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Abstract: In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse
cholesterol transport (RCT) pathway are critical for proper cardiovascular–renal physiology. We will
begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed
by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways
become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL
dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant
gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against
HDL dysfunction and important for the proper functioning of the cardiovascular–renal system.
This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction
and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.

Keywords: heme oxygenase; cardiorenal syndrome; renal failure; congestive heart failure; oxidized
HDL; HDL proteome

1. Introduction

Admission of heart failure (HF) patients in American hospitals exceeds 1 million people annually [1],
with heart failure or coronary artery disease more prevalent in the more advanced stages of chronic
kidney disease (CKD) [2]. Patients with heart failure are more predisposed to the development of
acute kidney injury (AKI) [3,4]. This sets the stage for the relevance of the cardiovascular–renal
system as an interrelationship between kidney function and cardiovascular health. Epidemiologic
studies have investigated how renal dysfunction is a prominent risk factor for cardiovascular disease
(CVD) [5] and how heart failure predisposes to kidney damage and/or the exacerbation of chronic
kidney dysfunction. [6,7] However, in vitro and in vivo studies have yet to establish a definitive
pathophysiological explanation for this phenomenon [8], otherwise known as cardiorenal syndrome
(CRS) [9].

High-density lipoprotein–cholesterol (HDL–C) levels have become promising markers for the risk
of CVD and even CKD [10,11]. Recent studies have cited that HDL function is more important than levels
and that remodeling and dysfunction likely contribute to increased risk of CVD, CKD, and CRS [12–16].
HDL utilizes its protective effect through multiple mechanisms, including lowering tissue cholesterol
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levels through reverse cholesterol transport, attenuation of low-density lipoprotein (LDL) oxidation,
and decreasing inflammatory responses via association with paraoxonase 1 (PON1) [17–23].

Dysfunctional HDL can result from free radical attack or oxidation of “good” HDL, leading
to Ox-HDL (“bad” HDL) [24–26]. Lipids and lipoproteins are the major culprits of free radical
damage [27], which results in lipid peroxidation. Free-radical-mediated lipid peroxidation alters the
biophysical properties of cell membranes, which may impair normal cellular function [28]. Furthermore,
the generation of lipid peroxidation products, i.e., F2-isoprostane from arachidonic acid, may propagate
the free radical damage via covalent modification of biomolecules [29–31]. It is pertinent to find
an endogenous antioxidant that can prevent the remodeling of “good” HDL to proinflammatory
and atherogenic “bad” HDL [32–35] (Figure 1). For CRS, it is crucial to find an antioxidant that can
directly target the cardiovascular–renal system to protect from oxidative damage and dysfunction to
the cardiovascular or renal systems [36].
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through multiple mechanisms, including lowering tissue cholesterol levels through reverse 
cholesterol transport, attenuation of LDL oxidation, and decreasing inflammatory responses. (B) The 
adverse effects of oxidized HDL (Ox-HDL). Oxidized or dysfunctional HDL is proinflammatory and 
atherogenic. (C) Role of HO-1. HO-1 has a protective effect against reactive oxygen species (ROS) and 
oxidative stress, and the upregulation of HO-1 decreases the detrimental effects of oxidized HDL. 
HO-1= heme oxygenase 1; SR-B1= scavenger receptor class B type 1; HDL=high-density lipoprotein 
cholesterol; LDL= low-density lipoprotein cholesterol; NO= nitric oxide; EC= endothelial cells. 

Figure 1. (A) The beneficial effects of high-density lipoprotein (HDL). HDL exhibits protective effects
through multiple mechanisms, including lowering tissue cholesterol levels through reverse cholesterol
transport, attenuation of LDL oxidation, and decreasing inflammatory responses. (B) The adverse
effects of oxidized HDL (Ox-HDL). Oxidized or dysfunctional HDL is proinflammatory and atherogenic.
(C) Role of HO-1. HO-1 has a protective effect against reactive oxygen species (ROS) and oxidative
stress, and the upregulation of HO-1 decreases the detrimental effects of oxidized HDL. HO-1 = heme
oxygenase 1; SR-B1 = scavenger receptor class B type 1; HDL=high-density lipoprotein cholesterol;
LDL = low-density lipoprotein cholesterol; NO = nitric oxide; EC = endothelial cells.
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2. The Heme Oxygenase System

Heme oxygenase-1 (HO-1) is an inducible enzyme within the body that is responsible for the
catabolism of heme to equimolar parts carbon monoxide (CO) and biliverdin/bilirubin and the release
of free iron [37]. HO-1 is known as a stress response protein [38], and we associate its induction with
protection against reactive oxygen species (ROS) and, subsequently, oxidative stress [39]. We find heme
oxygenase in the kidney in two isoforms: HO-1 (inducible form) and HO-2 [40]. Studies have shown
HO-1 to be necessary and important for renal vascular and tubular function [41]. HO-1 has been shown to
be important in vascular protection and function through the induction of adiponectin [42–44]. HO-1 is
a potential and relevant therapeutic target for protection against and amelioration of CRS. HO-1 has
been shown to decrease levels of angiotensin-II-mediated isoprostane production in endothelial
cells [45]. Heme oxygenase has been proven to be cardioprotective, with associated induction of
adiponectin expression [43,44,46,47], reduction in Ox-HDL with suppression of isoprostane production,
and isoprostane binding to HDL. [48] Additionally, HO-1 may protect against heme-mediated damage
in CRS, as hemoglobin has been shown to bind to “good” HDL and alter its conformation and
functionality, causing HDL to become proinflammatory and atherogenic. [41,49].

Adiponectin is a cardioprotective protein hormone and has been shown to have increased plasma
levels and improve vascular function after induction of HO-1 [37]. Adiponectin is well established as
necessary for proper cardiovascular health, with clinical investigations proving adiponectin deficiency
(hypoadiponectinemia) as an independent risk factor for CVD [50]. Researchers have also found
hypoadiponectinemia to be strongly associated with renal dysfunction and CKD [51–53], and circulating
adiponectin levels may be a predictor for CKD [54]. These studies show that adiponectin is crucial for
vascular and renal function, with decreased levels leading to cardiovascular–renal dysfunction.

The heme oxygenase system may act as a potential therapeutic target for protection against
and amelioration of cardiorenal syndrome through many pathways. Heme oxygenase is a
potent endogenous antioxidant [55], and pharmacological induction of HO-1 improved type-1
cardiorenal syndrome in postischemic SCID mice [56]. HO-1 has been shown to decrease levels
of angiotensin-II-mediated isoprostane-induced oxidative stress production in endothelial cells [45].

3. Structure of HDL and Reverse Cholesterol Transport Pathway

HDL is a small, dense lipoprotein particle with a high ratio of proteins to lipids [57], synthesized
by liver hepatocytes [58]. HDL is a powerful anti-inflammatory agent that inhibits atherogenesis [59,60].
The HDL proteome is very complex, with over 550 proteins reported in HDL [9]. HDL proteomics
is a relatively novel approach to understanding the complex makeup and function of HDL in the
setting of oxidative stress [61,62]. Sixteen HDL species with distinct proteomic signatures have been
identified [63]. The HDL proteome is complex and separate from HDL cholesterol. Mass spectrometry
has been used to understand complete HDL analysis and to identify biomarkers in order to better
understand HDL function [61,64–67]. In fact, the HDL lipoprotein proteome has a high correlation with
risk factors for cardiovascular disease and atherosclerotic burden and calcification on CT angiograms
of coronary arteries [68]. The diversity of the HDL proteome is associated with clinical outcomes
in patients with heart failure [69]. Alterations in the HDL proteome have been shown to result in
dysfunctional HDL particles in type I diabetics [70,71].

HDL is primarily composed of several apolipoproteins, including Apo A-1, Apo A-II, and other
proteins, including the enzyme paraoxonase. The external layer of HDL comprises free cholesterol,
apolipoproteins (e.g., apoA-I, apoA-II, apoC, apoE), and phospholipids and is amphipathic [72].
The inner core of the HDL particle is highly concentrated with cholesterol esters, contains a minute
amount of triglycerides, and is, therefore, hydrophobic [73].

HDL-C is considered the “good cholesterol” because of the physiologic function it performs in
“reverse cholesterol transport” [9,74]. This is the process where the HDL particles move through the
circulation and extract free cholesterol from less-dense particles and transport the free cholesterol to
the liver to be processed and expelled, reducing the overall level of total cholesterol [75]. HDL is the
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smallest of the lipoproteins but contains the highest apolipoprotein/ lipid ratio [67]. The cholesterol
delivered to the liver is excreted in bile and eventually converted into bile acids [76]. Delivery of HDL
cholesterol to organs like adrenals, ovaries, and testes is critical for steroid hormone synthesis [34,77].
The efflux of cholesterol from HDL involves the following regulatory proteins.

ApoA-I has been shown to bind cholesterol in vitro and in vivo, showing its role in the uptake
of extrahepatic cholesterol by HDL while traveling through the circulation [78–80]. Infusing patients
with pro-apo-A-I was shown to increase RTC [81,82]. ApoA-I is synthesized in and interacts with
the protein ATP-binding cassette transporter A 1 (ABCA1) in hepatocytes [83,84] and is then secreted
into circulation as a lipid-poor particle. The lipid-poor apoA-1 particle removes cholesterol from the
surfaces of macrophages in the arterial wall through interaction with ABCA1, forming nascent prebeta
HDL or HDL2 particles [85]. Phospholipid transfer protein (PLTP) is responsible for the transfer of
phospholipids from triglyceride-rich lipoproteins to form nascent HDL particles and has been shown
to interact with apoA-1 [86]. Apo A-1 oxidation has been shown to increase HDL oxidation and
dysfunction [84,87].

The plasma enzyme [88] lecithin-cholesterol acyl transferase (LCAT) is responsible for the
conversion of free cholesterol into cholesterol esters, which is a more hydrophobic form of cholesterol,
making it easier to be sequestered into the core of the lipoprotein particle [89]. This eventually causes
the newly synthesized HDL to assume a spherical shape [90]; the nascent HDL swells into a round,
“mature” HDL particle. The mature HDL particle increases in size with the addition of more cholesterol
and phospholipids from cells and other lipoproteins while circulating through the bloodstream [91].

A protein involved in the oxidation of HDL is myeloperoxidase (MPO), found in neutrophils
and monocytes; it is released during acute inflammation. MPO generates Ox-HDLs, which cannot
bind scavenger receptor class B type 1 (SR-B1) on the membrane of liver cells for RTC and have a
proinflammatory function expressed through the upregulation of the protein (VCAM-1) on endothelial
cells and the activation of NF-kB and Ox-HDL, which lose their ability to activate eNOS and to
inhibit caspase-3 and, therefore, lose their antiapoptotic activity [92] (Figure 1). HDL in patients with
documented heart disease have elevated levels of nitrotyrosine and chlorotyrosine, both products of
myeloperoxidase oxidative processes that facilitate the generation of dysfunctional HDL [93].

Alpha-HDL [72], containing free cholesterol and a cholesterol ester core, returns to the liver for
selective uptake of cholesterol via contact with SR-B1. Cholesterol ester transfer protein (CETP) regulates
the exchange of cholesterol esters from HDL to apo-B-containing lipoproteins for triglycerides [94,95]
Apo-containing lipoproteins then transfer cholesterol to the liver through interaction with hepatocyte
LDL receptors [96].

The above processes are controlled by additional regulatory input from other proteins, including
hormones and receptors. For example, the peroxisomal proliferator-activated receptor-alpha (PPARα)
has been shown to upregulate transcription of the ApoA-I gene [97]; transcription of the gene for
ABCA1 is regulated by liver X receptors (LXRs) and retinoid X receptors (RXRs) [98]. Each of the HDL
proteins, RCT pathway proteins, and regulatory factors highlighted above represent a potential point
of intervention to raise the HDL-C number and/or promote reverse cholesterol transport.

4. Sexual Dimorphism and HDL

There are major differences in HDL levels between men and premenopausal women [99]. Obesity
affects cardiometabolic function in both men and women but affects premenopausal women to a much
lesser degree, even when matched to age and weight controls [100]. Sexual dimorphism is important
to understand since there are major sex differences in fat distribution in visceral organs, skeletal
muscle, and epicardial fat [101] Adipose tissue distribution and adipose tissue health are responsible
for differences in insulin sensitivity and consequent systemic inflammation. HDL levels are much
higher in premenopausal women, but our group has shown a much higher Ox-HDL/HDL ratio in
obese women, reducing the anti-inflammatory index of HDL and increasing their risk of endothelial
cell dysfunction.
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5. Cardiorenal Syndrome: A Definition

Cardiorenal syndrome is an umbrella term that encompasses the interaction between the heart and
kidneys, such that injury to one organ causes dysfunction in the other [102]. There is well-established
crosstalk in the pathophysiology of the heart and kidneys [103–106]. Patients on dialysis with
end-stage renal disease (ESRD) have ten times the risk of death by a cardiovascular event than the
general population [107]. Similarly, patients admitted with heart failure acquire renal dysfunction,
and combined heart and kidney failure is associated with poor clinical outcomes [108]. The primary
dysfunctional organ can be the heart or the kidney [109]. Cardiorenal syndrome is now defined more
strictly than epidemiological outcomes in heart failure and dialysis patients. There are currently five
types of cardiorenal syndrome, each with unique pathophysiology and progression of illness [110,111]
(Table 1).

Table 1. Types of Cardiorenal Syndrome.

Type 1
Acute Cardiorenal Syndrome Acute decompensated heart failure 	 Acute kidney injury

Type 2
Chronic Cardiorenal Syndrome Chronic heart failure 	 Chronic kidney disease

Type 3
Acute Renocardiac syndrome Acute kidney injury 	 Acute heart failure

Type 4
Chronic Renocardiac syndrome Chronic kidney disease 	 Chronic heart failure

Type 5
Secondary Cardiorenal syndrome

Codevelopment of heart failure and chronic kidney disease
due to acute or chronic systemic disorder

Type 1 cardiorenal syndrome is acute in nature, categorized as acute heart failure that leads to AKI,
clinically presenting with inadequate renal perfusion due to an increase in venous pressure or a low
cardiac output state, leading to kidney congestion [112] (Figure 2). Type 1 CRS is a common occurrence;
AKI occurs in about 25% of hospitalized patients with HF, and declining renal function has been
identified as an independent predictor of mortality. AKI activates the renin–angiotensin–aldosterone
system (RAAS), salt and water imbalance, and vasoconstriction, all of which contribute to continued
heart damage [113]. HF leads to decreased renal perfusion, along with monocyte and endothelial
activation, causing cytokine secretion and further depressing renal function. This bidirectional
pathophysiology is also exacerbated with common therapeutic agents such as ACE inhibitors and
diuretics, leading to toxicity and vasoconstriction [114]. Production of epinephrine and angiotensin,
along with a decreased sensitivity to vasodilators such as nitric oxide, causes excessive vasoconstriction,
thereby worsening cardiorenal function. Fibrosis from inflammation is a common feature in HF
and CKD [115] and may well be the unifying pathophysiology of the entire CRS continuum [116].
Evaluation of creatinine levels can be misleading, as the SOLVD trial showed that early initiation
of RAAS inhibitors may reflect early changes in renal hemodynamics and may not reflect kidney
injury [117,118]. Signs of CRS include an increase in the serum creatinine by 0.3 mg/dl in a 48-h period,
an increase in the serum creatinine to 1.5 times baseline, or a urine volume less than 0.5ml/kg/h over a
six-hour period [119,120].
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Figure 2. Pathophysiology of acute cardiorenal syndrome (type 1): mechanism of how acute heart failure
leads to acute kidney injury (AKI) due to inadequate renal perfusion, endothelial activation, and cytokine
production, which activates the RAAS, salt and water imbalance, and vasoconstriction, further
exacerbating AKI. CVP = central venous pressure; IAP = intraabdominal pressure; ACEi = angiotensin
converter enzyme inhibitor; RAAS = renin–angiotensin–aldosterone system; SNS = sympathetic
nervous system; GFR = glomerular filtration rate.

Type 2 CRS is similar to type 1; however, where type 1 is acute, type 2 CRS is chronic (Figure 3).
Type 2 CRS is characterized by chronic cardiac dysfunction (e.g., chronic congestive heart failure),
which causes progressive CKD. The prevalence of renal dysfunction in chronic HF is significantly large;
nearly 50% of patients with chronic HF appear to have decreased GFR. Even a minimal decrease in
GFR is a strong independent predictor of mortality. Neurohormonal activation is also present in type 2
CRS, namely, increased production of vasoconstrictive mediators (angiotensin) and altered release of
vasodilatory mediators (nitric oxide) [121]. Progression of CKD can be attributed to multiple factors
including, but not limited to, low cardiac output, inflammation, endothelial dysfunction, accelerated
atherosclerosis, chronic hypoperfusion, and increased renal vascular resistance. The progression of
CKD further instigates cardiac dysfunction through RAAS activation, hypertension, and anemia.

Type 3 CRS is also called renocardiac syndrome and is categorized with abrupt kidney injury
being the primary illness (e.g., ischemia, hypoperfusion, glomerulonephritis), leading to acute cardiac
dysfunction (e.g., HF, arrhythmia, ischemia; Figure 4). AKI is a powerful predictor of hospital
mortality; however, type 3 CRS is less common than type 1 CRS. AKI negatively impacts cardiac
function through a variety of mechanisms. Renal ischemia has been shown to induce inflammation
and apoptosis in cardiac cells. AKI contributes to acute heart dysfunction via familiar mechanisms
from the abovementioned CRS types: RAAS activation, hypertension, decreased GFR, endothelial
activation, and cytokine secretion [113]. Cytokines such as tumor necrosis factor (TNF), IL-1, and IL-6
play a diagnostic role and are also a pathogenic cause of myocardial cell damage and apoptosis during
ischemic AKI. Furthermore, myeloperoxidase, a biomarker of oxidative stress and inflammation in
acute coronary syndrome, may cause apoptosis and play a potential role in the pathogenesis of CRS.



Diagnostics 2020, 10, 976 8 of 23

Diagnostics 2020, 10, x FOR PEER REVIEW 8 of 23 

 

 
Figure 3. Pathophysiology of chronic cardiorenal syndrome (type 2): mechanism of how multiple 
effects of chronic heart failure lead to progressive and chronic kidney disease (CKD) because of 
neurohormonal upregulation, leading to altered vasoconstriction and vasodilation. CO= cardiac 
output; CVP= central venous pressure; ACEi= angiotensin-converting enzyme inhibitor. 

Type 3 CRS is also called renocardiac syndrome and is categorized with abrupt kidney injury 
being the primary illness (e.g., ischemia, hypoperfusion, glomerulonephritis), leading to acute 
cardiac dysfunction (e.g., HF, arrhythmia, ischemia; Figure 4). AKI is a powerful predictor of hospital 
mortality; however, type 3 CRS is less common than type 1 CRS. AKI negatively impacts cardiac 
function through a variety of mechanisms. Renal ischemia has been shown to induce inflammation 
and apoptosis in cardiac cells. AKI contributes to acute heart dysfunction via familiar mechanisms 
from the abovementioned CRS types: RAAS activation, hypertension, decreased GFR, endothelial 
activation, and cytokine secretion [113]. Cytokines such as tumor necrosis factor (TNF), IL-1, and IL-
6 play a diagnostic role and are also a pathogenic cause of myocardial cell damage and apoptosis 
during ischemic AKI. Furthermore, myeloperoxidase, a biomarker of oxidative stress and 
inflammation in acute coronary syndrome, may cause apoptosis and play a potential role in the 
pathogenesis of CRS. 

Figure 3. Pathophysiology of chronic cardiorenal syndrome (type 2): mechanism of how multiple effects
of chronic heart failure lead to progressive and chronic kidney disease (CKD) because of neurohormonal
upregulation, leading to altered vasoconstriction and vasodilation. CO = cardiac output; CVP = central
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Figure 4. Pathophysiology of renocardiac syndrome (type 3): mechanism involves an acute insult to
kidney function that results in the acute sympathetic nervous system activating a cascade of inflammatory
responses, causing acute heart failure. NO = nitrous oxide; RAAS = renin–angiotensin–aldosterone
system; ROS = reactive oxygen species; SNS = sympathetic nervous system.

Type 4 CRS is also known as chronic renocardiac syndrome, which involves primary CKD that
contributes to worsening heart function and an increased risk for cardiovascular events (Figure 5).
Current estimates for CKD in the general population exceed 10% of the US adult population. CKD is an
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independent risk factor for cardiovascular-event-related mortality in individuals at all stages of CKD,
especially for ESRD, which has an increased risk of cardiac death compared to patients without CKD.
CKD is considered a more significant predictor of cardiovascular disease than diabetes mellitus [113].
Mechanisms for cardiac remodeling and decreased function from CKD are multifarious in nature.
In Stages 1 and 2, risk factors resulting in CKD (e.g., obesity, hypertension, dyslipidemia, and chronic
inflammation) contribute to decreased cardiac function. In Stages 3 and 4, anemia, uremia toxins,
nutritional status, and BMI, along with chronic inflammation, lead to increased ischemic risk, coronary
calcification, and neurohormonal abnormalities, as previously discussed. In late-stage CKD leading
into dialysis, we see chronic inflammation (again), renal toxicity, endothelial dysfunction, oxidative
stress, and accelerated atherosclerosis as contributing factors to the vicious cycle of cardiac dysfunction
with renal failure.Diagnostics 2020, 10, x FOR PEER REVIEW 10 of 23 
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Figure 5. Pathophysiology of renocardiac syndrome (type 4): mechanism involving chronic kidney
injury causing worsening heart function. The various causes of CKD, including diabetes and
hypertension, accelerate cardiac remodeling, leading to poor cardiac function. This pathway involves
RAAS activation and sympathetic nervous system activation.

Type 5 cardiorenal syndrome results in simultaneous renal and cardiac failure due to acute
or chronic systemic disorders. Diabetes, sepsis, amyloidosis, and sarcoidosis are examples of such
diseases affecting combined renal and cardiac function (Figure 6). Sepsis accounts for the most common
condition that can acutely affect both organs, with the mechanisms being unclear but possibly involving
TNF. Patients presenting with sepsis have multiorgan dysfunction over 50% of the time, especially
involving cardiac and renal function, explaining the high mortality involved. [122] We observed this
during the COVID-19 pandemic with systemic vascular inflammation [123–127].



Diagnostics 2020, 10, 976 10 of 23

Diagnostics 2020, 10, x FOR PEER REVIEW 11 of 23 

 

 
Figure 6. Summary of the pathophysiology of secondary cardiorenal syndrome (type 5): mechanism 
is characterized by combined cardiac and renal failure due to acute or chronic processes that cause 
hemodynamic instabilities, hypercoagulability, neurohormonal imbalances, and toxicity and hypoxia 
that cause poor renal perfusion, myocardial ischemia, and hypoxia. SVR= systemic vascular 
resistance; ROS= reactive oxygen species; DIC= disseminated intravascular coagulation; SNS= 
sympathetic nervous system; RAAS= renin–angiotensin–aldosterone system. 

6. Cardiorenal Syndrome and HO-1 

Physiological interaction between organs is necessary for the optimal equilibrium and 
functioning of the organism. Derangements in these interactions can initiate multiorgan dysfunction. 
In particular, heart and kidney functions are closely interrelated through a variety of dynamic and 
bidirectional mechanisms [128,129]; a pathological alteration in one organ can unfavorably affect 
function in another distant organ. 

CRS involves complex interactions at the molecular level that induce vessel inflammation, 
atherosclerosis, cardiac fibrosis, and hypertrophy; in addition, structural and biochemical 
abnormalities can adversely affect cardiovascular or renal function [130]. 

Bright initially deliberated the causal association between chronic kidney disease (CKD) and 
cardiovascular risk in 1836. Patients with CKD are among the highest risk groups for adverse 
cardiovascular events and cardiovascular-related mortality and, therefore, require particular clinical 
attention. A recent study provided insight into the pathogenesis of CRS type 1, emphasizing the 
pivotal role of oxidative stress in CRS type 1 [128,131]. The study revealed that levels of oxidative 
stress markers (myeloperoxidase, nitric oxide, copper/zinc superoxide dismutase, and endogenous 
peroxidase activity) were significantly higher in CRS type 1 than in acute heart failure without CRS 
type 1 and in healthy controls [128,131]. In particular, CRS type 1 patients presented a significant 
increase in circulating ROS and RNS and an increased expression of the inflammatory cytokine IL-6. 
[132] Monu et al. showed that ang-II-mediated recruitment of T-lymphocytes and increased oxidative 
stress is decreased by the upregulation of HO-1 in a model of postischemic heart failure [56]. The 
results showed that HO-1 induction decreased renal vasoconstriction and fibrosis and improved 
renal function in both immunocompetent and T-lymphocyte-suppressed mice [133]. Interestingly, 
treatment with SnMP, a known HO activity inhibitor, reversed the beneficial effects of HO-1 
induction, suggesting that increased levels of HO activity play a central role in preventing MI- 
induced cardiac and renal damage in this CRS animal model. HO-1 induction reduces postischemic 
pathological cardiac remodeling and, in mice with advanced heart failure and CRS, improves cardiac 

Figure 6. Summary of the pathophysiology of secondary cardiorenal syndrome (type 5): mechanism
is characterized by combined cardiac and renal failure due to acute or chronic processes that cause
hemodynamic instabilities, hypercoagulability, neurohormonal imbalances, and toxicity and hypoxia
that cause poor renal perfusion, myocardial ischemia, and hypoxia. SVR = systemic vascular resistance;
ROS = reactive oxygen species; DIC = disseminated intravascular coagulation; SNS = sympathetic
nervous system; RAAS = renin–angiotensin–aldosterone system.

6. Cardiorenal Syndrome and HO-1

Physiological interaction between organs is necessary for the optimal equilibrium and functioning
of the organism. Derangements in these interactions can initiate multiorgan dysfunction. In particular,
heart and kidney functions are closely interrelated through a variety of dynamic and bidirectional
mechanisms [128,129]; a pathological alteration in one organ can unfavorably affect function in another
distant organ.

CRS involves complex interactions at the molecular level that induce vessel inflammation,
atherosclerosis, cardiac fibrosis, and hypertrophy; in addition, structural and biochemical abnormalities
can adversely affect cardiovascular or renal function [130].

Bright initially deliberated the causal association between chronic kidney disease (CKD) and
cardiovascular risk in 1836. Patients with CKD are among the highest risk groups for adverse
cardiovascular events and cardiovascular-related mortality and, therefore, require particular clinical
attention. A recent study provided insight into the pathogenesis of CRS type 1, emphasizing the
pivotal role of oxidative stress in CRS type 1 [128,131]. The study revealed that levels of oxidative
stress markers (myeloperoxidase, nitric oxide, copper/zinc superoxide dismutase, and endogenous
peroxidase activity) were significantly higher in CRS type 1 than in acute heart failure without CRS
type 1 and in healthy controls [128,131]. In particular, CRS type 1 patients presented a significant
increase in circulating ROS and RNS and an increased expression of the inflammatory cytokine
IL-6 [132]. Monu et al. showed that ang-II-mediated recruitment of T-lymphocytes and increased
oxidative stress is decreased by the upregulation of HO-1 in a model of postischemic heart failure [56].
The results showed that HO-1 induction decreased renal vasoconstriction and fibrosis and improved
renal function in both immunocompetent and T-lymphocyte-suppressed mice [133]. Interestingly,
treatment with SnMP, a known HO activity inhibitor, reversed the beneficial effects of HO-1 induction,
suggesting that increased levels of HO activity play a central role in preventing MI- induced cardiac
and renal damage in this CRS animal model. HO-1 induction reduces postischemic pathological
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cardiac remodeling and, in mice with advanced heart failure and CRS, improves cardiac function and
renal vasoconstriction. This renal vasoconstriction was demonstrated in a murine model of type 1 CRS,
secondary to postischemic changes of LAD ligation [134].

Accumulating evidence suggests that hyperuricemia is one of the important factors that may
significantly contribute to the development and progression of CRS. Elevated levels of uric acid have
been associated with inflammation, oxidative stress, insulin resistance, dysglycemia, endothelial
dysfunction, vascular, renal and cardiac stiffness, cardiac diastolic dysfunction, renal hyperfiltration,
and proteinuria, all of which are components of CRS [135–137]. The significance of a westernized
diet, which is high in fructose, and hyperuricemia in the development of CRS is underscored by the
relationship between increased consumption of sugar-sweetened beverages, hyperuricemia, and all
components of this syndrome [138]. Sodhi et al. showed that induction of HO-1 reduced expression of
xanthine oxidase and NADPH oxidase, enzymatic systems that are important for ROS production,
in adipocytes treated with fructose, a fuel source that increases uric acid levels [139]. Additionally,
Khitan et al. showed that mice following a fructose diet presented an increase in isoprostanes that was
associated with a decrease in HO-1 expression and an increase in heme levels. Isoprostanes and heme
are regarded as valid markers of oxidative stress [140–142]. Upregulation of HO-1 presents cardio-
and reno-protective functions mediated by its antioxidative, anti-inflammatory, and antiapoptotic
properties. In animal models of myocardial ischemia (MI), both overexpression and pharmacological
induction of HO-1 reduce infarct size and ventricular remodeling after ischemia-reperfusion damage
by improving cardiac metabolism [143]. Increased HO-1 expression has a protective effect against
ischemia-reperfusion injury in the kidney [144] and can correct blood pressure elevation following
ang-II exposure [145].

Hyperglycemia-induced mitochondrial oxidative stress, a cause of metabolic CRS, is a contributory
factor to increased risk of cardiovascular disease, which can induce cellular injury and cell
dysfunction [146,147]. The molecular mechanism of mitochondrial dysfunction in CRS is driven via
abnormalities involving the transcriptional coactivator peroxisome proliferator-activated receptor
gamma coactivator 1α (PGC-1α), which controls the biogenesis of mitochondria and mitochondrial
function in a variety of tissue and cell types. PGC-1α is regulated by the endothelial NO synthase that
plays an important role in mitochondrial biogenesis. Studies have shown that decreased expression of
PGC-1α-associated impairment of mitochondrial biogenesis may be responsible for various metabolic
abnormalities in CRS [146] (Figure 7). Thus, the impairment of the complex steps in the regulation of
mitochondrial biogenesis may contribute to CRS.

Activation of PGC-1α reduced mitochondrial ROS, prevented adipogenesis in adipocytes,
and protected diabetic hearts from hyperglycemia-mediated oxidative stress [148–150]. It has been
shown that the protective effect of EETs in diabetic mice involves increased expression of PGC-1α
and SIRT1 [131]. In cardiomyocytes, pharmacological inhibition of SIRT1 was followed by decreased
expression of PGC-1α and increased ROS production [150,151]. At the same time, Singh et al. showed
that PGC-1α regulates HO-1 expression, confirming the beneficial effect of HO-1 in cardiovascular
diseases and lipid metabolism [152,153]. Heme oxygenase-1 upregulation of PGC-1α signaling in
epicardial fat attenuated cardiovascular risk in both humans and mice [154]. Adipocyte-specific HO-1
gene therapy is very effective in reducing oxidative stress, improving both insulin resistance and
vascular function in obese mice [155]. Finally, upregulation of HO-1 by icosapent ethyl, pomegranate
seed oil, and black seed oil (thymoquine) have all reduced oxidative stress, improved insulin resistance,
and improved mitochondrial function [156,157] (Figure 7).
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Figure 7. The spectrum of cardiorenal syndrome. This is a schematic representation of how HO-1
upregulation results in improved mitochondrial function and signaling pathways PGC1 α, PRDM 16,
OPA1, and MFN-2. Upregulation also results in decreased inflammatory adipocytokines (NOV/CCN3, IL-6,
and NF-kB) and fibrotic markers (MMP2 and MMP9). The result was the “browning” of white adipocytes to
“beige”, improving cardiac and renal functions. HO-1 = heme oxygenase 1; AMPK = AMP-activated protein
kinase; PSO = pomegranate seed oil; TQ = thymoquinone; NF-kB = nuclear factor kappa-light-chain-enhancer
of activated B-cells; NOV/CCN3 = nephroblastoma overexpressed; IL-6 = interleukin 6; MMP2 = matrix
metalloproteinase 2; MMP9 = matrix metalloproteinase 9; PRDM16 = PR domain containing 16; PGC-1
α = peroxisome proliferator-receptor gamma coactivator 1α; MFN-2 = mitofusin-2; OPA1 = mitochondrial
dynamin-like GTPase.

More attention is being paid to the role of Ox-HDL in the chronic inflammatory state of obesity.
Ox-HDL has been shown to independently upregulate the downstream activity of ang II and has been
identified as part of a biomarker profile for early endothelial dysfunction in obese women without
identified cardiovascular disease [158] (Figure 1). We have shown oxidized HDL to be part of a
biomarker profile for cardiovascular risk in obese women [159]. PGC-1α has been shown to improve
organ function by upregulating mitochondrial enzymes, improving mitochondrial function in metabolic
syndrome and nonalcoholic fatty liver disease (NAFLD), and reducing Ox-HDL [146]. Most importantly,
this improvement in mitochondrial integrity and function will aid in the reprogramming of white fat
to beige-like fat [160]

7. Lifestyle Interventions, Weight Loss Medications, and Nutraceuticals

Weight loss with diet and exercise has been successful in short-term supervised programs,
with weight loss in excess of 5% body weight. None have approached the magic number of 10–12% of
sustained body weight loss in BMIs above 35. The PREDIMED-PLUS study was a 12-month intervention
that increased weight loss and improved cardiovascular risk factors [161]. There is confusing evidence
as to the effect of aerobic exercise on HDL levels and cholesterol efflux [162]. Exercise has been shown
to improve psychological health, particularly in the elderly [163]. Many nutraceuticals (like curcumin,
CoQ 10, folic acid, berberine, alpha lipoic acid, astaxanthin, and policosanol) have tried to improve lipid
and plasma glucose levels, with positive effects on lipid profiles [164]. Weight-loss drugs have been
effective in supervised programs, especially those with close telemedicine follow-up [165–168]. There is
clearly a role for diet, exercise, weight loss medications, and nutraceuticals as preventive measures in
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obesity, metabolic syndrome, and type 2 diabetes. They are measures meant to prevent cardiorenal
syndrome. We need more aggressive measures once we are confronted with cardiorenal syndrome.

8. Summary

Mitochondrial function is important for improving the function of the electron transport chain in
both the heart and kidneys and converting white adipose tissue to beige, the “browning“ of white
adipose tissue. This results in an improvement of adiponectin levels and a severe reduction in the
release of inflammatory adipocytokines. HO-1 upregulation is the key to improving mitochondrial
function in both organs and reducing oxidative stress and Ox-HDL, which are important components
of success in treating and preventing cardiorenal syndrome.
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Abbreviations

Ang II angiotensin II
ARF acute renal failure
AS antisense
ASK-1 apoptotic signaling kinase-1
BP blood pressure
BR bilirubin-IX α

BV biliverdin-IX α

BVR biliverdin
Bw body weight
CEC circulating endothelial cell
CO carbon monoxide
CoPP cobalt protoporphyrin IX dichloride
CRP C reactive protein
D-4F apolipoprotein mimetic peptide
EC endothelial cell
EC-SOD extracellular superoxide dismutase
EETs epoxyeicosatrienoic acids
eNOS endothelial nitric oxide synthase
GFR glomerular filtration rate
HCL hypercholesterolemia
HETE hydroxyeicosatetraenoic acid
HO heme oxygenase
HO-1 heme oxygenase isozyme 1, inducible form
HO-2 heme oxygenase isozyme 2, constitutive form
ICAM-1 intracellular adhesion molecules-1
IL interleukin
iNOS inducible nitric oxide synthase
IRI ischemia/reperfusion injury
LDL low-density lipoprotein
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1
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MSC mesenchymal stem cells
NO nitric oxide
NOS nitric oxide synthase
CCN3/NOV nephroblastoma overexpressed
O2
− superoxide anion radical

OONO− peroxynitrite
ROS reactive oxygen species
SBP systolic blood pressure
sEH soluble epoxide hydrolase
SnMP tin mesoporphyrin IX dichloride
SnPP tin protoporphyrin IX dichloride
SOD superoxide dismutase
T2DM type 2 diabetes mellitus
TNF tumor necrosis factor
TNFα tumor necrosis factor-alpha
UVA ultraviolet A (320–380 nm) radiation
VCAM-1 vascular adhesion molecules-1
VEGF vascular endothelial growth factor
VEGFRI vascular endothelial growth factor receptor I
VSMC vascular smooth muscle cell
AMPK AMP-activated protein kinase
AKT serine/threonine-protein kinase
eNOS endothelial NO synthase
FGF21 fibroblast growth factor 21
IL-10 interleukin 10
NF kB nuclear factor-kappa B
NGF nerve growth factor
PGC1α peroxisome proliferator-activated receptor gamma, coactivator 1
PPARα peroxisome proliferator-activated receptor
SIRT1 sirtuin 1
TNF-α tumor necrosis factor-α
WAT white adipose tissue
UCP1 Uncoupling protein 1
Ang II Angiotensin II
aP2 adipocyte protein 2
CEBPα CCAAT/enhancer-binding protein alpha
CoPP cobalt protoporphyrin
eNOS endothelial nitric oxide synthase
FAS fatty acid synthase
H2O2 hydrogen peroxide
MSC mesenchymal stem cell
PPARγ peroxisome proliferator-activated receptor gamma
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