectively, supplemented with
1% L-glutamine, 10% fetal bovine serum (FBS) and 1% PenStrep (penicillin + streptomycin)
(Biological industries, Beit HaEmek, Israel). The HPAF-II cell line was supplemented with
an additional 1% sodium pyruvate, and the PL45 cell line was supplemented with an
additional 1% L-glutamine. Cells were grown in a humidified incubator at 37 ◦C with 5%
CO2 in the air and served twice a week with fresh medium.

2.3. XTT Cell Proliferation Assay

Evaluation of the fungal extract effect on cell viability was performed by the XTT assay.
HPAF-II and PL45 cells (104) were seeded in 96-well plates and, 24 h later, were treated
with several EAC doses: 1, 2.5, 5, 7.5, 10, 15 and 20 µg/mL for a period of 4, 8 and 12 h.
The medium was added to the control wells. Following the treatment, the cell viability was
determined by the XTT assay (Biological Industries, Beit HaEmek, Israel), according to the
manufacturer’s instructions, using an ELISA reader (BioTek). Experiments were repeated
2–5 times independently. Data were presented as the average proliferation percentage of
the respective control.

2.4. Cell Cycle and Apoptosis Assays

For the cell cycle distribution analysis, HPAF-II and PL45 cells (106) were treated with 5
and 10 µg/mL of CSE for 4 h. At the end of the incubation period, cells were trypsinized and
collected with the growth medium, centrifuged, washed with PBS (Biological Industries,
Beit HaEmek, Israel) and fixed with 70% ethanol for one hour at −20 ◦C. Cells were
incubated with 0.1% NP-40 in 4 ◦C for 5 min, followed by 30 min of incubation on ice with
100 µg/mL RNase (Sigma-Aldrich, St. Louis, MO, USA). Finally, 50 µg/mL propidium
iodide (PI) (Sigma-Aldrich, St. Louis, MO, USA) was added for 20 min. Cell cycle analysis
was carried out by Fluorescence-activated Cell Sorting (FACS) (Becton Dickinson, Franklin
Lakes, NJ, USA); 10,000 cells were counted for the control, as well for the treatment groups.

2.5. Annexin-V/PI Double Staining

Apoptotic cell death was evaluated and quantified by flow cytometry based on the
Annexin-V FITC and PI double-staining kit (Mebcyto® Apoptosis Kit) (MBL, Nagoya,
Japan). HPAF-II and PL45 cells (2 × 105) were seeded in 25-cm2 flasks. The next day, cells
were treated with ascending concentrations of CSE (0, 2.5, 5, 7.5 and 10 µg/mL) for 4 h. Both
adherent and floating cells were collected in order to detect early and late apoptotic events.
Treated and untreated cells were harvested by trypsinization, washed and suspended in ice-
cold PBS. The washed cell pellets were resuspended in ice-cold-binding buffer containing
FITC-conjugated Annexin-V and PI. The samples were incubated at room temperature for
15 min in the dark before analysis by FACS, managed with FACSDiva software (Becton
Dickinson, Franklin Lakes, NJ, USA).

2.6. TUNEL Assay

HPAF-II and PL45 cells were counted (25 × 103 cells/mL) and seeded on chamber
slides (Nunc, Roskilde, Denmark). The next day, the growth medium was replaced with a
medium containing 10-µg/mL CSE. After 4 h, the cell morphology was examined using
DAPI (Vectashield) (Vector Laboratories, Inc., Burlingame, CA, USA) and TUNEL (In Situ
Cell Death Detection Kit) (Roche, Mannheim, Germany) staining. The cell growth medium
was removed; cells were washed twice with PBS, fixed for 60 min and permeabilized.
Subsequently, the cells were incubated with the TUNEL reaction mixture that contains TdT
and fluorescein-dUTP for 60 min and washed twice with PBS. DAPI was added on top of
TUNEL-treated cells and visualized by fluorescence microscopy.
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2.7. Western Blotting

Cell lysates from control and CS-treated cells were prepared using a total of 0.3 mL
of ice-cold glycerol lyses buffer supplemented with 40 µL, of protease inhibitors and
1 µl/mL of PMSF (Phenylmethylsulfonyl fluoride) (Sigma-Aldrich, St. Louis, MO, USA).
Total protein concentrations were determined using a Bio-Rad protein assay (Bio-Rad
Laboratories, Inc. Hercules, CA, USA) based on the method of Bradford (1976) using a
BSA standard curve (0–35 µg/mL). Equal amounts of proteins (40 mg) were separated
by SDS-PAGE with 10–15% polyacrylamide gels and then transferred onto nitrocellulose
membranes. To determine the caspase activity, caspase-3-specific antibodies (Abcam,
Cambridge, UK), caspase-9 (Cell Signaling Technology, Danvers, MA, USA) and caspase-8
(kindly provided by Prof. Larish, University of Haifa) were used. PARP cleavage was also
detected by Western blotting using PARP-specific antibodies (Cell Signaling Technology,
MA, USA). β-actin (MP Biomedicals, OH, USA) was used as the loading control. All whole
western figures can be found in the Supplementary Materials.

2.8. Next-Generation Transcriptome Profiling

HPAF-II and PL45 cells (106 cells seeded in 25-cm2 flasks) were treated with a dose
of 7.5-µg/mL CSE for 3 h. The total RNA was isolated from the control and treated cells
using the mirVana™ miRNA Isolation Kit (Ambion, Inc. Austin, TX, USA), according to
the manufacturer’s instructions. Isolated RNA’s concentration and quality was determined
by the Qubit® quantitation assay using Qubit® 2.0 fluorometer (Invitrogen, Carlsbad, CA,
USA). Samples were prepared for Illumina sequencing using NEB’s Ultra-RNA Library
Prep Kit for Illumina (NEB#7530) (New England Biolabs, Ipswich, MA, USA), according to
the manufacturer’s protocols. Libraries were loaded at 8 pM and were sequenced with a
50-bp SR run on Illumina HiSeq 2500 using a V3 flow cell.

Adapter sequences were filtered out from Illumina reads, and the fastx tool kit was
used to filter out reads with less than 80% of bases under a quality score of 25. The tophat
program (v.2.0.6) was used to align reads to the annotated ENSEMBL human genome,
allowing 2 mismatches at most for alignment. EdgeR (using default parameters) was
used to compare expression levels and call differential expressions, with a q-value of
<0.05 required for significance. The transcripts were further filtered at >2-fold changes and
>0.05 FDR.

2.9. In Vivo Studies

The in vivo study was approved by the institutional animal experimental ethical
committee at the Technion-Israel Institute of Technology (Ethics Number: IL O22-02-11).
Eight-week-old athymic nude male mice (Harlan, Indianapolis, IN, USA) were maintained
in temperature- and humidity-controlled rooms with a 12-h light/dark cycle and given
food and water ad libitum throughout the course of the experiment. A xenograft animal
model was generated via the subcutaneous injection of 1 × 106 PL45 cells in the right dorsal
flank of nude mice.

Upon tumor formation and growth (50 mm3), mice were treated once a week by
intravenous (IV) injections with DMSO (n = 6 mice) or 2.5-mg/kg CSE (n = 8 mice) for
5 weeks. The tumor size was measured biweekly with a caliber, and the volumes were
calculated using the formula: length × width2 × 0.52. On the final day of the experiment,
mice were euthanized using CO2, blood samples were obtained by cardiac puncture
and plasma was collected by centrifugation and stored at 4 ◦C for the analysis of the
liver and kidney functions. The tumors were removed, weighed, measured and fixed in
10% formalin.

Histological slides of the tumors were prepared by fixation, embedding and section
cutting. Apoptotic cells were detected by the TUNEL assay according to the manufacturer’s
instructions (Roche Applied Science, Mannheim, Germany).
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2.10. Statistical Analysis

All experiments, except the in vivo studies, were repeated at least three times (unless
indicated otherwise). All data were expressed as a mean value ± standard error (SE), and
the statistical differences between groups were evaluated using the Student’s t-test for
comparison between two groups or ANOVA test (or their nonparametric counterparts) for
comparison between multiple groups. p < 0.05 was considered statistically significant, and
SPSS software was used for the calculation of the differences.

3. Results
3.1. CSE Inhibits the Growth of Human Pancreatic Cancer Cells

The viability of HPAF-II and PL45 cells treated with different CSE doses for a period of
4, 8 and 12 h was significantly (p < 0.001) decreased in a time- and dose-dependent manner
(Figure 1A). The viability of cells treated with a dose of 10 µg/mL for 12 h was reduced by
over 70%.

Cancers 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

kidney functions. The tumors were removed, weighed, measured and fixed in 10% for-

malin. 

Histological slides of the tumors were prepared by fixation, embedding and section 

cutting. Apoptotic cells were detected by the TUNEL assay according to the manufac-

turer’s instructions (Roche Applied Science, Mannheim, Germany). 

2.10. Statistical Analysis 

All experiments, except the in vivo studies, were repeated at least three times (unless 

indicated otherwise). All data were expressed as a mean value ± standard error (SE), and 

the statistical differences between groups were evaluated using the Student’s t-test for 

comparison between two groups or ANOVA test (or their nonparametric counterparts) 

for comparison between multiple groups. p < 0.05 was considered statistically significant, 

and SPSS software was used for the calculation of the differences. 

3. Results 

3.1. CSE Inhibits the Growth of Human Pancreatic Cancer Cells 

The viability of HPAF-II and PL45 cells treated with different CSE doses for a period 

of 4, 8 and 12 h was significantly (p < 0.001) decreased in a time- and dose-dependent 

manner (Figure 1A). The viability of cells treated with a dose of 10 µg/mL for 12 h was 

reduced by over 70%. 

In order to clarify the cell viability decrease following CS treatment (2.5–10 µg/mL) 

for 4 h, a cell cycle distribution analysis was examined. The FACS analysis demonstrated 

(Figure 1B) that treatment of the cells with CS resulted in accumulation of the cells in the 

sub-G1 phase of the cell cycle. Up to 70% of the cells were observed in the sub-G1 phase, 

as indicated by the fluorescent signal. In order to confirm whether this accumulation is a 

result of apoptosis, HPAF-II and PL45 cells were treated with 10-µg/mL CS for 4 h, stained 

with FITC-labeled Annexin-V and PI and analyzed by flow cytometry. A significant in-

crease (p < 0.05) of Annexin/PI-positive cells (Figure 2A) were captured. The terminal de-

oxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay confirmed the pres-

ence of apoptotic cells as a consequence of exposure to CSE. As shown in Figure 2B, ex-

tensive DNA fragmentation was visible by fluorescence microscopy after TUNEL staining 

following the treatment compared to untreated cells. 

0 1 2.5 5 7.5 10 15 20 0 1 2.5 5 7.5 10 15 20 0 1 2.5 5 7.5 10 15 20
0

20

40

60

80

100

120

Concentration (μg/ml)

V
ia

b
il

it
y

 (
%

 o
f 

co
n

tr
o

l)

HPAF-II PL45

4 h 8 h 12 h

0 2.5 5 7.5 10 0 2.5 5 7.5 10
0

20

40

60

80

100

120

Concentration (μg/ml)

C
e

ll
s(

%
)

Sub-G1 G1 S G2/M

HPAF-II         PL45 

A B

 

Figure 1. The effect of CS on cell viability and cell cycle progression. (A) HPAF-II and PL45 human pancreatic 

cancer cells were treated with 2.5, 5 and 10 µg/mL for 4, 8 or 12 h, followed by cell viability assessment using the XTT 

assay, as described under “Materials and Methods”. (B). Distribution of HPAF-II and PL45 cells at the sub-G1 phase of 

the cell cycle following CSE treatment with 2.5, 5 and 10 µg/mL for 4 h. At the end of the treatment, cells were harvested, 

fixed and stained with PI and subjected to a cell cycle analysis using FACS Calibur (Becton Dickinson, Franklin Lakes, 

NJ, USA). Statistical significance was determined by one-way ANOVA or the Kruskal–Wallis test, p < 0.05, and Mann–

Whitney for the post hoc, p < 0.007. 

Figure 1. The effect of CS on cell viability and cell cycle progression. (A) HPAF-II and PL45 human pancreatic cancer
cells were treated with 2.5, 5 and 10 µg/mL for 4, 8 or 12 h, followed by cell viability assessment using the XTT assay, as
described under “Materials and Methods”. (B). Distribution of HPAF-II and PL45 cells at the sub-G1 phase of the cell cycle
following CSE treatment with 2.5, 5 and 10 µg/mL for 4 h. At the end of the treatment, cells were harvested, fixed and
stained with PI and subjected to a cell cycle analysis using FACS Calibur (Becton Dickinson, Franklin Lakes, NJ, USA).
Statistical significance was determined by one-way ANOVA or the Kruskal–Wallis test, p < 0.05, and Mann–Whitney for the
post hoc, p < 0.007.

In order to clarify the cell viability decrease following CS treatment (2.5–10 µg/mL)
for 4 h, a cell cycle distribution analysis was examined. The FACS analysis demonstrated
(Figure 1B) that treatment of the cells with CS resulted in accumulation of the cells in the
sub-G1 phase of the cell cycle. Up to 70% of the cells were observed in the sub-G1 phase, as
indicated by the fluorescent signal. In order to confirm whether this accumulation is a result
of apoptosis, HPAF-II and PL45 cells were treated with 10-µg/mL CS for 4 h, stained with
FITC-labeled Annexin-V and PI and analyzed by flow cytometry. A significant increase
(p < 0.05) of Annexin/PI-positive cells (Figure 2A) were captured. The terminal deoxynu-
cleotidyl transferase dUTP nick end-labeling (TUNEL) assay confirmed the presence of
apoptotic cells as a consequence of exposure to CSE. As shown in Figure 2B, extensive DNA
fragmentation was visible by fluorescence microscopy after TUNEL staining following the
treatment compared to untreated cells.

3.2. CS Treatment Triggers the Caspase Apoptosis Cascade

To characterize the cell death pathways triggered by CSE treatment, a Western blot
analysis was performed to detect the key features of apoptotic cell death involved in
both the extrinsic (caspase-8) and the intrinsic (caspase-9) apoptosis pathways. The data
presented in Figure 3 demonstrates that the CS treatment of HPAF-II and PL45 cells
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(2.5–10 µg/mL) for 4 h led to the activation of caspase-8 and caspase-3, followed by the
cleavage of Poly (ADP ribose) polymerase (PARP) (Figure 3). Caspase-9 activation was
delayed and achieved after 12 h of treatment.
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Figure 2. Detection of apoptotic cells using Annexin-V/PI double-staining (A) and the TUNEL assay (B). (A) PL45 and
HPAF-II cells were treated with CSE 2.5, 5, 7.5 and 10 µg/mL for 4 h, and a flow cytometric analysis of Annexin V-FITC/PI
was performed. The data is presented as the mean (total apoptotic cells) ± SE. Statistical significance was determined by the
Kruskal–Wallis test, p < 0.05, and Mann–Whitney for the post hoc, p < 0.0125. (B) PL45 and HPAF cells were treated with
10 µg/mL for 4 h, and the TUNEL assay was performed. Illustrations are representatives of three independent experiments.
Blue-colored cells (DAPI) are living cells; red-colored cells (fluorescence-labeled dUTP) are apoptotic cells. Cells were
visualized by fluorescence microscopy (original magnification ×20).
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3.3. Differential Expression Following Treatment with CS

In order to further investigate the mechanism of CS on the induction of apoptosis in 
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was conducted. Changes in the gene expression at the level of mRNA following the treat-

ment were captured. Heat map hierarchical clustering for graphical representation of the 
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Figure 3. Cont.
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3.3. Differential Expression Following Treatment with CS

In order to further investigate the mechanism of CS on the induction of apoptosis in
human pancreatic cancer cells, high-throughput next-generation transcriptome profiling
was conducted. Changes in the gene expression at the level of mRNA following the
treatment were captured. Heat map hierarchical clustering for graphical representation of
the data in a matrix that contains all the significantly changed genes (−1 ≤ 1) is presented
in Figure 4. The results indicated that 621 genes for the PL45 cell line and 356 genes for the
HPAF-II cell line were significantly upregulated, while 166 and 126 were downregulated in
PL45 and HPAF-II, respectively. The DAVID Bioinformatic Resources (DAVID) functional
annotation analysis revealed 180 gene clusters among the 621 upregulated genes in PL45
cells. Twenty-nine were clustered as positive regulations of apoptotic-related genes with
an enrichment score of 8.29 (p = 1.3 × 10−5 and Bengamini = 6.5 × 10−4) (Table 1). For
HPAF-II, 105 clusters were found, according to the DAVID functional annotation analysis.
Among those clusters, 21 were clustered as positive regulations of apoptotic-related genes
with an enrichment score of 5.85 (p = 3.8 × 10−5 and Bengamini = 3.03 × 10−3) (Table 1).
Furthermore, for both the PL45 and HPAF-II cell lines, the genes involved in the MAPK
signaling pathway were clustered: 22 genes for the PL45 cell line and 11 for the HPAF-II
cell line (Table 2). The genes related to the P53 signaling pathway were also clustered for
both cell lines: eight genes and six genes for the PL45 and HPAF-II cell lines (Table 3),
respectively. Interestingly, none of the downregulated genes in both cell lines revealed any
obvious relations to apoptosis, the MAPK signaling pathway or p53 signaling.

Table 1. Upregulation of apoptosis-related genes in PL45 and HAPF-II cells following the treatment
with CSE (FDR-adjusted q-value < 0.05).

Gene Symbol
PL45 HPAF-II

logFC FDR logFC FDR

HMOX1 5.76 2.31 × 10−41 4.41 7.82 × 10−14

PTGS2 4.49 1.31 × 10−38 2.24 1.88 × 10−29

NR4A1 3.85 1.55 × 10−85

JUN 3.76 8.38 × 10−79 2.67 1.75 × 10−27

DDIT3 3.40 2.29 × 10−45 4.07 7.11 × 10−41

CDKN1A 3.08 7.58 × 10−67

DUSP1 3.05 2.45 × 10−44 2.15 1.19 × 10−14

BCL6 2.94 1.09 × 10−53 1.48 1.74 × 10−10

CEBPB 2.85 1.46 × 10−67 2.49 2.08 × 10−31

BBC3 2.72 1.07 × 10−32 2.97 4.36 × 10−14
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Table 1. Cont.

Gene Symbol
PL45 HPAF-II

logFC FDR logFC FDR

DEDD2 2.37 2.61 × 10−55 2.08 2.74 × 10−22

BCL2L11 2.30 5.12 × 10−45

SOX4 2.04 1.73 × 10−22

UBC 2.01 4.69 × 10−31 1.87 3.99 × 10−23

IFNB1 1.98 9.72 × 10−5

CASP9 1.76 6.41 × 10−17

CDKN1B 1.67 2.96 × 10−22 1.35 6.21 × 10−8

SQSTM1 1.63 6.52 × 10−25 1.59 1.76 × 10−5

BCL3 1.55 1.41 × 10−9

NOTCH1 1.52 2.70 × 10−20

PLEKHF1 1.44 2.68 × 10−9

JMY 1.42 3.55 × 10−18 1.74 9.45 × 10−16

PMAIP1 1.42 4.64 × 10−24 1.58 1.88 × 10−16

TNFRSF10B 1.32 2.72 × 10−21 1.10 2.47 × 10−8

INHBA 1.24 2.07 × 10−3

HSPD1 1.11 4.65 × 10−11

UBB 1.07 4.42 × 10−15

FOXO3 1.04 3.51 × 10−13 1.46 3.06 × 10−12

PLEKHG2 1.02 6.99 × 10−6

BCL10 1.06 1.78 × 10−5

CEBPG 1.11 1.02 × 10−8

ERN1 1.70 1.68 × 10−14

ING4 1.23 8.57 × 10−3

TP53INP1 1.85 9.78 × 10−6

Table 2. Upregulation of MAPK signaling pathway-related genes in PL45 and HPAF-II cells following
the treatment with CSE (FDR-adjusted q-value < 0.05).

Gene Symbol
PL45 HPAF-II

logFC FDR logFC FDR

HSPA1A 5.33 1.56 × 10−149 4.69 3.45 × 10−59

HSPA1B 5.20 6.23 × 10−129 3.94 1.90 × 10−51

HSPA1L 3.86 2.72 × 10−19 2.47 1.06 × 10−4

NR4A1 3.85 1.55 × 10−85

JUN 3.76 8.38 × 10−79 2.67 1.75 × 10−27

DDIT3 3.40 2.29 × 10−45 4.07 7.11 × 10−41

DUSP1 3.05 2.45 × 10−44 2.15 1.19 × 10−14

FGFR1 3.03 9.19 × 10−12

JUND 2.42 1.44 × 10−24 1.18 4.6 × 10−4

MKNK2 2.22 1.67 × 10−30

FGFR3 2.19 7.05 × 10−7

DUSP8 2.17 1.15 × 10−9 2.25 5.79 × 10−16

FOS 2.13 8.26 × 10−14

DUSP10 2.09 1.58 × 10−12 2.68 1.69 × 10−24

MAP3K8 2.02 3.32 × 10−17

HSPA6 10.13 7.87 × 10−67 7.86 1.54 × 10−92

HSPB1 1.65 5.58 × 10−29

HSPA8 1.38 2.25 × 10−14

PLA2G6 1.33 9.33 × 10−5

ACVR1C 1.31 1.7 × 10−3

DUSP2 1.22 5.9 × 10−4

NFATC4 1.14 4.78 × 10−2

DUSP16 1.97 3.69 × 10−16

GADD45A 1.30 2.24 × 10−10
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Table 3. Upregulation of P53 signaling pathway-related genes in PL45 and HPAF-II cells following
the treatment with CSE. Significantly different control and CS-treated PL45 and HPAF-II cells (FDR-
adjusted q-value <0.05). Bold gene names are mutual for both cell lines.

Gene Symbol
PL45 HPAF-II

logFC FDR logFC FDR

SESN2 3.47 6.26 × 10−31 3.50 4.74 × 10−30

CDKN1A 3.08 7.58 × 10−67

BBC3 2.72 1.07 × 10−32 2.97 4.36 × 10−14

CASP9 1.76 6.41 × 10−17

PMAIP1 1.42 4.64 × 10−24 1.58 1.88 × 10−16

TNFRSF10B 1.32 2.72 × 10−21 1.10 2.47 × 10−8

SESN3 1.25 1.20 × 10−9

CCNG2 1.06 4.99 × 10−7

GADD45A 1.30 2.24 × 10−10

SIAH1 1.83 8.09 × 10−23

Among the most upregulated genes that are related to apoptosis in both cell lines were HMOX1, PTGS2 (COX-2)
and JUN. Therefore, the protein expression of these gene products was examined in PL45 cells following 4 h of
treatment with CSE. A Western blot analysis revealed a significant increase of these proteins, as presented in
Figure 5. These results support the findings of the RNAseq.
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3.4. CSE Inhibits the Tumor Growth of Pancreatic Cancer Cells In Vivo

To examine the in vivo antitumor efficacy of CSE, mouse-harboring pancreatic cancer
cell line-derived tumor xenografts were used, as described under “Materials and Meth-
ods”. Remarkably, five weekly intravenous (IV) injections of 2.5-mg/kg CSE significantly
inhibited the tumor growth (Figure 6A). The tumor volume and tumor weights were signif-
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icantly (p < 0.001) decreased as well (data not shown). In addition, paraffin sections of the
tumor specimens were stained with DAPI and TUNEL (Figure 6D). The treatment with
CSE resulted in the induction of apoptosis in vivo as well.
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Figure 6. Effect of CSE on the tumor growth of human pancreatic cancer cells in xenograft mice. Nude mice were subcutaneously
implanted with 2 × 106 PL45 cells. When the tumors reached a volume of around 50 mm3, mice were randomly randomly
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divided into two groups: control: n = 6 and treatment: n = 8. The mice were treated once a week by the intravenous
injection of either DMSO to the control group or CSE at a concentration of 2.5-mg/kg body weight for 5 weeks. During
the experiments, tumor volumes (A) and body weights (B) were measured twice a week. The results presented are the
mean ± SE. Statistical significance was determined by a mixed model repeated-measures ANOVA, p < 0.05. Representative
tumors from the control and treated mice indicated the inhibition effect of CSE on tumor growth (UO = unobserved) (C).
Paraffin-embedded tissue sections were prepared from the tumor tissues (control and CS-treated mice), and DAPI and
TUNEL staining was performed. Tumor tissues were analyzed under fluorescent microscopy. The TUNEL-positive (orange)
cells are apoptotic cells, nuclei are labeled with DAPI (blue) and the merge between DAPI and TUNEL appears pink
(magnification, 400×) (D).

In order to reveal any cytotoxic effect of CSE in vivo, the body weights of untreated
and treated mice were measured every alternate day. The mice body weights did not vary
significantly throughout the study (Figure 6B). Moreover, the results indicated that there
was no significant difference in the liver and kidney parameters in the blood samples of
the control and treated animals (Table 4).

Table 4. Liver and kidney functions following the treatment with the CS extract. At the end of
the treatment period, mice were euthanized, and blood was drawn immediately from the mice
hearts. The results presented are the mean ± SE, n = 6. Statistical significance was determined by the
Student’s t-test. Statistical analyses indicated that there was no significant difference between the
data from the controls and the treated animals.

Control 2.5 mg/kg p-Value

Alkalin Phos (U/L) 62.4 ± 4.13 69.1 ± 4.51 0.362
GPT (ALT) (U/L) 41.2 ± 7.03 36 ± 2.62 0.409
GOT (AST) (U/L) 201.8 ± 40.64 189 ± 44.67 0.858

Creatinine J (mg/dL) 0.1975 ± 0.002 0.179 ± 0.01 0.142
UREA (mg/dL) 53 ± 3.65 49.3 ± 2.49 0.435

4. Discussion

CSE is a mushroom-derived extract isolated from Cyathus striatus. Its anticancer effect
was first reported in our laboratory [20,21] and has never been explored by other researcher
groups, to this day. Pancreatic cancer is a fatal malignancy with a 5-year survival rate of
approximately 10% in the USA [22,23]. Although its diagnosis, management and treatment
have advanced over the past decade, very little progress in patient outcomes has been
made [23]. There is a great deal of potential in mushroom and mushroom-derived products
in finding new strategies for cancer treatments. Medicinal mushrooms are a rich source of
bioactive compounds, such as polyphenols, polysaccharides, glucans, terpenoids, steroids,
cerebrosides and proteins, which can be used for the treatment of various cancers [24].

In the present study, we extensively profiled the Basidiomycetes mushroom Cyathus
striatus extract (CSE) effect on the inhibition of growth and the induction of apoptosis in a
pancreatic cancer model, both in vitro and in vivo. This extract was carefully chosen out
of 31 different extracts, as it was the most effective candidate for the inhibition of human
pancreatic cancer cell growth [20,21].

Remarkably, the exposure of human pancreatic cancer cell lines, HPAF-II and PL45, to
low doses (10 µg/mL < IC50) of CSE for a short period (4 h) is sufficient for achieving a
profound antiproliferative effect and induction of apoptosis.

The FACS analysis revealed the accumulation of cells in sub-G1 following exposure to
CSE, thereby interpreting DNA fragmentation and damage due to cell death. The Annexin-
V/PI staining assay showed that cell death occurred via an apoptotic process.

The induction of apoptosis by CSE via both the intrinsic and extrinsic pathways, as
was shown by the activation of both caspase-8 and caspase-9, seems to be the mechanism
of action of cell death that leads to a decrease in cell viability.

Several other medicinal mushroom extracts have been shown to induce apoptotic cell
death. The alcoholic extract of Ganoderma lucidum was shown to inhibit cell proliferation
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and induce apoptosis in human MCF-7 breast cancer cells [25]. Another example is the
antitumor activity of lectin that was isolated from Agrocybe aegerita. Lectin was shown
to exert antitumor effects on various tumor cell lines, including HeLa, SW480, SGC-7901,
MGC80-3, BGC-823, HL-60 and mouse Sarcoma 180 cells, via the induction of apoptosis
and DNase activities. Moreover, the proapoptotic activities of the fractions obtained from a
hot water extract of P. ostreatus mycelium were detected in human colorectal and prostate
cancer cells [26,27]. Yang et al., showed antiproliferation and growth inhibition effects in
MCF-7 breast cancer cells following the administration of the Antrodia camphorata extract
through the induction of apoptosis [28].

Most of the anticancer therapies, either using drugs or radiations, kill cancer cells
mainly by inducing apoptosis through the activation of caspases [29]. Caspase-8 and -9 are
key players in the execution of two major routes of apoptosis: the extrinsic pathway and the
intrinsic pathway. Indeed, our results demonstrated an increase in activation of caspase-8
and caspase-9, followed by the cleavage of caspase-3 and PARP after the treatment of
human pancreatic cancer cells with CSE.

Among other medicinal mushroom extracts that have been reported by various re-
search groups to possess anticancer properties, several mechanisms of action have been
discussed. Aqueous extracts of I’m-Yunity™ isolated from the mushroom Trametes versicolor
have been reported to inhibit cell proliferation and induce apoptosis in HL-60 and U-937
cells, accompanied by a cell type-dependent disruption of the G1/S and G2/M phases of
cell cycle progression. The growth suppression of treated HL-60 cells is correlated with the
downregulation of the retinoblastoma (Rb) protein, downregulation of the antiapoptotic
proteins bcl-2 and survivin and increase in the bax and cytochrome C levels, as well as
the cleavage of PARP [30]. In another research, the D fraction of the maitake mushroom
induced apoptosis through the upregulation of BAK-1 and cytochrome C transcripts [31].
Another study reported that purified water-soluble polysaccharide (AMP) from the fruiting
bodies of Armillaria mellea, a famous traditional Chinese medicinal and edible fungus,
exhibited a potent tumor growth inhibitory effect on A549 cells and induced cell cycle
disruption in the G0/G1 phase. This was accompanied by apoptosis and disruption of the
mitochondrial membrane potential, which led to cytochrome C release from mitochondria
and activation of caspase-9 and -3 [32].

Another interesting part of our study outlined the key player genes involved in the
anticancer effect of CSE. The RNAseq analyses following CSE treatment revealed several in-
teresting upregulated genes: HMOX1, COX-2, JUN, DDIT3 and CHOP. The HMOX1 (HO-1)
gene, which encodes a highly inducible enzyme that metabolizes heme and thereby protects
a variety of cells against oxidative stress and apoptosis, was found to be upregulated by
more than 50-fold. Interestingly, several studies demonstrated that the upregulation of
HMOX-1 led to the induction of apoptosis. Hamamura et al. demonstrated HMOX-1 upreg-
ulation as a part of the oxygen-dependent gene regulation in bortezomib-induced apopto-
sis [33]. Other research groups showed that HMOX-1 is a negative regulator of growth in the
epithelium [34], astroglia [35] and T lymphocytes [36]. Duckers et al. (2001) demonstrated
that the upregulation of HMOX-1 decreased cell proliferation [37]. These studies were all
in accordance with the findings of our current work. The prostaglandin-endoperoxide syn-
thase 2 (PTGS2), known as cyclooxygenase-2 (COX-2), was also upregulated by more than
20-fold. COX-2 is the key enzyme in prostaglandin biosynthesis and acts as a dioxygenase
and as a peroxidase. COX-2 has been demonstrated to be involved in the antiapoptotic
processes but may also be constitutively expressed in tumors. The constitutive expression
of COX-2 in cells and animal models is associated with tumor cell growth and metasta-
sis, enhanced cellular adhesion and the inhibition of apoptosis [38,39]. Notwithstanding,
several other studies have presented evidence that COX-2 can be proapoptotic. Hinz et al.
(2004) suggested in their study that endocannabinoid analog R(+)-methanandamide (R(+)-
MA) and anandamide cause the apoptotic death of H4 neuroglioma cells by a mechanism
involving the de novo expression of COX-2. Moreover, suppression of COX-2 activity by
the selective COX-2 inhibitor celecoxib was accompanied by an inhibition of the proapop-
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totic action of R(+)-MA and anandamide on H4 neuroglioma cells [27]. Lin et al. (2011)
suggested that constitutive COX-2 expression supports tumor growth and is antiapoptotic,
whereas inducible COX-2 is proapoptotic [40]. In other research, a novel proapoptotic
mechanism of cannabidiol involving the initial upregulation of COX-2 and PPAR-γ, and a
subsequent nuclear translocation of PPAR-γ by COX-2–dependent PGs, was found [41].

JUN is the third-most upregulated gene following the treatment with CSE. JUN is a
putative transforming gene of avian sarcoma virus 17. It encodes a protein that is highly
similar to the viral protein, which interacts directly with specific targeting DNA sequences
to regulate the gene expression. Heidari et al. (2012) reported that acute lymphoblastic
leukemia cells induced with Runx2 transcription factor and c-Jun in parallel with the
proapoptotic BIM, followed by dexamethasone treatment, prompted apoptosis. Accord-
ingly, apoptosis was decreased in cells harboring dominant-negative c-Jun but increased in
cells with c-Jun overexpression [42].

Another interesting upregulated gene, by more than 10-fold, is the DDIT3 gene, which
encodes a member of the CCAAT/enhancer-binding protein (C/EBP) family of transcrip-
tion factors. The protein is activated by endoplasmic reticulum (ER) stress and promotes
apoptosis, being one of the ER mechanisms of overcoming stress. The activation of DDIT3
is one way of initiating apoptosis, and the overexpression of CHOP and microinjection of
CHOP protein have been reported to lead to cell cycle arrest and/or apoptosis [43–47].

Furthermore, the overexpression of CHOP leads to translocation of the Bax protein
from the cytosol to the mitochondria [48], which is crucial for the execution of ER stress-
mediated apoptosis.

Our transcriptome analysis also pointed to the involvement of two major signaling
pathways: P53 and MAPK. At least seven genes involved in the P53 pathway were upregu-
lated as a result of the CSE treatment, e.g., P21, GADD45, Fas, DR5, NOXA, PUMA and
CASP9. In addition, it is known that the p53 protein can functionally interact with MAPK
pathways, and many studies have illustrated several routes of interactions between the two
pathways. The upregulation of several MAPK-related genes, e.g., FAS, GADD45, JNK and
HSP27, has been captured, which may point to the activation of stress-induced apoptosis.

Stress can trigger the p53 phosphorylation by P38, JNK or ERK, followed by p53
response initiation and subsequent cell cycle arrest and apoptosis [49–51]. Stress-induced
p38 acts as a protein kinase to phosphorylate p53 at various serine residues, which, in
turn, activates p53, leading to p53-mediated cellular responses, such as apoptosis. The JNK
pathway also involves a phosphorylation cascade that leads to p53 activation [52].

Alongside the molecular evaluation of the effect of CS, a weekly intravenous CSE dose
of 2.5 mg/kg was shown to inhibit the growth of tumors in xenografts compared to the
control. In addition, TUNEL-positive cells were captured in tumor sections of treated mice,
indicating the induction of apoptosis. The liver and kidney enzyme levels confirmed the
lack of obvious systemic toxicity in comparison to the control.

Xu et al. 2012 also demonstrated that the extract of Pleurotus pulmonarius suppressed
the proliferation, invasion and drug resistance of liver cancer cells in vitro and in vivo, me-
diated by the inhibition of the autocrine VEGF-induced PI3K/AKT signaling pathway [53].
In addition, PSK, protein-bound polysaccharide, derived from Coriolus versicolor and
Irofulven (MGI 114), a novel antitumor agent synthesized from the natural product illudin
S, as well as sesquiterpene obtained from the mushroom Omphalotus illudens, inhibit
tumor growth in vivo [54,55].

5. Conclusions
This research demonstrated for the first time a profound anticancer activity of the

Cyathus striatus extract. CSE suppressed the growth of human pancreatic cancer cells
in vitro and in vivo through the induction of apoptosis via caspase-dependent pathways
and possibly via ER stress-induced apoptosis and activation of the MAPK and P53 signaling
pathways. Future studies will focus on a better understanding of the specific molecular
mechanisms underlying this effect. The findings of this research may suggest that CSE
could be potentially useful as a new strategy for treating pancreatic cancer.
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