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Abstract: Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to
analyze the changes to volatile compounds in fried Tricholoma matsutake Singer under different
heating temperatures and times. A total of 40 signals that corresponded to 24 compounds were
identified through this approach. Differences in volatile compounds of T. matsutake samples were
shown in topographic plots and fingerprints. The heating temperatures were more important than the
heating times in affecting the volatile compounds. Moreover, changes to the main volatile compounds
in T. matsutake under different processing conditions were based on the thermal decomposition and a
series of chemical reactions of C8 compounds. Principal component analysis (PCA) results showed
that samples under different processing conditions could be effectively distinguished. Hence, the
combination of HS-GC-IMS and PCA can identify and classify the volatile compounds of T. matsutake
quickly and sensitively. This study provides a new supplementary analytical method for the rapid
identification of T. matsutake. The above results can provide a theoretical basis for the quality control
and change mechanism of flavor in the processing of traditional edible fungi products.

Keywords: Tricholoma matsutake Singer; headspace-gas chromatography-ion mobility spectrometry
(HS-GC-IMS); principal component analysis (PCA); volatile compounds; characteristic volatile fin-
gerprinting

1. Introduction

Tricholoma matsutake Singer (pine mushroom) is one of the rarest and most precious
natural edible fungi in the world, with a unique flavor and smooth taste that is becoming
more and more popular among consumers around the world. It is rich in proteins, amino
acids, unsaturated fatty acids, vitamins, and dietary fiber, with a low fat content, and
contains various bioactive ingredients with high medicinal and nutritional value; it is an
excellent source of nutrients [1–3]. In addition, T. matsutake is generally regarded as a high-
value food that can not only supplement the body with comprehensive nutrients, but also
enhance the body’s immunity, preventing and suppressing the occurrence of many chronic
diseases. Previous studies have reported that ergosterols, polysaccharides, polyphenols,
and other bioactive substances in T. matsutake have the functions of enhancing immunity,
anti-oxidation, anti-tumor, anti-bacterial, anti-mutation, and anti-radiation [4–6].

In recent years, T. matsutake has not only been used as nutritional basic material or
food flavoring material but also has been added to food as a single and compounding pre-
scription for the prevention and treatment of diseases for medicinal or functional purposes,
and has become a highly demanded product for consumers worldwide [7]. Flavor is an
important factor in determining whether certain foods will be accepted by consumers [8].
With the increasing emphasis on a healthy diet, the balance between nutritional value
and flavor characteristics of food becomes critically important [9]. Therefore, a detailed
understanding of the flavor characteristics of different foods is the key to developing
better foods and ultimately satisfying consumer preferences. Guo et al. [10] evaluated the
different volatile compounds in the lower stipe, upper stipe, and pileus of fresh and dried
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T. matsutake. Li et al. [11] reported a method for developing flavor fingerprints for the
volatile compounds. However, less information is available on the analysis of the flavor
changes in fried T. matsutake samples under different processing conditions.

Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) is a simple,
rapid, and sensitive analytical technique found in recent years for the detection of volatile
compounds in a mixture of analytes [12]. HS-GC-IMS can detect volatile compounds in
liquid or solid samples and establish fingerprints without any related pretreatment. It can
also treat a large number of samples in a short time and detect volatile compounds at the
ppb level in real time. The temporary characterization of volatile compounds based on
HS-GC-IMS consists of GC retention and drift time [13]. This technique investigates reliable
and unbiased information from a large amount of data through non-target analysis, which
plays an important role in the process of screening specific makers. Therefore, HS-GC-IMS
technology has been widely applied in a variety of fields, such as pharmaceuticals, security,
food science (honey, olive oil, goat cheese, Iberian ham, and egg), and other chemical
contaminants [14–17].

With the development of the food industry, the deep processing of traditional edible
fungi has received more and more attention. As an ongoing study, the objective of this
work was to identify the differentiation and possible pathways of flavor changes in T.
matsutake samples under different processing conditions. Principal component analysis
(PCA) was applied to characterize the fried T. matsutake samples based on the HS-GC-IMS
data. These may provide a theoretical basis for the quality control and change mechanism
of flavor in the processing of traditional edible fungi products.

2. Material and Methods
2.1. Materials

T. matsutake samples were purchased from Shunxin Matsutake Trading Co., Ltd.
in Yanji City and produced in Changbai Mountain, Jilin Province. After removing the
surface dirt, the T. matsutake samples were lengthwise cut into uniform slices of about
5 mm thickness and then stored in polyethylene bags at −80 ◦C for subsequent analyses.
Soybean oil used for frying in this experiment was purchased from a local supermarket.

2.2. Preparation of Fried T. Matsutake

Each batch of T. matsutake slices was fried in 1 L of soybean oil using a deep-frying
pan (Guangzhou Aishqi Electrical Technology Co., Ltd., Guangzhou, China). Each frying
was done in triplicate by using 50 gm of T. matsutake slices for each frying time. When the
frying time was 80 s, the frying temperatures were 100, 120, 160, and 200 ◦C. When the
frying temperature was 160 ◦C, the frying time was 40, 60, 80, 100, and 120 s. The treated
samples were cooled with ice, and the thoroughly cooled samples were stored at −80 ◦C
for the subsequent analyses.

2.3. HS-GC-IMS Analysis

Analysis of the fried T. matsutake samples was performed on a GC-IMS device
(FlavourSpec®, Gesellschaft für Analytische Sensorsysteme GmbH, Dortmund, Germany).
The device was equipped with an automatic sampler unit (CTC Analytics AG,
Zwingen, Switzerland). For analysis, the samples (the same samples mentioned in
Sections 2.1 and 2.2) were treated with micronized WK-1000A (Zhongxi Yuanda Tech-
nology Co., Ltd., Beijing, China). A total of 0.3 g fine powder of each T. matsutake sample
was weighed and placed in 20 mL headspace glass extraction vials. The samples were
then placed in the GC-IMS instrument and incubated at 40 ◦C for 25 min. After incubation,
500 µL of the sample headspace was automatically injected into the injector (80 ◦C, splitless
mode) by a heated syringe at 50 ◦C.

With the aids of carrier gas (nitrogen with a purity of 99.999%), the samples were
subsequently pushed into an FS-SE-54-CB capillary column, which had been heated to
40 ◦C isothermal conditions. The nitrogen flow rate procedure was as follows: 2 mL/min
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for 2 min, 30 mL/min for 8 min, 100 mL/min for 10 min, and 150 mL/min for 5 min.
The analytes were eluted into the ionization chamber and ionized in a positive ion mode
by a 3H ionization source with 300 MBq activity. A tritium source (6.5 keV) was used to
ionize the molecules. The resulting ions were driven to a drift tube (9.8 cm length) that
was operated under conditions of a constant temperature supply of 45 ◦C and a constant
voltage of 5 kV. Nitrogen gas with a flow rate of 150 mL/min was used as the drift gas.
Each spectrum was scanned an average of 12 times. The instrument was standardized by
the linear retention index (RI) of each volatile compound by using the n-ketones of C4–C9
(Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China). The qualitative analysis of
volatile compounds was performed by comparing RI and the time required for the ions to
reach the collector through the drift tube (drift time, in milliseconds) of the standard from
the GC-IMS NIST 11 library. The volatile compounds were quantitatively analyzed based
on the peak intensity in HS-GC-IMS, and the content of volatile compounds was directly
proportional to the peak intensity.

2.4. Data Analysis for GC-IMS

Data from volatile compounds in T. matsutake samples were acquired and processed
using Laboratory Analytical Viewer (LAV) analysis software and Library Search qualitative
software (G.A.S., Dortmund, Germany).

LAV software was used to view the analytical spectrum, where each dot represents a
volatile compound. A reporter plugin was directly used to compare the spectral differences
between samples (two-dimensional top view and three-dimensional view). A gallery plot
plugin was used to compare fingerprints, and visually and quantitatively compare the
differences in volatile organic compounds among different samples. A dynamic PCA
plugin was used for dynamic principal component analysis and clustering analysis of the
samples, and to quickly determine the types of unknown samples. GC-IMS Library Search
is an application software that qualitatively analyzes substances in the NIST 11 library and
IMS database.

3. Results and Discussion
3.1. Visual Topographic Plot Comparison

Figure 1 shows HS-GC-IMS topographical plots of fried samples under different
temperatures and times. The Y-axis represents the retention time of volatile compounds
during GC separation and the X-axis represents the drift time of volatile compounds relative
to the reactive ion peak during IMS separation. The ion migration time and reactive ion
peak (RIP) position were normalized. The total headspace compounds of the samples were
displayed throughout the entire spectrum, and each point on the right of the RIP represents
a volatile compound extracted from the samples. The color of the signals represents the
signal intensity of the compounds. Topographic plots of T. matsutake samples from different
processing temperatures and times of processing were quite similar; nevertheless, after an
intensive visual inspection, features between different categories were found. As shown in
Figure 1, most signals were in a 2D spectral region from 1.0 to 1.7 s of drift time and from 0
to 600 s of retention time, whereas few signals were in the retention time range of 600–1000
s. The number of signals in 2D spectral was almost the same. However, the signal intensity
changed (increased or decreased). A previous study demonstrated that the low-molecular
volatile compounds presented the highest concentration levels and eluted from 100 to 200
s. In addition, the polar volatile compounds showed the lowest concentrations [16]. These
results showed that the kinds of volatile compounds in the samples were similar, but the
concentrations of volatile compounds changed with the prolonging of frying temperatures
and times.
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40 s; (f) 160 ◦C, 60 s; (g) 160 ◦C, 100 s; and (h) 160 ◦C, 120 s. The numbers correspond to the identified signals.

3.2. Compound Identification

After analyzing T. matsutake samples under different processing conditions, a total of
40 typical target signals from topographic plots (Figure 1) were tentatively identified by
comparing the features’ retention and drift times with those of the individual standards’
ion signals. They were confirmed by the commercial GC-IMS library and represented
by different numbers (1–40). The identified compounds are listed in Table 1, including
the compound name, CAS number, molecular formula, molecular weight, retention time,
retention index, and drift time. In addition, other substances with signals that could not
be determined were not listed. The tentatively identified volatile compounds in fried
T. matsutake included six ketones, seven aldehydes, eight alcohols, two esters, and one
heterocyclic compound. It has been detected that one analyte might produce multiple
signals (protonated monomers or even proton-bound dimers). It has been reported that the
formation of dimers or trimers is related to the high proton affinity or high concentration
of the compounds in the analytes, and the compounds with high concentration could
accelerate the combination of neutral molecules and proton molecules to form dimers [18].
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Table 1. GC-IMS integration parameters of volatile compounds in T. matsutake samples under different processing conditions.

No. Compound CAS# Formula MW RT 1 RI 2 DT 3 Identification Approach

1 hexanal 66-25-1 C6H12O 100.2 300.802 798.5 1.2642 RI, DT
2 hexanal dimer 66-25-1 C6H12O 100.2 300.802 798.5 1.564 RI, DT
3 pentanal 110-62-3 C5H10O 86.1 218.794 697.5 1.1929 RI, DT
4 pentanal dimer 110-62-3 C5H10O 86.1 217.721 695.8 1.4219 RI, DT
5 ethyl acetate 141-78-6 C4H8O2 88.1 176.719 619.9 1.0978 RI, DT
6 ethyl acetate dimer 141-78-6 C4H8O2 88.1 176.719 619.9 1.338 RI, DT
7 dimethyl ketone 67-64-1 C3H6O 58.1 133.865 497.2 1.1151 RI, DT
8 ethanol 64-17-5 C2H6O 46.1 122.644 449.6 1.0405 RI, DT
9 ethanol dimer 64-17-5 C2H6O 46.1 122.451 448.7 1.1298 RI, DT
10 butyl acetate 123-86-4 C6H12O2 116.2 318.265 815.1 1.2373 RI, DT
11 1-octene-3-ol 3391-86-4 C8H16O 128.2 600.2 987.2 1.1607 RI, DT
12 1-octene-3-ol dimer 3391-86-4 C8H16O 128.2 597.74 986.1 1.6013 RI, DT
13 benzaldehyde 100-52-7 C7H6O 106.1 522.824 951.6 1.1511 RI, DT
14 benzaldehyde dimer 100-52-7 C7H6O 106.1 522.383 951.4 1.4735 RI, DT
15 1-pentanol 71-41-0 C5H12O 88.1 276.177 772.6 1.2525 RI, DT
16 1-pentanol dimer 71-41-0 C5H12O 88.1 275.492 771.9 1.5139 RI, DT
17 2-pentanone 107-87-9 C5H10O 86.1 198.516 663.4 1.1164 RI, DT
18 2-pentanone dimer 107-87-9 C5H10O 86.1 197.023 660.7 1.3741 RI, DT
19 1-butanol 71-36-3 C4H10O 74.1 203.225 671.8 1.183 RI, DT
20 ethyl methyl ketone 78-93-3 C4H8O 72.1 167.915 599.6 1.0598 RI, DT
21 ethyl methyl ketone dimer 78-93-3 C4H8O 72.1 168.037 599.9 1.2463 RI, DT
22 butanal 123-72-8 C4H8O 72.1 152.648 559.3 1.1156 RI, DT
23 butanal dimer 123-72-8 C4H8O 72.1 153.561 562.0 1.2854 RI, DT
24 butyl methyl ketone 591-78-6 C6H12O 100.2 289.927 787.4 1.1898 RI, DT
25 phenylacetaldehyde 122-78-1 C8H8O 120.2 727.771 1035.8 1.2575 RI, DT
26 linalool 78-70-6 C10H18O 154.3 929.821 1096.1 1.2226 RI, DT
27 2-hexen-1-ol 2305-21-7 C6H12O 100.2 361.404 851.6 1.1823 RI, DT
28 2-hexen-1-ol dimer 2305-21-7 C6H12O 100.2 361.404 851.6 1.5179 RI, DT
29 1-hexanol 111-27-3 C6H14O 102.2 394.267 875.9 1.3278 RI, DT
30 1-hexanol dimer 111-27-3 C6H14O 102.2 392.952 875.0 1.6465 RI, DT
31 2-heptanone 110-43-0 C7H14O 114.2 416.544 891.0 1.2622 RI, DT
32 2-heptanone dimer 110-43-0 C7H14O 114.2 416.023 890.7 1.6307 RI, DT
33 2,5-dimethylpyrazine 123-32-0 C6H8N2 108.1 446.298 909.7 1.1201 RI, DT
34 octanal 124-13-0 C8H16O 128.2 640.818 1003.8 1.4101 RI, DT
35 octanal dimer 124-13-0 C8H16O 128.2 642.699 1004.6 1.8248 RI, DT
36 2-methylpropanol 78-83-1 C4H10O 74.1 183.978 635.4 1.1713 RI, DT
37 heptanal 111-71-7 C7H14O 114.2 428.749 898.9 1.3363 RI, DT
38 heptanal dimer 111-71-7 C7H14O 114.2 429.24 899.2 1.6973 RI, DT
39 2-methylpropanol dimer 78-83-1 C4H10O 74.1 183.087 633.5 1.3627 RI, DT
40 2,3-pentadione 600-14-6 C5H8O2 100.1 196.585 654.4 1.2204 RI, DT

1 Represents the retention time in the capillary GC column. 2 Represents the retention index calculated using n-ketone C4-C9 as the external
standard in the FS-SE-54-CB column. 3 Represents the drift time in the drift tube.

3.3. Effects of Different Processing Conditions on Volatile Compounds in T. matsutake

The information about fingerprints was obtained from the signal intensities of all
compounds in the GC-IMS topographic plot. The appreciable visual plots were selected
and listed together by gallery plot for intuitive comparison (Figures 2 and 3). Each row
represents a sample and each column signifies a signal peak. The colors represent the
content of volatile compounds. The brighter the color, the higher the content. Accordingly,
the differences of non-target volatile compounds in the T. matsutake samples under different
processing conditions were observed.
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Figure 2. Gallery plot of the selected signal peak areas obtained from T. matsutake samples at different frying temperatures
(A) and frying times (B): (a) 100 ◦C, 80 s; (b) 120 ◦C, 80 s; (c) 160 ◦C, 80 s; (d) 200 ◦C, 80 s; (e) 160 ◦C,40 s; (f) 160 ◦C, 60 s; (g)
160 ◦C, 100 s; and (h) 160 ◦C, 120 s.
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samples at different frying temperatures (A) and frying times (B): (a) 100 ◦C, 80 s; (b) 120 ◦C, 80 s; (c)
160 ◦C, 80 s; (d) 200 ◦C, 80 s; (e) 160 ◦C,40 s; (f) 160 ◦C, 60 s; (g) 160 ◦C, 100 s; and (h) 160 ◦C, 120 s.

By comparing the intensity of the spot, the flavor changes of T. matsutake under
different processing conditions were determined (increased, decreased, disappeared, or
fluctuated). The results in Figure 2 show that the content of volatile compounds in the
fried T. matsutake samples varied greatly with the increase in frying temperature and
time. As the frying temperature increased, the concentration of some volatile compounds
such as 2-pentanone, octanal, heptanal, 2-heptanone, 1-hexanol, 2-hexenol, 1-butanol,
and butyl methyl ketone increased or newly formed, whereas the concentration of some
volatile compounds such as 1-octene-3-ol, benzaldehyde, butanal, phenylacetaldehyde,
and linalool decreased gradually. In addition, the T. matsutake samples fried at 160 ◦C
contained many specific volatile organic compounds, which indicates that the samples
have a special flavor at a frying temperature of 160 ◦C. Therefore, we further studied the
changes of volatile compounds in T. matsutake samples at 160 ◦C with different frying
times. It can be seen from Figure 2B that T. matsutake fried at 160 ◦C had different special
flavors when heated for 60 s, 80 s, and 120 s. When fried for 40 s, there were many specific
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compounds, including 2-methyl propanol, 2-pentanone, butanal, butyl methyl ketone,
1-butanol, 2,3-pentadione, 1-hexanol, 2-heptanone, and 1-pentanol. The most prominent
volatile compounds were octanal, heptanal, 2-hexenol, butyl methyl ketone, and 1-butanol
when fried for 80 s. However, when fried for 120 s, 2-pentanone, butanal, pentanal, linalool,
1-octene-3-ol, benzaldehyde, and phenylacetaldehyde showed clear differences compared
with other samples.

The delicious and unique flavors of fried T. matsutake are mainly formed by numerous
chemical reactions of volatile compounds during frying. The Maillard reaction, interaction
of proteins or amino acids with oxidized lipids, oxidation and degradation of lipids, and
degradation of long-chain compounds during thermal processing may form some volatile
flavor compounds [19,20]. The Maillard reaction is a complex reaction process to produce
aldehydes, pyrazines, ketones, furans, and other flavor compounds; heating temperature,
reaction time, water content, chemical composition, and other factors affect the Maillard re-
action [21]. With an increase in temperature, the contents of some aldehydes decreased first
and then increased gradually, and the contents of some aldehydes increased or even newly
formed. It was reported that some of the higher activity intermediates (dehydrogenated
reductones) in the Maillard reaction were unstable, which easily led to deamination and
decarboxylation reactions of amino acids and the formation of aldehydes [22]. Most aldehy-
des had fruity, fatty, and nutty flavors and were mainly produced by lipid oxidation, which
has a lower odor threshold concentration [23]. With the increase in heating temperature
and time, the contents of identified esters remained unchanged. Esters play an important
role in the formation of the overall flavor of T. matsutake, which can be formed by the
interaction of free fatty acids and alcohols produced by the oxidation of fats [24], resulting
in a flavor with a variety of fruity characteristics [25]. A previous study reported the
production of esters and hydrocarbons, which may be due to ester degradation and the
cleavage reaction of alkoxy radicals induced by the heating and baking process [26,27].

A group of C8 compounds, including 1-octen-3-ol (mushroom), (E)-2-octen-1-ol (mush-
room), 3-octanol (mushroom and moss), 1-octanol (chemical and sweet), 3-octanone (herb),
and (E)-2-octenal (green and sweet), have been reported to be typical volatile compounds
in edible mushrooms, and are major contributors to the unique flavor of mushrooms [10].
A previous study reported that 1-octene-3-ol is the main volatile compound found in mush-
rooms and is known as mushroom alcohol [28]. At different temperatures, the decrease
of C8 volatile compounds dominated the changes to important volatile compounds. This
result may be affected by the chemical volatilization and peroxidation of polyunsaturated
fatty acids [27]. The main biosynthetic pathway of C8 compounds in edible fungi is formed
by the enzymatic oxidative cleavage of linoleic acids or linolenic acids under the action of
enzymes such as lipoxygenase (LOX) and hydroperoxide lyase [29]. Guo et al. [10] studied
the water dynamics of T. matsutake during heat treatment and proved that the destruction
of the cell structure led to a decrease in the level of most C8 compounds.

Studies have shown that alkanes and alcohols can transform each other, alter the
sensory properties of foods, and play a role in the reconciliation and complementation of
the flavor of T. matsutake [30]. It was observed that 2,3-pentanedione and 2,5-dimethyl
pyrazine changed with the increase in frying temperature and time. Ketones are the
products of the oxidation of alcohols or the decomposition of esters. However, due to
the high odor threshold concentration of ketones, their overall contribution to the flavor
of T. matsutake is not great [27]. Heterocyclic compounds (pyrazines) are an important
source of the unique aromatic odor of T. matsutake, which has high odor intensity with
nutty and roasted flavors [30]. During the heating and baking process, the six-membered
ring structure of pyrazines is destroyed, resulting in the production of nitrogen-containing
olefins and leading to an increase in hydrocarbon compounds [31].

3.4. T. matsutake Discrimination by Chemometric Methods

Principal component analysis (PCA) is a common chemometric method that can
reduce multiple indicators into several comprehensive indicators, simplify data, and
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reveal the relationship between variables based on making full use of most of the original
variable information [32]. To obtain an overview of the similarities and differences, PCA
was carried out to highlight the differences in volatile compounds among T. matsutake
samples by signal intensity. As shown in Figure 3, T. matsutake samples from different
processing conditions were well separated and clustered according to their signal intensity
in a relatively independent space in the PCA score plot.

Figure 3A shows that the T. matsutake samples fried at different temperatures for 80 s
could be distinguished well in PC1, and there was a great difference between samples c
(160 ◦C, 80 s) and d (200 ◦C, 80 s). Figure 3B shows that samples c (160 ◦C, 80 s) and f
(160 ◦C, 60 s) differed greatly from other samples with different specific flavors. Moreover,
there were great differences between samples c and f. The volatile compounds in samples
e (160 ◦C, 40 s), g (160 ◦C, 100 s), and h (160 ◦C, 120 s) were not distinguished. Combining
the results of Figure 3A,B shows that samples heated at different temperatures were more
decentralized than those under different heating times. This indicates that the heating
temperature was a more important factor than the heating time in influencing the change
of volatile compounds in the T. matsutake samples.

4. Conclusions

In this paper, the advantages of HS-GC-IMS rapid qualitative analysis combined with
PCA were used to analyze the changes to volatile compounds in T. matsutake samples
under different processing conditions and the flavor fingerprints were established. A total
of 24 volatile compounds from topographic plots were identified by HS-GC-IMS. The
tentatively identified substances in fried T. matsutake included six ketones, seven aldehydes,
eight alcohols, two esters, and one heterocyclic compound. Based on topographic plots
and fingerprints, it was observed that the change in the main flavor compounds in T.
matsutake was based on the thermal decomposition and a series of chemical reactions of
C8 compounds such as alcohols. Other compounds such as esters, alkanes, and aldehy-
des, including methyl cinnamate, pentadecane, hexadecane, furfural, 2-pentylfuran, and
1-octen-3-one, played a role in the reconciliation and complementation of the flavor of T.
matsutake samples. PCA results indicated that the samples heated at different temperatures
were more decentralized than those under different heating times, and the heating tem-
perature was more important than the heating time in influencing the change of volatile
compounds in the T. matsutake samples. This study confirmed the potential of HS-GC-IMS
combined with PCA as a reliable analytical screening technique to identify and classify the
volatile compounds of T. matsutake quickly and sensitively. The above results can provide a
theoretical basis for the quality control and change mechanism of flavor in the processing
of traditional edible fungi products.
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