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Background and objectives: Respondent-driven sampling (RDS) is widely used to sample hidden 
populations and RDS data are analyzed using specially designed RDS analysis tool (RDSAT). RDSAT 
estimates parameters such as proportions. Analysis with RDSAT requires separate weight assignment 
for individual variables even in a single individual; hence, regression analysis is a problem. RDS-analyst 
is another advanced software that can perform three methods of estimates, namely, successive sampling 
method, RDS I and RDS II. All of these are in the process of refinement and need special skill to perform 
analysis. We propose a simple approach to analyze RDS data for comprehensive statistical analysis using 
any standard statistical software.
Methods: We proposed an approach (RDS-MOD - respondent driven sampling-modified) that determines 
a single normalized weight (similar to RDS II of Volz-Heckathorn) for each participant. This approach 
converts the RDS data into clustered data to account the pre-existing relationship between recruits and 
the recruiters. Further, Taylor’s linearization method was proposed for calculating confidence intervals 
for the estimates. Generalized estimating equation approach was used for regression analysis and 
parameter estimates of different software were compared.
Results: The parameter estimates such as proportions obtained by our approach were matched with 
those from currently available special software for RDS data.
Interpretation & conclusions: The proposed weight was comparable to different weights generated by 
RDSAT. The estimates were comparable to that by RDS II approach. RDS-MOD provided an efficient 
and easy-to-use method of estimation and regression accounting inter-individual recruits’ dependence.
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It is difficult to map and develop sampling frames for 
hard-to-reach and hidden populations such as injecting 
drug users (IDUs) or men having sex with men (MSM) 
due to privacy concerns and closed knit nature of the 
groups. Hence, conventional probability-based sampling 

methods cannot be applied to sample them. Snowball 
sampling, key informants sampling and targeted 
sampling are some of the previously described sampling 
methods for this population1-3. However, all these 
methods have their own limitations and known biases4. 
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Slightly modified form of snowball method has been 
used to count the rare events such as maternal mortality5.

Respondent-driven sampling (RDS) was 
introduced by Heckathorn to sample hidden and 
hard-to-reach populations. RDS is a modified form 
of snowball sampling, with a system for assigning 
weights to compensate for the unequal selection 
probability4. RDS starts with identifying prototype 
individuals known to represent a specific hidden 
or hard-to-reach population termed as ‘seeds’. In 
turn, seeds recruit the first wave of respondents and 
then the first-wave respondents recruit the second 
wave of respondents and such successive ‘waves’ 
help recruiting respondents until the desired sample 
size is reached. Although respondents recruit those 
with whom they have a pre-existing relationship, 
the primary expectation is that the respondents 
recruit randomly from their personal network6. The 
probability of inclusion is derived from the extension 
of Markov Chain (MC) theory and random walk on 
the network connecting the target population7-10. This 
theoretical framework forms the basis for calculating 
unbiased estimates. As the selection of seeds is 
non-random, the RDS data lack external validity11. 
However, with attainment of more than six waves, 
the sample composition is expected to stabilize and 
become independent of seeds4,12.

The existing software to analyze RDS data is 
RDS analysis tool (RDSAT), and it can generate only 
estimators13. Currently, RDSAT is in the stage of 
refinement and evolution. RDSAT uses bootstrapping 
to obtain confidence intervals (CIs) for estimates8,14. 
Goel and Salganik introduced an MC argument for 
population mixing10. They proposed an estimator by 
weighting the variable obtained from the size of the 
participants’ network and the network pattern focusing 
on relationships within the network. However, 
individualized weights have to be obtained for each 
variable and incorporated in the estimation procedure. 
Therefore, only one estimate can be made at a time 
and hence it consumes more time for data analysis. In 
addition, regression analysis is not possible with RDSAT.  
Efforts were made to adopt RDS data to regression 
analysis for adjusting estimates to reflect the targeted 
population12,15. Exporting of individualized weights 
of a chosen variable from RDSAT for conducting 
univariate regression analysis was attempted. Also, 
multivariate-weighted regression using the weights 
generated by RDSAT was attempted16. However, 
RDSAT produces as many weights as the number of 

variables for each participant and this is the problem in 
applying multivariate regression to RDS data.

Volz and Heckathorn6 generalized Horvitz-
Thompson estimator to adopt RDS estimation to 
survey sampling (RDS II) and this was found to 
outperform the MC method. This was a single weight 
per participant approach unlike RDSAT’s multiple 
weights per participant. Their approach made it possible 
to do regression analysis of RDS data. Calculation 
of variance analytically was made possible, but the 
problem of calculating CIs for a smaller group of 
respondents remained unresolved. Other approaches 
that have been proposed for analysis of RDS data are 
RDS-MR estimate (for analyzing continuous variables 
controlling for differential recruitment), RDS-SS 
estimates (for eliminating the condition of selection 
with replacement) and variance estimation6,17-19. All 
are currently in various stages of development20. 
RDS analyst (RDS-A) is the currently available 
most advanced software, but the problem with small 
samples and calculation of CIs for the estimation of 
cross-classified data remain a problem21 and it adopts 
bootstrap approach for the calculation of CIs. Thus, we 
need an approach or interface that allows use of RDS 
data in standard statistical applications and software. 

The objective was to propose and validate a new 
two-step approach termed as RDS-MOD for analyzing 
RDS data. We hypothesized that determining a single 
normalized weight for each participant (irrespective of 
number of variables) and transforming RDS data into 
clustered data without affecting the recruitment pattern 
(sequence and equilibrium) would enable calculating 
CIs of the estimates including regression coefficients 
analytically in case of RDS data.

Material & Methods

The RDS-MOD was applied to a real dataset 
from India as well as four datasets available in public 
domain to estimate various parameters and their CIs. 
In addition, three real datasets were obtained and 
estimates were presented. STATA SVY module was 
used for analysis. Taylor method of linearization was 
applied to calculate standard errors (SEs) of estimates22. 
The precision of the proposed estimates was assessed 
based on the length of the CIs.

Data sources

Indian dataset: We used the first round data of Integrated 
Behavioural and Biological Assessment (IBBA) 
conducted in Churachandpur District of Manipur State, 
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India, during the first quarter of 2006 on 419 IDUs 
recruited using RDS23,24. Three more datasets of the 
same survey were also obtained and HIV prevalence 
estimates were presented.

The datasets available in public domain were: (i) 1-3: 
Three simulated datasets of ‘RDS-A’ module. The 
datasets were faux (RDS); fauxsycamore (RDS) and 
fauxmadrona (RDS)21. (ii) 4: Jazz musicians dataset of 
RDSAT 7.1.4625.

Statistical analysis: Bland–Altman method was used 
to compare the single weight generated by RDS-MOD 
and the individualized weights generated by RDSAT 
for different variables of Churachandpur data26. The 
parameters and their 95 per cent CIs were estimated. 
The CIs were obtained as an output of SVY module 
of STATA using linearization and replication method 
for the calculation of SEs27. For multiple regression 
analysis, weighted generalized estimation equation 
(WGEE) was used.

For analysis, RDSAT 6.0.1(Cornell University 
Ithaca, NY), RDS-A, STATA 10 (Stata Corp, Texas 
USA); and SAS (Enterprise edition 4.3, SAS Institute, 
Cary, North Carolina, USA) were used. Drawing of 
network was performed by NetDraw 2.090. (Borgatti 
S.P, NetDraw Software for Network Visualization, 
Lexington, NY).

Data analysis by new approach (RDS-MOD)

Derivation of single weight and estimation method: 
Under the assumption in this chain referral sampling, 
the selection of a subject by a recruiter from his 
network is independent and is probability proportional 
to his degree (the number of men he knows and they 
know him) (di)8.  A unique sampling weight Wi was 
derived for ith participant. With these new weights and 
survey sampling module (SVY) of STATA, population 
parameters estimates were calculated27.

Formation of clusters

Formation of clusters in Churachandpur dataset 
(real dataset): The recruitment pattern is depicted 
as recruitment network diagram using ‘NetDraw’ in 
Fig. 1A. RDS data were converted into clusters by 
discarding all the seeds from network chains (Fig. 1B). 
All participants of the branch in a network chain after 
discarding a seed were considered as members of that 
cluster. An assumption was made that the clusters 
thus formed were independent though some traits 
(characteristic affiliation) of respective seeds would 
prevail upon the members of the clusters thus formed. 

However, this correlation would minimize or vanish 
with expanding waves and widening of gap between 
recruiters and recruits, thus diluting the trait of the 
seed. Further, the recruits within the clusters would 
have intra-cluster correlations that need to be addressed 
in any type of analysis. Had the number of seeds been 
more and independent, all recruits under a seed might 
have to be considered as independent clusters. In 
addition, with more number of clusters, the estimates 
could be better.

Formation of clusters in other example datasets: 
To perform RDS-MOD on other datasets (datasets 
in public domain) all the recruits under a seed were 
considered as cluster. Hence, the clusters would be 
independent if the seeds were independent. Thus, if 
there were ten seeds, ten clusters would be formed. 
For example, in fauxsycamore dataset of RDS-A, there 
were ten seeds. Therefore, ten clusters were formed 
for this analysis. For the dataset ‘faux (RDS)’, there 
was only one seed, and therefore, all the recruits were 
assumed to be from a single cluster. This was done 
to study the performance of RDS-MOD in situations 
where all the recruits under only one seed constituted 
a cluster.

Formation of clusters in yet other datasets (real datasets, 
viz. Bishnupur, Phek and Wokha): In Bishnupur dataset 
all seeds (nine) were removed. In the process, one 
cluster with single respondent was not considered. 
Thus, there were ten exclusions (nine seeds and one 
first-wave respondent).

In Phek and Wokha datasets, all recruits under a 
seed were considered as a cluster (nine clusters each).

Data analysis by RDSAT: The analysis tool RDSAT 
(6.0.1) was set to use average network size by adjusted 
mean values method. The number of re-samplings to 
determine bootstrap 95 per cent CI was set to 2500. The 
enhanced smoothing algorithm type was employed. 
Homophily (Hx) for each variable was obtained 
to understand the magnitude of the characteristic 
affiliation of recruiters with their recruits. The number 
of waves required for attaining equilibrium was also 
estimated by choosing a convergence radius of 0.02. 
We assumed a median base population as 10,000 and 
set 500 as bootstrap replication to analyze additional 
three real datasets (viz. Bishnupur, Phekh and Wokha).

Comparison of weights by RDS-MOD and the 
individualized weights of RDSAT for different variables 
under analysis: Single weight per study participant 
derived for RDS-MOD and the individualized weights 
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generated by RDSAT for different variables were 
compared by Bland–Altman method26. The difference 
in weights by RDSAT and the calculated weight for 
RDS-MOD were plotted against the mean of the 
weights by these two approaches for a variable (Fig. 2). 
If the points on the Bland–Altman plot were uniformly 
scattered between the limits of agreement, it would 
suggest good agreement between the two weights by 
two different approaches. This analysis was performed 
to compare the individualized weights generated for 
each of variables by RDSAT and the single weight for 
each individual by RDS-MOD.

Comparison of estimates of RDS-MOD and RDS-A on 
example datasets: As our weights were similar to RDS 
II of Volz and Heckathorn6, RDS-MOD comparison of 
parameters by RDS-A (RDS II) would yield similar 
estimates but not the CIs. The comparison of estimates 
by different approaches using Churachandpur 
data is presented in Tables I and II. The results of 
comparison using the datasets, viz. faux, fauxmadrona, 
fauxsycamore of RDS-A and Jazz musicians’ dataset 
of RDSAT 7.1.46 are presented in Tables III and IV. 
In addition, HIV prevalence estimates were calculated 
both by RDS-A and RDS-MOD of yet another three 
real datasets (data not shown). 

Regression analyses: Similarity induced by clusters 
would violate the standard assumption of independent 
observations from each individual. In the regression 
set-up, generalized estimating equation approach 
accounts for intra-cluster correlation28. This approach 
was used to study the affiliation factors for HIV 
positivity (factors associated with HIV) among the 
IDUs recruited in Churachandpur, India. Regression 

analysis was performed using WGEE approach with 
auto-regressive-1 (AR-1) correlation structure as logical 
ordering of recruitment was inevitably present in the 
RDS selection process. Furthermore, the AR-1 structure 
is appropriate when the correlation between various 
sample units is expected to decrease with the increasing 
distance within the recruitment chain. The CIs were 
obtained for the parameter estimates of regression 
equation by SAS software29. The results are presented 
in Table V. To understand the nature of linkages in the 
recruitments among IDUs with HIV status, WGEE with 
exchangeable correlation structure was also performed. 
If Hx is high for a variable, the parameter estimates with 
these two assumed correlation (AR-1 and exchangeable) 
structures would vary in the regression.

Results

The proposed weights were similar to RDS II 
of Volz and Heckathorn13 but for a constant term 
(harmonic mean of the network size) in the numerator 
as normalizing factor.

Comparison of estimates of parameters of different 
datasets by RDS-MOD with RDSAT and RDS-A

Churachandpur, India RDS data: All the seeds grew 
and reached up to seven waves. The recruitment per 
seed ranged from 50 to 111. A random mixing pattern 
of recruitment was observed among HIV positives and 
negatives in the network recruitment diagram (Fig. 1A) 
and also in the demographically adjusted recruitment 
matrices of RDSAT (symmetry, not shown). Estimated 
waves required to reach equilibrium was 2-3 for all 
variables, except for only one subset variable. All 
the variables considered for this analysis attained 

Fig. 1. (A) RDS Network recruitment diagram of injecting drug users (IDUs) in Churachandpur district of Manipur State of India, 2006. (B) 
Network recruitment diagram of clusters created from the IDUs in Churachandpur district of Manipur State of India, 2006. All red circles: HIV 
+ve; All green triangles: HIV –ve.  C1 to C17 are clusters formed from networks. Seeds are in larger size. Arrow-marks represent direction 
of recruitment chain. (NetDraw 2.090 software, Data Source: IBBA Round 1).

(A) (B)
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Fig. 2. Agreement between the weights generated by RDSAT and RDS-MOD  by Bland - Altman method. Source: Paul Seed, 2014. “BAPLOT: 
Stata module to produce Bland-Altman plots,” Statistical Software Components S457853, Boston College Department of Economics.

equilibrium with more than six waves. RDSAT and 
RDS-A used all 419 recruits for analysis.

For our new approach (RDS-MOD), 17 clusters 
were formed after discarding six seeds (Fig. 1B). For 
example, when seed 2 was removed, three clusters 
were formed with assigned cluster numbers C4, C5 and 
C6 of size 41, 28 and 41, respectively. Only one cluster 
(C2) of size one from seed 1 was not considered for 
cluster analysis. Thus, 16 clusters of 412 recruits were 
available for analysis by our new approach with a loss 
of seven participants including, six seeds and one first-
wave recruit.

Bland–Altman plots indicated that single weights 
of RDS-MOD and weights of RDSAT for different 
variables were within the acceptance limits (i.e. 
within the mean of differences of weights between 
these two methods ±1.96 of standard deviation of 

these differences) for all the four variables considered 
(Fig. 2). Further, the mean of the differences was nearly 
zero signalling that the single weight per participant 
was similar to multiple weights of RDSAT. However, 
the trends within them indicated that the differences 
varied with magnitude. Thus, the calculated weights 
by both methods depended strongly on each other. 
This indicated the reasonability between the weights 
calculated by our approach for an individual and 
several of RDSAT’s weights for different variables of 
the same individual for this dataset.

The estimates of proportions by RDS-MOD across 
variables were similar to RDS-A and RDSAT (Table I). 
However, the CIs by RDS-MOD were wider compared 
to other two methods. The Hx was highest for the 
character ‘sharing of injection needle’ (Hx = 0.381). The 
other affiliation characters for HIV were ‘daily injection 
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Table I. Estimates of proportions of population parameters by respondent-driven sampling (RDS)-MOD (modified), RDS-A (analyst) 
and respondent-driven sampling analysis tool (RDSAT)- Churachandpur data
Variable RDS-MOD (n*=412) RDS-A (RDS-II, n=419) RDSAT (RDS-I)** (n*=419)

Number 
observed

Estimate (95% CI) Number 
observed

Estimate (95% CI) Number 
observed

Estimate (95% CI)

Age group (yr)
18-20 42 10.5 (7.0-15.5) 42 10.5 (5.4-15.5) 42 10.7 (7.2-14.4)
21-25 144 36.5 (27.2-47.0) 144 36.4 (29.8-43.0) 144 37.0 (30.0-43.9)
26-30 136 32.6 (22.9-43.9) 140 32.7 (28.6-36.8) 140 32.3 (26.1-38.8)
>30 90 20.4 (16.5-25.0) 93 20.4 (14.2-26.7) 93 20.1 (15.7-25.5)
Duration of injecting drug (yr)
1-2 91 27.1 (21.4-33.8) 91 27.0 (20.5-33.6) 91 27.2 (21.0-33.3)
3-5 156 39.3 (30.1-49.4) 157 39.2 (33.2-45.3) 157 39.3 (33.0-45.8)
>5 165 33.5 (24.8-43.5) 171 33.8 (29.3-38.3) 171 33.4 (27.7-40.7)
Frequency of injecting drug
Daily 324 75.6 (68.0-82.0) 328 75.5 (69.3-81.6) 328 75.6 (69.3-81.8)
Others 88 24.4 (18.0-32.0) 91 24.5 (18.4-30.7) 91 24.4 (18.2-30.7)
Current needle sharing practice
Not sharing 44 16.0 (11.2-22.4) 44 15.9 (13.1-18.8) 44 16.0 (10.7-21.7)
Sharing 368 84.0 (77.6-88.8) 375 84.1 (81.2-86.9) 375 84.0 (78.3-89.3)
HIV status
Positive 147 32.6 (25.7-40.4) 152 32.8 (26.5-39.2) 152 32.5 (26.8-38.6)
Negative 265 67.4 (59.6-74.3) 267 67.2 (60.8-73.6) 267 67.5 (61.4-73.2)
HSV-2***

Positive 7 32.6 (11.3-64.7) 8 - 8 0.0 (-)†

Negative 26 64.4 (34.4-86.4) 27 - 27 62.9 (-)†

Inconclusive 2 3.0 (0.7-10.6) 2 - 2 37.1 (-)†

*Observed unweighted count; **Bootstrap - 2500; enhanced data smoothening; average network size - dual component; ***HSV-2 done 
only on a random sample of 37; †RDSAT did not generate CI for this subgroup data. HSV-2, herpes simplex virus type 2; CI, confidence 
interval

of drugs’ (Hx = 0.156) and ‘duration of injecting drugs 
more than five years’ (Hx = 0.143). Negative affiliation in 
the recruitment was noticed among those with duration 
of injecting drugs less than two years (Hx = −0.149). 
For a sub-sample, RDSAT produced estimates not in 
tune with the observed frequencies and RDSAT could 
not produce CI. For example, a random sample of 37 
specimens was tested for herpes simplex virus type 2 
(HSV- 2). Among them eight were ‘positive’, two were 
‘inconclusive’ and the remaining ‘negative’. RDSAT 
estimated the proportions of positives (8 out of 37) as 
0 per cent and inconclusive (2 out of 37) as 37.1 per 
cent. RDSAT showed that the estimated mean number 
of waves to attain equilibrium for this variable was as 
high as 1960 (Table I).

RDS-MOD yielded similar and comparable 
parameter estimates of cross-classified variables 
as well (Table II). However, slightly wider CI was 
noticed in many of the estimates by RDS-MOD both 
in Tables I and II. RDS-A did not produce CI for cross-
classified data (Table II).

By RDS-MOD method, all parameters were re-
estimated using individualized weights per variable 
generated by RDSAT (data not shown). The estimates 
were almost similar to that of single weighting 
procedure of RDS-MOD implying that single weight 
per individual was sufficient rather than multiple 
weights per individual. Similar exercise was performed 
on cross-classified data of parameters. The estimates by 
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Table II. Estimates of proportions of HIV status cross-classified by factors using respondent-driven sampling (RDS)-MOD (modified), 
RDS-A (analyst) and respondent-driven sampling analysis tool (RDSAT)- Churachandpur data
Factors HIV status RDS-MOD† n* RDS-A‡ (RDS-II) RDSAT (RDS-I) 

estimate (95% CI)n* Estimate (95% CI)
Age group (yr)
18-20 HIV positive 3 8.6 (2.6-24.6) 3 8.6 8.4 (0.0-18.7)

HIV negative 39 91.4 (75.4-97.4) 39 91.4 91.6 (81.3-100.0)
21-25 HIV positive 22 14.5 (9.2-22.4) 22 14.6 14.7 (8.4-22.8)

HIV negative 122 85.4 (77.6-90.8) 122 85.4 85.3 (77.2-91.6)
26-30 HIV positive 60 42.8 (31.8-54.6) 63 43.2 42.3 (31.1-53.1)

HIV negative 76 57.2 (45.4-68.2) 77 56.8 57.7 (46.9-68.9)
≥31 HIV positive 62 61.1 (47.8-72.8) 64 61.1 61.3 (45.6-74.8)

HIV negative 28 38.9 (27.2-52.2) 29 38.9 38.7 (25.2-54.4)
Duration of injecting drug (yr)
1-2 HIV positive 10 11.4 (5.9-20.8) 10 11.4 10.7 (3.9-19.7)

HIV negative 81 88.6 (79.2-94.1) 81 88.6 89.3 (80.3-96.1)
3-5 HIV positive 42 26.1 (16.7-38.2) 42 26.0 26.9 (18.6-35.2)

HIV negative 114 73.9 (61.8-83.3) 115 74.0 73.1 (64.8-81.4)
≥6 HIV positive 95 57.5 (47.5-67.0) 100 57.9 57.0 (46.1-67.4)

HIV negative 70 42.5 (33.0-52.5) 71 42.1 43.0 (32.6-53.9)
Frequency of injecting drug
Daily HIV positive 116 35.5 (26.5-45.8) 118 35.6 35.5 (29.2-42.5)

HIV negative 208 64.5 (54.2-73.5) 210 64.4 64.5 (57.5-70.8)
Not daily HIV positive 31 23.5 (12.5-39.8) 34 24.5 23.9 (13.9-36.7)

HIV negative 57 76.5 (60.2-87.5) 57 75.5 76.1 (63.3-86.4)
Current needle sharing practice
Sharing HIV positive 130 34.3 (26.9-42.5) 135 34.5 34.0 (27.6-41.0)

HIV negative 238 65.7 (57.5-73.1) 240 65.5 66.0 (59.0-72.4)
Not sharing HIV positive 17 23.8 (14.1-37.3) 17 23.8 24.8 (11.9-40.8)

HIV negative 27 76.2 (62.7-85.9) 27 76.2 75.2 (59.2-88.1)
*Unweighted count; †SEs were calculated by the method of linearization-STATA survey module. Age group and duration of injection 
were significantly associated with HIV status at 5% level (χ2). ‡RDS-A does not produce CI for cross-classified data. SEs, standard 
errors; CI, confidence interval

single weight approach and those with individualized 
weights of RDSAT were identical (data not shown). 
This also indicated that single weighting approach 
worked well for cross-classified estimations.

Comparison of results of RDS-MOD, RDSAT and 
RDS-A with other example datasets: The estimates 
of parameters and their CIs of the other example 
RDS datasets are presented in Tables III and IV. This 
exercise was done for not drawing any inference but to 
compare the estimates.

Dataset 1 – faux: From the faux dataset, the variable 
‘A’, the estimates of population parameters by RDS-A 

(RDS II), RDS-MOD and RDSAT (RDS I) were almost 
similar including their CIs. However, for variable ‘B’ 
of the same datasets, population estimates by RDS-A 
and RDS-MOD were identical and RDSAT (RDS I) 
yielded varied results for all the three parameters.

Dataset 2 – fauxsycamore: For all the three variables 
(C, D, E), the estimates by RDS-MOD and RDS-A were 
comparable. The CIs produced by RDS-MOD were 
almost equal or narrower than RDS-A. RDSAT (RDS I) 
produced results differently for all these variables.

Dataset 3 – fauxmadrona: This dataset contains three 
variables (F, G, H). The variable ‘G’ has 14 groups 
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Table III. Estimates of proportions [given as (estimates and 95% CI)] of various subgroup of variables using respondent-driven 
sampling (RDS)-MOD (modified), RDS-A (analyst) and respondent-driven sampling analysis tool (RDSAT) on different datasets, viz. 
faux, fauxsycamore, fauxmadrona
Dataset Variable RDS-MOD RDS-A (RDS-II) RDSAT (RDS-I)*

Faux (RDS)
A Blue 31.0 (26.0-36.1) 31.1 (26.1-36.1) 31.1 (26.1-36.3)

Red 69.0 (63.9-74.0) 69.0 (63.9-73.4) 68.9 (63.7-73.9)
B Blue 40.7 (35.4-46.0) 40.7 (26.6-54.7) 47.6 (32.9-62.8)

Green 37.9 (32.6-43.2) 37.9 (22.7-53.1) 24.6 (10.3-40.3)
Black 21.4 (16.5-26.4) 21.4 (10.7-32.1) 27.8 (17.9-39.9)

Fauxsycamore (RDS)
C Disease

No 85.5 (82.9-88.1) 85.5 (77.7-93.2) 88.9 (85.6-91.9)
Yes 14.5 (11.9-17.2) 14.6 (6.8-22.3) 11.1 (8.1-14.4)

D To diseased (three groups)
0 85.9 (83.0-88.9) 85.9 (81.3-90.5) 90.7 (87.0-92.8)
1 11.7 (9.0-14.5) 11.8 (6.8-16.7) 8.2 (6.2-11.4)
2 2.3 (1.2-3.4) 2.3 (1.1-3.5) 1.1 (0.4-2.2)

E To non-diseased (three groups)
0 57.5 (52.4-62.5) 57.5 (52.3-62.6) 60.1 (52.3-62.4)
1 19.8 (15.8-23.8) 19.8 (14.3-25.3) 25.6 (21.1-29.2)
2 22.8 (18.9-26.7) 22.8 (18.9-26.6) 14.4 (13.4-21.8)

Fauxmadrona (RDS)
F Disease

No 83.6 (80.7-86.5) 83.6 (76.8-90.4) 84.2 (79.6-88.0)
Yes 16.4 (13.5-19.3) 16.4 (9.6-23.2) 15.8 (12-20.4)

G To diseased (14 groups)
0 26.4 (21.7-31.2) 26.4 (22.6-30.2) 26.9 (21.5-32.8)
1 26.4 (22-30.8) 26.4 (20.6-32.2) 26.4 (21.2-31.2)
2 20.9 (17.1-24.7) 20.9 (17.1-24.8) 20.9 (17.5-24.4)
3 8.9 (6.4-11.4) 8.9 (7.5-10.4) 8.8 (6.3-11.2)
4 5.4 (3.5-7.3) 5.4 (3.8-7) 5.7 (3.7-7.6)
5 2.5 (1.3-3.7) 2.5 (1.2-3.8) 2.5 (1.4-4)
6 3.3 (2-4.6) 3.3 (1.7-4.9) 3.1 (1.7-4.8)
7 2.6 (1.5-3.7) 2.6 (1.6-3.6) 2.3 (1.2-3.7)
8 1.2 (0.5-1.8) 1.2 (0.5-1.8) 1.1 (0.4-1.9)
9 1.2 (0.5-1.9) 1.2 (0.2-2.2) 1.2 (0.5-2)
10 0.6 (0.1-1.1) 0.6 (−0.3-1.5)† 0.6 (0.2-1.2)
11 0.3 (0.0-0.6) 0.3 (−1.2-1.9)† 0.3 (0-0.6)
12 0.1 (−0.1-0.2)† 0.1 (−0.5-0.7)† 0.1 (0-0.2)
13 0.1 (−0.1-0.3)† 0.1 (−0.5-0.8)† 0.1 (0-0.3)

Contd...
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Dataset Variable RDS-MOD RDS-A (RDS-II) RDSAT (RDS-I)*
H To non-diseased (13 groups)

0 0.7 (−0.7-2.0)† 0.7 (0.3-1.1) 1 (0-2.7)
1 1.3 (−0.3-2.9)† 1.3 (−0.1-2.6)† 1.6 (0-3.5)
2 8.9 (5.2-12.5) 8.9 (6.8-11) 8.1 (4.9-11.8)
3 19.7 (15.4-23.9) 19.7 (17.2-22.1) 19.5 (14.9-23.9)
4 16.3 (12.6-19.9) 16.3 (14.3-18.3) 17.1 (13.3-20.9)
5 17.4 (13.9-20.9) 17.4 (14.2-20.5) 18 (14.6-21.2)
6 15.9 (12.7-19) 15.9 (10.2-21.5) 15.5 (12.7-18.7)
7 9 (6.7-11.3) 9 (7.6-10.4) 8.9 (6.6-11.6)
8 5.8 (4.1-7.6) 5.8 (4.5-7.2) 5.9 (4.3-7.7)
9 3.1 (1.8-4.3) 3.1 (−2.4-8.6)† 2.4 (1.2-3.7)
10 1.4 (0.6-2.2) 1.4 (0.4-2.5) 1.4 (0.7-2.3)
11 0.4 (0-0.9) 0.4 (−0.6-1.5)† 0.5 (0.1-0.9)
12 0.2 (−0.1-0.5)† 0.2 (−0.1-0.5)† 0.1 (0-0.4)

*Bootstrap - 2500, Enhanced data smoothening; Average network size - Dual component; †Confidence limits were negatives

Table IV. Estimates of proportions [estimates (95% CI)] using respondent-driven sampling (RDS)-MOD (modified), RDS-A (analyst) 
and respondent-driven sampling analysis tool (RDSAT) on Jazz musician datasets
Variable RDS-MOD RDS-A (RDS-II) RDSAT (RDS-I)*

Gender
1 72.1 (63.5-80.7) 72.1 (62.8-81.5) 76.2 (66.1-84.2)
2 27.9 (19.3-36.5) 27.9 (18.5-37.2) 23.8 (15.8-33.9)
Race
1 55.5 (46.5-64.6) 55.5 (44.1-67.0) 53.1 (43.1-63.6)
2 33.0 (24.3-41.7) 33.0 (22.3-43.7) 36.0 (26.0-46.8)
3 11.5 (6.3-16.6) 11.5 (6.2-16.7) 10.9 (6.2-15.5)
Air play
1 75.1 (66.1-84.0) 75.1 (65.8-84.4) 75.1 (66.2-84.8)
2 24.9 (16.0-33.9) 24.9 (15.6-34.2) 24.9 (15.2-33.8)
Union
1 24.1 (17.8-30.3) 24.1 (16.6-31.6) 25.0 (18.2-32.6)
2 75.9 (69.7-82.2) 75.9 (68.4-83.4) 75.0 (67.4-81.8)
*Bootstrap - 2500, Enhanced data smoothening; Average network size - Dual component

and ‘H’ has 13 groups. The estimates by RDS-MOD 
and RDS-A were identical and the estimates by all 
the three methods were comparable. For ‘G’, the CIs 
were wider for RDS-A. RDS-MOD gave narrow CIs. 
RDS-MOD and RDS-A produced negative limits for 
some CIs. However, RDSAT did not produce any of 
that type.

Dataset 4 – Jazz musician: The estimates of parameters 
by RDS-MOD and RDS-A were identical. RDS-MOD 
yielded narrow CI. RDSAT also produced comparable 
results for all the four variables.

Dataset 5 – Bishnupur, Phek and Wokha: HIV prevalence 
estimate and CI was similar to RDS-A in Wokha and CI 
was slightly wider in Bishnupur data. However, CI of 
Phek data by RDS-MOD was wider (data not shown).

Results of regression analysis: WGEE both with AR-1 
and exchangeable correlation structures showed that 
older age groups (≥25 yr) and longer period of injecting 
drug use ( ≥6 yr) were associated with HIV positivity 
(Table V). Sharing of needles daily was not associated 
with HIV positivity. The similarity of regression 
coefficients both by AR-1 and exchangeable correlation 
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Table V. Factors associated with HIV for different correlation structure of weighted generalized estimation equation
Factors ORs

Estimates with 
exchangeable correlation

95% CI Estimates with 
AR (1)-correlation

95% CI

Age group (yr)
18-20 1.00 1.00
21-25 1.37 0.35-5.39 1.42 0.36-5.63
26-30 3.94 1.42-13.62† 4.06 1.20-13.78†

≥31 7.89 2.09-29.84† 7.97 2.12-29.90†

Duration of injecting drug (yr)
1-2 1.00 1.00
3-5 2.01 0.75-5.39 2.03 0.75-5.51
≥6 4.72 2.69-8.24† 4.65 2.60-8.28†

Frequency of injecting drug
Daily 1.00 1.00
Not daily 1.33 0.53-3.32 1.30 0.51-3.31
Needle sharing
Not sharing 1.00 1.00
Sharing 1.40 0.62-3.16 1.30 0.58-2.89
†Significant at 5% level. WGEE, weighted generalized estimating equation (SAS Enterprise Guide 4.3) using single weight; ORs, odds 
ratios; CI, confidence interval

structure indicated the random mixing nature of HIV 
status of recruiter and recruits in Churachandpur data 
(Table V).

Discussion

As there is no method available to make the 
true estimate of the parameter of RDS data, all our 
comparisons were mainly with RDS II (this method 
calculates SEs of estimates analytically) estimates, and 
hence, the comparison of the RDS-MOD estimates 
with other methods such as successive sampling 
method was not possible. The proposed new approach 
for analysis of RDS data was simple and less time-
consuming. Additionally, this approach was able to 
generate population estimates comparable to those 
derived by RDS-A (RDS II), the currently available 
most advanced level software to analyze RDS data. 
Precision of estimates by our approach appeared to be 
superior to RDS-A in the example datasets [viz. faux 
(RDS); fauxsycamore (RDS); fauxmadrona (RDS) and 
Jazz musicians dataset].

In the new approach, clusters were formed without 
affecting sequential and natural ordering of selection. 
In this process, though information on all seeds (non-
random) was lost, RDS data were robust and not 
likely to be affected by the inclusion or exclusion 

of out of equilibrium data, i.e. data collected before 
reaching equilibrium30. Discarding of earlier waves 
has also been recommended in previous reports10,15. 
Thus, our result might not be affected by discarding 
the six seeds from the analysis. Formation of clusters 
paved a way to account for the related characters in 
the recruitment process and provided ways to other 
statistical methods and analysis by routine statistical 
software.

It has been suggested that the tendency towards Hx 
varies among groups31. Hence, it is important to measure 
the tendency towards Hx with respect to different 
respondent’s characteristics and to use this information 
to weight the sample to compensate for any biases31. 
It appears that in general, the network’s composition 
with respect to personal attributes may exhibit Hx with 
respect to only a particular trait or with respect to a few 
characters. In our sample, ‘sharing of needle’ was the 
most prominent trait (knowing each other) irrespective 
of the HIV status. Therefore, technically, a single 
unique weight would be sufficient to compensate the 
Hx of different respondent characteristics. In addition, 
as sampling weights were used only to compensate 
the unequal probability of inclusion into the sample, 
a common weight for each individual was sufficient 
rather than individualized weights for each variable 
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and the results were comparable to those of RDSAT. 
The similarity of the parameter estimates by our 
approach using RDSAT weights in one-way and two-
way tables indicated that a single weight per individual 
was sufficient.

Our RDS-MOD approach was similar to RDS 
II of Volz and Heckathorn6. The only difference was 
that the weights by RDS-MOD had an additional 
constant multiplier compared to Volz and Heckathorn. 
Although this constant does not affect the estimates, it 
is needed for the physical comparison of weights with 
that of RDSAT. The very basic assumption made was 
that a recruiter recruited the subjects independently 
with probability proportional to network size of the 
recruiter. This assumption was based on the work 
of Salganik and Heckthorn8, who showed that a 
random walk on network was a Markov Process, in 
which equilibrium occupied a node with probability 
proportional to degree. The applicability of Hansen-
Hurwitz estimator with these assumptions provides 
theoretical and conceptual foundation to our approach 
of deriving unique weights32.

The proposed approach necessitated the need for 
incorporating clustering effect in the regression model 
as clustering results in lack of independence among the 
errors in regression. Generalized estimating equation 
(GEE) approach resolves this problem by appropriately 
accounting the correlation structure of a variable of 
interest between recruits and recruiter28. The process 
of fitting a model should incorporate sample weights 
as well as information about correlation between 
sample units. Weighted estimating equations are 
the most popular methods for obtaining consistent 
estimates of regression coefficient with sample survey 
data33,34. Therefore, we used WGEE approach to study 
the affiliation factors for the HIV positivity. AR-1 
correlation structure accounted for logical ordering of 
recruitment and the exchangeable correlation assumed 
equality of correlation between any two recruited 
individuals within a cluster. The similarity of results 
due to different correlation structures (AR-1 and 
exchangeable) suggested that HIV status was not an 
indicative factor for recruitment preferences in recruiting 
HIV-positive/negative IDUs in Churachandpur dataset. 
Slight variations found in model coefficients by these 
two procedures (AR-1 and exchangeable) could be due 
to possible omission of a variable from the model that 
had a strong interaction with the independent variables 
and was highly correlated with the weights35.

The advantage of our approach is that it allows 
estimations using standard software such as STATA or 
any other software that accommodates survey sampling 
method. Also, the problem of subgroup analysis of 
RDS data could be overcome. 

It was assumed that the clusters formed were 
independent after discarding a seed although some traits 
of that seed might prevail upon clusters of that seed. 
However, this limitation can be overcome by selecting 
more seeds at the stage of data collection (preferably 
independent) and considering each seed with its recruits 
as a separate cluster as has been done with other example 
datasets. The new approach resulted in slightly wider CIs 
in Churachandpur data compared to RDS-A and RDSAT. 
The possible reasons could be that RDS-MOD employed 
the analytical method to calculate these. It could also 
happen if the intra-cluster correlation was high. Volz 
and Heckathorn6 have reported that wider CI is expected 
when the variances are calculated analytically. Empirical 
tests of RDS have indicated that the analytical method 
overestimates the CIs30. As we have also accounted for 
the intra-cluster correlation, still wider CIs are expected36. 
Clustering and weighting normally result in decreased 
precision37. Volz and Heckathorn6 suggested that the 
loss of precision might happen due to the single weights 
used for all variables as was done in the present study. 
In contrast, RDS-MOD yielded estimates with the same 
or higher precision in other simulated example datasets, 
viz., faux (RDS); fauxsycamore (RDS) and fauxmadrona 
(RDS) and Jazz musicians dataset used for comparisons. 
This indicated the possibility that intra-cluster correlation 
in these example datasets (simulated data) was not high. 
As the inferences based on RDS data require many strong 
assumptions, Gile et al38 have suggested some diagnostic 
tools to empower researchers to understand their RDS 
data better and encourage future statistical research on 
RDS sampling and inference.

Our study had certain limitations. The weight 
calculation was solely dependent on the network size 
(degree reported by the respondent). Thus, inaccuracies 
in the self-reported degree might have introduced 
biases in the estimates. Hanzen-Hurwitz method is 
applicable only when the sample elements are selected 
independently with replacement and that may not be 
true in the real sense of RDS. We assumed that the 
clusters formed were independent though some traits 
of corresponding seed would have prevailed. A few of 
the lower limits of our CIs in an example dataset for 
proportions were negative.
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In conclusion, the proposed alternative approach 
of using single weight and converting RDS data into 
clusters before analysis can be recommended as it 
generates analytical CIs and allows for estimates for 
smaller groups as well. RDS data can thus be analyzed 
faster using commonly used statistical software 
that also permits wider range of statistical analysis 
including analysis of continuous variables.

Conflicts of Interest: None.
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