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Combination of cell transplantation 
and glial cell line‑derived neurotrophic 
factor‑secreting encapsulated cells in 
Parkinson’s disease
Hans R. Widmer

Abstract:
A major limitation of cell transplantation for Parkinson’s disease (PD) is the mediocre survival of the 
grafted cells. Facilitating graft survival may improve the functional outcomes of the transplanted cells. 
Here, we discuss our observations that combination of rat fetal ventral mesencephalic  (VM) tissue 
and encapsulated cells that secrete glial cell line‑derived neurotrophic factor (GDNF) enhanced graft 
function in an animal model of PD. We described significant 2‑fold increase in the number of tyrosine 
hydroxylase immunoreactive (TH‑ir) cells per graft, as well as 1.7‑fold and 9‑fold increments in TH‑ir fiber 
outgrowth into the host brain and toward the capsule with combined transplants and GDNF capsules as 
opposed to the VM transplants and mock‑capsule group. These findings demonstrate that encapsulated 
GDNF‑secreting cells improve graft survival that may optimize functional benefits for the treatment of PD.
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Introduction

Parkinson’s disease (PD) is characterized 
by degeneration of the nigrostriatal 

region with a consequently reduction in 
dopamine. Pharmacological treatment 
currently available reduces the symptoms of 
the disease but is associated with severe side 
effects.[1,2] Alternative strategies have been 
investigated including the application of 
neurotrophic factors and the transplantation 
of dopaminergic (DAergic) neurons with 
promising results.[3-5] 

Current Status of Treatment for 
Parkinson’s Disease

Transplantation of fetal nigral tissue has been 
reported to be safe and to improve quality 
of life in a subpopulation of PD patients.[6-9] 

Hence, further advances in this field should 
be done including the handling of the fetal 
donor tissue and patient selection in clinical 
trials.[7,10-12] In this contest, even though the 
organotypic ventral mesencephalic  (VM) 
cultures are widely used, the improvement 
of the DAergic neurons’ survival is still a 
challenge.[13,14] It has been demonstrated that 
a reduction in trophic support in the host 
brain is linked with a poor survival, growth, 
and function of transplanted DAergic 
neurons.[15] In addition, cell line‑derived 
neurotrophic factor  (GDNF) can promote 
survival and differentiation of DAergic 
neurons.[12,16,17] Therefore, these findings 
support the hypothesis that adding growth 
factors in cell transplantation could be 
a potent strategy for the treatment of 
PD.[18‑20] In this regard, it has been tried 
to genetically modify cells to produce 
neurotrophic factor fibroblast growth factor 
2.[21] However, the direct contact with the 
DAergic‑transplanted cells is needed to 
improve the graft function.[21] Another 

Address for 
correspondence: 

Dr. Hans R. Widmer, 
Department of 
Neurosurgery, 

Neurocenter and 
Regenerative 

Neuroscience Cluster, 
Inselspital, University 

of Bern, CH‑3010 
Bern, Switzerland. 

E‑mail: hanswi@insel.ch

Submission: 24‑07‑2018
Revised: 29‑08‑2018

Accepted: 12‑09‑2018

Department of 
Neurosurgery, 

Neurocenter and 
Regenerative 

Neuroscience Cluster, 
Inselspital, University 

of Bern, CH‑3010 Bern, 
Switzerland

Access this article online
Quick Response Code:

Website:
http://www.braincirculation.org

DOI:
10.4103/bc.bc_19_18

Review Article

This is an open access journal, and articles are distributed under 
the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License, which allows others to remix, tweak, and 
build upon the work non-commercially, as long as appropriate 
credit is given and the new creations are licensed under the 
identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Widmer HR. Combination 
of cell transplantation and glial cell line-derived 
neurotrophic factor-secreting encapsulated cells in 
Parkinson's disease. Brain Circ 2018;4:114-7.



Widmer: Cell therapy for PD

Brain Circulation ‑ Volume 4, Issue 3, July‑September 2018	 115

strategy to improve the engraftment is the pretreatment 
of DAergic neurons with GDNF tested in animal models 
and in a pilot clinical trial.[22‑24] Nevertheless, there is no 
correlation among clinical trials testing the delivery of 
GDNF in PD patients.[12,25] The reasons could be due to 
a number of technical and the activity of neurotrophic 
factors in pathological conditions.[4,12,25] In particular, 
the low ability of the neurotrophic factor to cross the 
blood–brain barrier and the presence of their receptors 
spread throughout the brain, with the consequence to 
induce side effects, are the main issues that should be 
investigated.[17] And therefore, the selective targeting of 
the transplanted cells is a key aspect in cell therapy of PD. 
The survival and sprouting of grafted DAergic neurons 
has been improved with co‑transplantation of engineered 
GDNF‑releasing cells in PD animal model.[26‑28] Even 
though cell bioengineering allows improving the 
graft, the risk of rejection of transplanted cells and 
tumor formation are critical issues of this strategy.[27] 
Conversely, the use of a porous polymer membrane to 
encapsulate the neurotrophic factors‑producing cells is 
immunocompatible and safe in human up to 2 years.[29,30] 
In addition, it has been demonstrated that the implanted 
GDNF‑releasing capsules 1 week before the VM tissue 
transplantation improved graft function.[27] However, 
further investigation should be conducted. In the present 
article, the simultaneous transplantation of rat fetal nigral 
tissue and polymer‑encapsulated myoblasts genetically 
modified to produce GDNF has been studied in a 9‑week 
period to test its effects on the survival and function of 
transplants.[31]

Combined Fetal Cell Grafts and 
Encapsulated Glial Cell‑Derived 

Factor‑Secreting Cells

A significant increase in the number of tyrosine hydroxylase 
immunoreactive (TH‑ir) cells per graft (2 folds), a tendency 
for a larger graft volume along with a higher TH‑ir fiber 
outgrowth into the host brain (1.7‑fold) and toward the 
capsule (9‑fold), has been observed in hemi‑parkinsonian 
rats grafted with VM transplants and GDNF capsules 
compared with VM transplant and mock‑capsule group. In 
addition, a significant functional recovery was associated 
with simultaneous VM transplants and GDNF capsules 
after 4 weeks of the transplantation, while no behavioral 
recovery was observed with the GDNF‑capsule‑only 
treatment. Moreover, no significant variation in the 
number of surviving TH‑ir neurons and graft volume was 
observed between the experimental groups.

Enhancement of Graft Survival and 
Function via Combination Therapy

For the transplantation, each animal received half of 
a VM to provide about equal amounts of DAergic 

neurons in the grafts, a validated approach established 
by the same research group.[27,28,32] The capsules were 
well tolerated as demonstrated by the body weight of 
the animals that was not altered after the treatment. 
Opposite to other observation, the group treated 
with GDNF‑capsule‑only has not shown behavioral 
recovery.[33] However, this contrasting result is probably 
due to the animal model employed because the medial 
forebrain lesions can result in a more severe denervation 
of striatum compared to intrastriatal 6‑OHDA injection 
used by Date et al.[33,34] Another reason may be the timing 
of the GDNF‑releasing capsule implantation. Indeed, 
the authors injected the GDNF‑releasing capsules in an 
advanced stage of the disease  (13 weeks), while Date 
et  al. in an earlier phase  (2  weeks).[33] Nevertheless, a 
moderate sprouting of the remaining DAergic striatal 
fibers, even though not such to improve the functional 
recovery, cannot be excluded. Notably, the results of 
Perez‑Bouza et al.[31] support previous evidences that 
the functional recovery is dependent on DAergic cell 
survival and integration in the host brain.[6,35] Indeed, 
the rate of surviving TH‑ir cells with GDNF treatment 
is consistent with previous studies.[27,36] Interestingly, 
the treatment with GDNF correlated with the increase 
of fiber outgrowth, especially between the graft and 
the capsule, also suggesting a GDNF gradient into 
the host brain, unlike to what has been previously 
reported.[28]   Despite the mechanism of GDNF diffusion 
from the capsule which has not been investigated in 
the present study, it has been reported that GDNF can 
diffuse about 1.5 mm without altered behavior. Other 
studies have shown that GDNF‑ir reached 2–3 mm in 
rats and a radius of 11  mm from the infusion site in 
monkeys.[37-39] The amount of GDNF for therapeutic 
purposes should be further investigated because of 
the side effects reported.[8,40-42] In the present study, 
the behavioral recovery has been reported after only 
4 weeks by using rat VM tissue, while a later recovery 
after 12 weeks has been observed by using human VM 
tissue, suggesting a difference on the developmental rate 
between the species.[39] Another critical aspect that should 
be considered is the period of exposition to GDNF. In 
the present work, the uncharged rotational asymmetry 
after 4  weeks suggests that a shorter exposition time 
of VM tissue to GDNF should be enough accordingly 
to previous observations that a temporary or shortly 
thereafter delivery of GDNF is effective compared to 
a delayed application.[10,43] These results suggest that 
genetically modified encapsulated cells releasing growth 
factors might support the maintenance of a neuronal 
phenotype and/or maturation of transplanted neural 
stem cell‑derived cells.[44,45] Moreover, the pretreatment 
of VM tissue has not affected the volume and number of 
TH‑ir cells after transplantation compared to the cultured 
grafts, with a consequently similar pattern of behavioral 
recovery among the groups, supporting the hypothesis 
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that the pretreatment may improve cell transplantation 
approaches for PD. In addition, in agreement with 
previous observations, GDNF pretreatment increased 
fiber outgrowth, but did not enhance the survival of 
graft DAergic cells, suggesting that the duration of 
pretreatment, longer in the earlier study, may affect the 
outcome.[23] Notably, the monitoring of dynamic changes 
of the graft at histological level after transplantation is not 
investigated in this work and therefore, a stabilization 
of intrastriatal levels of GDNF at long term cannot be 
excluded.

Conclusion

Our findings suggest that pretreatment with neurotrophic 
factors, such as GDNF and NT‑4/5, might improve the 
transplantation methodology for PD patients.[46] In the 
clinic, the challenge of harvesting fetal tissue may present 
as a factor, but the availability of nonfetal tissues such 
as induced pluripotent stem cells may circumvent this 
logistical issue.
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