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A B S T R A C T

Rey’s Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic mem-
ory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several
studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by
Alzheimer’s disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory
complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent
Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what
extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using
machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT
scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic
net penalized linear regression model. The proposed approach provided highly significant cross-validated
correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forget-
ting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In
addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the
relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors
were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular
gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion
of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores
with an accuracy comparable to MRI-based biomarkers.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by memory deficit, which is followed by
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problems in other cognitive domains that cause a severe decline
in the usual level of functioning. The progressive episodic memory
impairment characteristic to AD is best measured by neuropsycho-
logical testing. This is evident in recent diagnostic recommendations,
which highlight the significance of standardized neuropsycholog-
ical testing as well as the supportive role of biological evidence
for AD pathology (Dubois et al., 2010; Jack et al., 2011; American
Psychiatric Association, 2013). Rey’s auditory verbal learning test
(RAVLT) is a well-known measure of episodic memory, and in pre-
vious studies it has had a significant role in early diagnosis of AD
(Estévez-González et al., 2003) as well as it has been demonstrated
to be useful in differentiating AD from psychiatric disorders (Ricci et
al., 2012; Schoenberg et al., 2006; Tierney et al., 1996). In particular,
Estévez-González et al. (2003) suggested inclusion of the RAVLT to
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the cognitive test battery used in evaluation and early detection of
AD. Moreover, Balthazar et al. (2010) indicated of the importance of
RAVLT in a clinical setting for discriminating normally aging subjects
from mild cognitive impairment (MCI) and AD subjects.

Recently revised diagnostic criteria and recommendations
emphasize the importance of early diagnosis of AD (Dubois et al.,
2010; McKhann et al., 2011; American Psychiatric Association, 2013).
The disease processes leading to AD are known to start while individ-
uals are still cognitively normal and may precede clinical symptoms
by years or decades (Jack et al., 2010; Adaszewski et al., 2013).
Reflecting this and the call for the biological evidence for AD diag-
nosis, several AD specific biomarkers have been identified, including
multivariate patterns of structural brain atrophy measured by mag-
netic resonance imaging (MRI) (Moradi et al., 2015; Bron et al., 2015;
Salvatore et al., 2015; Coupé et al., 2015; Eskildsen et al., 2013; Wee
et al., 2013). MRI-based biomarkers have the advantages of being
non-invasive and widely available.

However, integrating neuropsychological information and brain
atrophy biomarkers might be extremely valuable for early diagnosis.
In particular, we have previously shown that integrating cognitive
and functional measures to brain atrophy pattern from MRI signif-
icantly improved the prediction performance of conversion to AD
in mild cognitive impairment (MCI) patients as compared to using
either modality alone (Moradi et al., 2015). Among cognitive and
functional measures considered, RAVLT was the most important
measure in the prediction model (as determined by the out-of-bag
variable importance score in the Random Forest classifier (Breiman,
2001; Liaw and Wiener, 2002), which, in part, explains our interest
towards RAVLT.

In order to enhance possibilities to early detection of AD and
tracking disease progression, it is important to explore the associa-
tion between cognitive functions and the pathological mechanisms
of AD. The essential role of medial temporal lobe structures, espe-
cially hippocampus, for episodic memory has been known for long
(Squire and Wixted, 2011). The studies of recent years have provided
data on neurobiology of memory and learning and on the neurobio-
logical changes of AD, but many aspects still remain unclear (Masdeu
et al., 2012; Jeong et al., 2015). The great majority of machine learn-
ing based AD studies have been focused on either classification
of AD and healthy subjects (Magnin et al., 2009; Beheshti et al.,
2016) or predicting conversion to AD in MCI patients (Moradi et
al., 2015; Eskildsen et al., 2013) using different neuroimaging tech-
niques. However, the relationships between AD related brain atrophy
and decline in cognitive abilities are less studied. In the current
study, we aim to analyze the relation between AD related structural
change within the brain and RAVLT measures. Particularly, we aim
to predict RAVLT scores from MRI based gray matter density images
by applying elastic net linear regression forming a multivariate brain
atrophy pattern predicting the RAVLT score. According to previous
studies (Khundrakpam et al., 2015; Bunea et al., 2011; Carroll et al.,
2009) elastic net linear regression is well suited for learning predic-
tive patterns among high dimensional neuroimaging data with many
relevant predictors that are correlated with each other. Additionally,
this approach offers an interpretable model by automatically select-
ing a sparse pattern of relevant voxels for predicting RAVLT, thus
providing the possibility of finding the brain regions most strongly
contributing to the prediction of RAVLT scores.

The association between AD related changes in brain structure
and various cognitive measures of dementia (Mattis Dementia Rating
Scale (DRS), Alzheimer’s Disease Assessment Scale-cognitive subtest
(ADAS-Cog), Mini-mental state examination (MMSE) and RAVLT-
Percent Retention) was previously studied by Stonnington et al.
(2010) based on pattern analysis on gray matter voxel-based mor-
phometry maps. Their results indicated that DRS, ADAS-cog and
MMSE measures could be well estimated based on brain structure.
However, the accuracy of predicting the RAVLT percent retention

score based on MRI was much more modest with a dataset that
included a continuum of subjects who were cognitively normal and
persons with MCI or AD. This could reflect the small number of sub-
jects or the specific nature of the machine learning method used,
which might not be the best possible for learning the associations
between MRI and a score related to a specific aspect of cogni-
tion (episodic memory) rather than to cognitive ability in general.
More recently, the relationship between MRI and RAVLT scores was
investigated by Wang et al. (2011). However, as they averaged grey
matter density, cortical thickness and subcortical volumetry from
MRI into the total of 144 regional measures, they did not probe
the relationship between a high-dimensional atrophy pattern and
RAVLT. Furthermore, these atlas-based averaging strategies of high-
dimensional MRI data may be detrimental to the predictive accuracy
of machine learning analysis (Khundrakpam et al., 2015). Addition-
ally, as Wang et al. (2011) used root mean square error (RMSE)
measure to report the predictive accuracy and provided no p-values
for RMSE, it is difficult to put the prediction accuracy into proper
context.

In this report, we used whole brain gray matter density maps
for predicting different RAVLT measures. We analyzed the relation-
ship between RAVLT measures and AD related structural changes
within the brain by considering a large ADNI dataset of over 800 sub-
jects ranging from severe AD to age-matched healthy subjects. We
also investigated the relationship between AD conversion prediction
and the observed and MRI-estimated RAVLT measures to highlight
the potential clinical implications of the method. We studied two
RAVLT summaries - RAVLT Immediate and RAVLT Percent Forgetting.
These summary scores highlight different aspects of episodic mem-
ory, namely learning (immediate) and delayed memory (percent
forgetting), which both are essential aspects of AD.

2. Materials and methods

2.1. ADNI data

Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial mag-
netic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.

We used the same dataset as Moradi et al. (2015), but excluded
subjects with missing RAVLT scores; the subject demographics are
presented in Table 1. For RAVLT Immediate (Percent forgetting), the
dataset consisted of 186 (180) AD subjects, 226 (226) NC (normal
control) subjects and 394 (393) MCI subjects. The diagnostic and
inclusion/exclusion criteria is specified in Petersen et al. (2010) and
roster IDs of the subjects are listed in Supplementary material. Of the
394 (393) MCI subjects, 164 subjects were grouped as progressive
MCI (pMCI) if diagnosis was MCI at baseline but conversion to AD was
reported after baseline within 1, 2 or 3 years, and without reversion
to MCI or NC at any available follow-up (0–96 months). 100 sub-
jects were grouped as stable MCI (sMCI) if diagnosis was MCI at all
available time points (0–96 months), but at least for 36 months. The
remaining 130 (129) MCI subjects were grouped as unknown MCI
(uMCI), if diagnosis was MCI at baseline but the subjects were miss-
ing a diagnosis at 36 months from the baseline or the diagnosis was
not stable at all available time points. The labeling of MCI patients
was based on the 3-year cut-off period that was decided based on
the length of follow-up for the original ADNI-1 project (Moradi et
al., 2015). For estimating the RAVLT Percent Forgetting score, we
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Table 1
Subject demographics. RAVLT-Immediate is abbreviated as RAVLT-IR and RAVLT-Percent Forgetting is abbreviated as
RAVLT-PF.

Diagnosis No of subjects Age, mean (std) RAVLT IR RAVLT PF
IR/PF IR/PF mean (std) mean (std)

AD 186/180 75.28 (7.53)/75.39 (7.52) 23.20 (7.74) 90.30 (18.86)
Range: 0–42 Range: 10–100

MCI 394/393 74.91 (7.33)/74.90 (7.34) 30.58 (9.11) 68.15 (30.83)
Range: 11–68 Range: 0–100

NC 226/226 75.97 (5.05)/75.97 (5.05) 43.32 (9.11) 35.04 (33.65)
Range: 16–69 Range: 0–100

excluded 3 AD subjects with the score of zero as outliers (roster IDs
of these three were 724, 1184, and 1253). In addition, there are many
subjects (129 AD, 77 pMCI, 17 sMCI, 38 uMCI and 8 NC subjects) with
percent forgetting score of 100%, who did not recall any words dur-
ing the delayed trial. However, these subjects cannot be considered
as outliers. The RAVLT Percent Forgetting of 100% can be considered
typical for AD and pMCI subjects and, while not typical, this is not
unusual for sMCI subjects. For 8 normal controls, this is an unusual
score, which, however, could be explained by a number of factors
such as nervousness in the testing situation.

For predicting RAVLT scores all MCI subjects with available RAVLT
scores were included regardless of availability of information about
the AD conversion as this is not required in predicting RAVLT scores.

2.2. RAVLT score

Rey’s Auditory Verbal Learning Test (RAVLT) (Rey, 1964) is a
powerful neuropsychological tool that is used for assessing episodic
memory by providing scores for evaluating different aspects of mem-
ory. The RAVLT is sensitive to verbal memory deficits caused by
a variety of neurological diseases such as AD (Schoenberg et al.,
2006;Balthazar et al., 2010;Estévez-González et al., 2003). Tierney et
al. (1996) and Estévez-González et al. (2003) have shown that the
RAVLT score is an effective early marker to detect AD in persons with
memory complaints.

Briefly, the RAVLT consists of presenting a list of 15 words across
five consecutive trials. The list is read aloud to the participant, and
then the participant is immediately asked to recall as many as words
as he/she remembers. This procedure is repeated for 5 consecutive
trials (Trials 1 to 5). After that, a new list (List B) of 15 new words is
read to the participant, who then is immediately asked to recall the
words. After the List B trial, the examiner asks participant to recall
the words from the first list (Trial 6). After 30-minutes of interpolated
testing (timed from the completion of List B recall), the participant is
again asked to recall the words from the first list (delayed recall).

Different summary scores are derived from raw RAVLT scores.
These include RAVLT Immediate (the sum of scores from 5 first tri-
als (Trials 1 to 5)), RAVLT Learning (the score of Trial 5 minus the
score of Trial 1), RAVLT Forgetting (the score of Trial 5 minus score
of the delayed recall) and RAVLT Percent Forgetting (RAVLT Forget-
ting divided by the score of Trial 5). We use naming of the ADNI
merge table3 for these summary measures. We investigated the rela-
tionship between MRI measures and RAVLT cognitive test scores by
estimating the RAVLT Immediate and RAVLT Percent Forgetting from
the gray matter density. These two summary scores were selected
since they highlight different aspects of episodic memory, learning
(RAVLT Immediate) and delayed memory (RAVLT Percent forgetting),
essential to AD and previous studies (Estévez-González et al., 2003;
Wang et al., 2011; Gomar et al., 2014; Moradi et al., 2015) have
indicated strong relationships between these two RAVLT measures

3 http://adni.bitbucket.org/adnimerge.html.

and Alzheimer’s disease. For example, Estévez-González et al. (2003)
concluded that the most reliable RAVLT measures for AD detection
are RAVLT Immediate, a score of zero at the delayed recall and the
RAVLT percent forgetting. Particularly, we stress that RAVLT percent
forgetting, which is a measure of delayed memory that takes into
account the relationship of immediately and delayed recalled words
is equivalent of RAVLT percent retention considered by Stonnington
et al. (2010).

2.3. MRI and image processing

The downloaded MRIs were acquired with T1-weighted MP-RAGE
sequence at 1.5 Tesla, typically with 256 × 256 × 170 voxels with
the voxel size of approximately 1 mm × 1 mm × 1.2 mm. The MRIs
were downloaded as raw images converted to the NIFTI format.
As described by Gaser et al. (2013), Moradi et al. (2015) prepro-
cessing of the T1-weighted images was performed using the SPM8
package4 and the VBM8 toolbox5 , running under MATLAB. All T1-
weighted images were corrected for bias-field inhomogeneties, then
spatially normalized and segmented into gray matter (GM), white
matter, and cerebrospinal fluid (CSF) within the same generative
model (Ashburner and Friston, 2005). The dimension after the spa-
tial normalization was 181 × 217 × 181 with 1 mm3 voxels and the
template used for the spatial normalization was the SPM8 version
of the ICBM152 atlas (the linear registration version) provided
by MNI6 . The segmentation procedure was further extended by
accounting for partial volume effects (Tohka et al., 2004), by applying
adaptive maximum a posteriori estimations (Rajapakse et al., 1997),
and by using an hidden Markov random field model (Cuadra et al.,
2005) as described previously (Gaser, 2009). This procedure resulted
in maps of tissue fractions of WM and GM. Only the GM images
were used in this work. Following the pipeline proposed by (Franke
et al., 2010), the GM images were processed with affine registration
and smoothed with 8-mm full-width-at-half-maximum smoothing
kernels. After smoothing, images were resampled to 4 mm isotropic
spatial resolution. This procedure generated, for each subject, 29,852
aligned and smoothed GM density values that were used as MRI
features.

2.4. Machine learning framework

We applied elastic net linear regression (ENLR) (Zou and Hastie,
2005) for the estimation of RAVLT score (RAVLT Immediate and
RAVLT Percent forgetting) from MRI measurements. Due to the
high dimensionality of MRI data, the number of predictor variables
(voxels) is greater than the number of subjects. Therefore, the ordi-
nary least squares linear regression cannot be applied. However,
regularization approaches are effective in solving underconstrained

4 http://www.l.ion.ucl.ac.uk/spm.
5 http://dbm.neuro.uni-jena.de.
6 http://nist.mni.mcgill.ca/?p=798.
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problem like this in a statistically principled manner. In particular,
we used the elastic net penalty as regularizer. The ENLR provides
spatially sparse model by performing simultaneously variable selec-
tion and model estimation, thus providing a subset of voxels relevant
to predict RAVLT scores. Further, ENLR possesses so called grouping
effect meaning that correlated predictors are selected simultane-
ously. The number of voxels that are included in the regression
model is controlled by a regularization parameter k, which is typ-
ically, and also in this work, selected by cross-validation. A more
detailed description of ENLR is provided in Appendix A.

To compare the performance of ENLR approach, we additionally
applied relevance vector regression (RVR) for estimation of RAVLT
scores as this was the machine learning approach used by Stonnington
et al. (2010). The RVR (Tipping, 2001) is a pattern recognition method
that uses Bayesian inference to obtain sparse regression models. We
used kernelized RVR with the linear kernel as Stonnington et al. (2010)
and also RVR without kernelization. Similarly to ENLR, RVR provides
a sparse solution with only a subset of predictors contributing to the
final model. However, having a sparse predictive model in a kernel
space does not provide easily interpretable prediction model in a voxel
space, since enforcing sparsity in the kernel space does not result on
a sparse solution in the original feature space (Khundrakpam et al.,
2015).

We considered different datasets of subjects in our experiments.
The main dataset included all subjects, i.e., AD and MCI patients and
NC subjects. In this way, the dataset included a contiguous range
of RAVLT scores. The range of RAVLT Immediate in this dataset was
from 0 to 69 and the range of RAVLT Percent Forgetting was from 0 to
100. Secondarily, we included only two groups of subjects for learn-
ing the regression model and predicting RAVLT scores. This resulted
in 3 distinct datasets with different subject characteristics (1. AD and
NC subjects, 2. AD and MCI subjects and 3. NC and MCI subjects).
Finally, we included only one group of subjects (only for AD and MCI
groups) and repeated the experiments.

2.5. Implementation and performance evaluation

For the performance evaluation of the model and estimation
of the regularization parameter k, we used two nested and strat-
ified cross-validation loops (10-fold for each loop) (Ambroise and
McLachlan, 2002; Huttunen et al., 2012)7 . The number of folds was
selected to be 10 because this is typically recommended compro-
mise (Hastie et al., 2011; Arlot et al., 2010). First, an external 10-fold
cross-validation was implemented in which the dataset were ran-
domly divided into 10 subsets. At each step, a single subset was
used for testing and remaining subsets were used for training. The
training set was used to train the elastic net regression model. We
re-divided the training set into 10-folds for finding the optimal k for
the model. The optimal k was selected according to the mean abso-
lute error (MAE) across the inner 10-fold cross-validation loop. Note
that the test sets in the external cross-validation loop were used only
for evaluating the model. The performance of the model was char-
acterized using the (cross-validated) Pearson correlation coefficient
(R), mean absolute error (MAE) and the coefficient of determination8

(Q2) between estimated and true RAVLT scores in the test set. Three

7 The Matlab code used for constructing stratified cross-validation folds for regres-
sion is available at https://github.com/jussitohka/general_matlab.

8 The Q2 provides a measure of how well out-of-training set RAVLT scores
are predictable by the learned model (http://scikit-learn.org/stable/modules/model_

evaluation.html#regression-metrics). It is defined as Q2 = 1 −
∑N

i=1 (si−ŝi)
2

∑N
i=1 (si−s̄)2 , where ŝi is

the estimated RAVLT for subject i, si is the true RAVLT score for subject i, and s̄ is mean
of the true RAVLT scores. Q2 is bounded above by 1 but is not bounded from below.
Note that Q2 does not equal R2, i.e., the correlation squared, but the Q2 value can never
exceed R2, see the methods supplement of (Moradi et al., 2016).

different metrics are reported to provide complementary informa-
tion. Cross-validated correlation is simple to interpret, but it can hide
the bias in the predictions, which are made apparent by Q2-value.
MAE provides the prediction errors in the equal scale with the orig-
inal scale of the RAVLT scores. The reported metrics in the Results
section are the averages over 100 nested 10-fold CV runs in order
to minimize the effect of the random variation in the division of the
data into different folds. To compare the performance of two learn-
ing algorithms, we computed a p-value for the 100 correlation scores
with a permutation test. For computing p-values associated with the
correlation coefficient between the observed and estimated values,
we used a permutation test (Anderson and Robinson, 2001) and, for
computing the 95% confidence intervals of the correlation coefficient,
we used bootstrap on the run with the median correlation score
across 100 cross-validation runs. For evaluating the power of RAVLT
scores in discriminating between pMCI (progressive MCI) and sMCI
(stable MCI) subjects, we used AUC (area under the receiver operat-
ing characteristic curve) measure (Hanley and McNeil, 1982) and for
comparing AUCs we used StaR tool (Vergara et al., 2008).

The ENLR was implemented with the GLMNET library (Friedman
et al., 2010)9 , and the RVR was implemented with the “SparseBayes”
package (Tipping et al., 2003)10 .

3. Results

3.1. Prediction of RAVLT scores

We estimated RAVLT scores, both RAVLT Immediate and RAVLT
Percent Forgetting, from MRI data. The cross-validated accuracies
of these estimations with different methods (ENLR, KRVR, RVR) and
different subject sets are listed in Table 2.

3.1.1. Accuracy of estimated RAVLT scores with all subjects
As shown in Table 2, the RAVLT scores estimated by ENLR were

the most accurate ones. The correlation score (R) of ENLR was signif-
icantly better compared to KRVR (p < 0.0001) and RVR (p < 0.0001)
approaches when using the whole dataset. In addition, R was highly
significant using all three approaches and for both summary scores as
revealed by the permutation test on the run with the median correla-
tion score across 100 cross-validation runs (p < 0.0001 in all cases).
The 95% bootstrap confidence intervals (CIs) for the correlation score
for the estimation of RAVLT Immediate were as follows: ENLR: [0.45,
0.55], KRVR: [0.41,0.51], RVR: [0.21,0.33]; and, for the estimation of
RAVLT Percent Forgetting, the 95% bootstrap CIs were as follows:
ENLR: [0.37,0.48], KRVR: [0.35, 0.47], RVR: [0.23, 0.35]. The scatter
plots between the estimated and observed RAVLT scores based on
ENLR and KRVR approaches are illustrated in Fig. 1. The scatter plots
corresponding to the estimated values by using RVR approach are
provided in the supplement.

We investigated the effect of age-correction on the performance
of the prediction model by estimating normal aging effects on MRI
data in NC subjects of the training set and removing it from MRI
data of all subjects as proposed in (Moradi et al., 2015). With the
age correction step for the estimation of RAVLT Immediate using the
ENLR approach, the average correlation score increased from 0.50 to
0.51 (p < 0.001), the average MAE decreased from 7.86 to 7.80 and
the average Q2 increased from 0.25 to 0.26. For estimation of RAVLT
Percent Forgetting with age corrected MRI data, the average correla-
tion score increased from 0.43 to 0.46 (p < 0.001), the average MAE
decreased from 25.53 to 25.18 and the average Q2 increased from
0.185 to 0.21.

9 http://web.stanford.edu/~hastie/glmnet_matlab/.
10 http://www.miketipping.com/sparsebayes.htm.
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Table 2
The generalization performance based on correlation score (R), coefficient of determination (Q2) and mean absolute error (MAE) for different experiments. *** means that the
value was not meaningful, because Q2 values were below −100 and MAE values were above 100. The values are averages across 100 CV runs. The values in parentheses show the
standard deviations across 100 CV runs. RAVLT-Immediate is abbreviated as RAVLT-IR and RAVLT-Percent Forgetting is abbreviated as RAVLT-PF.

Data RAVLT IR RAVLT IR RAVLT IR RAVLT PF RAVLT PF RAVLT PF
ENLR KRVR RVR ENLR KRVR RVR

AD, MCI, NC R 0.50 (0.007) 0.46(0.01) 0.27 (0.02) 0.43 (0.01) 0.41(0.01) 0.28 (0.02)
Q2 0.25 (0.007) 0.17 (0.01) −0.71 (0.06) 0.185 (0.01) 0.14 (0.01) −0.645 (0.07)
MAE 7.86 (0.043) 8.21 (0.08) 11.90 (0.23) 25.53 (0.18) 26.65 (0.18) 34.52(0.82)

AD, NC R 0.61 (0.008) 0.53(0.01) 0.38 (0.03) 0.53 (0.01) 0.50 (0.01) 0.32 (0.03)
Q2 0.37 (0.01) 0.24 (0.02) −0.37 (0.07) 0.28 (0.01) 0.23 (0.02) −0.56 (0.08)
MAE 8.30 (0.07) 9.11 (0.13) 12.23 (0.35) 25.33(0.16) 25.75 (0.37) 35.58 (1.11)

AD, MCI R 0.39 (0.01) 0.32(0.01) 0.21 (0.03) 0.29(0.02) 0.255(0.02) 0.15(0.03)
Q2 0.15 (0.01) −0.03 (0.02) −0.78 (0.08) 0.08 (0.01) −0.05 (0.03) −0.93 (0.08)
MAE 6.57 (0.04) 7.26 (0.09) 9.76 (0.24) 23.39(0.14) 24.52(0.38) 32.60 (0.76)

MCI, NC R 0.43 (0.01) 0.41(0.01) 0.26(0.03) 0.32 (0.02) 0.32 (0.01) 0.19(0.03)
Q2 0.18 (0.01) 0.10 (0.02) −0.70 (0.10) 0.09 (0.02) 0.06 (0.01) −0.88 (0.08)
MAE 67.88 (0.06) 8.21(0.09) 11.34(0.38) 26.58 (0.21) 26.49(0.19) 36.11 (0.83)

AD R 0.32 (0.03) 0.28(0.02) 0.08 (0.05) −0.14 (0.06) 0.06 (0.03) −0.09 (0.06)
Q2 0.10 (0.02) −0.02 (0.03) −1.08 (0.16) −0.03 (0.02) −0.31 (0.05) −1.48 (0.22)
MAE 5.75 (0.07) 6.22 (0.11) 8.84 (0.37) 14.08 (0.15) 16.17 (0.35) 22.8 (1.12)

MCI R 0.15 (0.02) −0.03(0.03) 0.06 (0.06) 0.16 (0.02) −0.01 (0.02) 0.05 (0.04)
Q2 0.02 (0.01) *** *** 0.02 (0.01) *** −1.11 (0.14)
MAE 6.92 (0.035) *** *** 26.07 (0.15) *** 33.65 (1.19)

3.1.2. Top predictors for RAVLT scores
Since we standardized the data before applying ENLR, the abso-

lute value of each regression coefficient provides the importance of
the corresponding predictor in the predictive model. Therefore, we
computed the importance of each brain region based on the max-
imum value of the average magnitudes of regression coefficients.
The magnitude of standardized regression coefficients was averaged
across 100 different 10-fold CV iterations. The top predictors (brain
regions) for estimation of RAVLT scores in the ENLR model are listed
in Table 3 (RAVLT Immediate) and Table 4 (RAVLT Percent Forget-
ting). We considered only the maximum of the average magnitudes
within a region to discount for poor predictors within a region. To
compute the 95% confidence intervals (CIs) for the maximum of aver-
age magnitudes of regression coefficients, we calculated first the 2.5%
and 97.5% percentiles of magnitudes of regression coefficients for
each voxel within 100 runs of 10-fold CV, and then took the max-
imum values of these as the lower and upper bound of the CI. The
lower CI limit larger than zero provides strong evidence that the
region in the question contributes to the prediction model indepen-
dent of the training set used. In addition, we computed the selection
probability for each voxel across 100 different 10-fold CV runs (see
Fig. 2).

3.1.3. Accuracy of estimated RAVLT scores with reduced subject sets
Removing MCI subjects significantly improved the performance

of the estimation (see Table 2, the first and second rows, the improve-
ment in R was significant with all three methods and both scores
(p < 0.0001)). Albeit the predictive performance improved in
terms of correlation score and coefficient of determination, the MAE
increased in all experiments.

Excluding either the NC or AD group from the dataset notably
decreased the prediction performance when comparing to that of
using all subjects (see Table 2, first, third and forth rows). The decline
in the performance of model was highly significant (p < 0.0001)
in all experiments. As the results show, removing either AD or NC
groups and including subjects from the groups with more similari-
ties such as “AD and MCI” or “NC and MCI” rendered the prediction
problem more challenging.

We experimented with using a single group of subjects for learn-
ing and evaluating of the model. The results are presented in the
last two rows of the Table 2. As it was expected, the estimation of

RAVLT scores with a single group of subjects proved to be a diffi-
cult problem due to lack of significant differences in the AD related
structural changes within subjects of a single group. However, even
within MCI and AD groups, the correlation between the estimated
and observed RAVLT Immediate score was significant when using
ENLR for prediction. With the AD group, the estimation of RAVLT per-
cent forgetting was not successful with any method. However, ENLR
could estimate the RAVLT percent forgetting within the MCI group,
where the correlation was low but significant.

The scatter plots of the estimated and observed RAVLT scores
of the CV run with the median R within 100 computation times,
with the proposed approach for different experiments are illustrated
in Fig. 3. The scatter plots corresponding to the KRVR and RVR
approaches are provided in the supplement.

3.2. AD conversion prediction based on RAVLT measures

We studied the use of RAVLT Immediate and RAVLT Percent for-
getting for predicting conversion to AD in MCI patients. For this, we
classified subjects with MCI as pMCI (progressive MCI) if the subject
converted to AD within 1, 2 or 3 years follow-up without reversion
to MCI or NC at any available follow-up (0–96 months), sMCI (sta-
ble MCI) if the diagnosis was MCI at all available time points (0–96
months), but at least for 36 months and uMCI (unlabeled MCI) if the
diagnosis was missing at 36 months from the baseline or the diag-
nosis was not stable at all available time points. The definition of
these groups was the same as in our previous work (Moradi et al.,
2015). We used only sMCI and pMCI subjects in order to evaluate the
effectiveness of RAVLT scores (acquired at baseline) for predicting
conversion to AD.

The baseline RAVLT scores differed significantly between the two
MCI groups (pMCI and sMCI) in terms of both RAVLT Immediate
(p < 0.0001) and RAVLT Percent Forgetting (p < 0.0001). The aver-
age RAVLT Immediate was 35.08 (standard deviation 9.69) in the
sMCI group and 26.94 (standard deviation 6.19) in the pMCI group.
The average RAVLT Percent Forgetting was 55.35 (standard deviation
30.91) in the sMCI group and 77.48 (standard deviation 27.99) in the
pMCI group.

Furthermore, the longitudinal RAVLT measurements showed con-
siderable changes during the 3 years follow-up in pMCI subjects
while they were relatively stable in sMCI subjects as shown in Fig. 4,
which is provided to confirm the close relationship between the
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Fig. 1. Scatter plot for estimation of RAVLT Immediate (left) and RAVLT Percent Forgetting (right) using ENLR (top) and KRVR (bottom) with all available subjects, i.e., AD, MCI
and NC subjects.

RAVLT scores and the suspected AD pathology. Interestingly, in the
pMCI group, RAVLT Immediate displayed a more clear declining
trajectory than the RAVLT percent forgetting.

Fig. 5 shows the ROC curves for discrimination of pMCI and sMCI
subjects of observed baseline RAVLT scores and the estimated RAVLT
scores. The estimated RAVLT scores were learned with all data (AD,
MCI and NC subjects). From these estimated scores, we then selected
the scores of pMCI and sMCI subjects in order to calculate AUC and
plot the ROC curves. The AUC of observed RAVLT Immediate was
0.75 and the AUC of observed RAVLT Percent Forgetting was 0.71,
thus indicating that these scores are powerful in predicting conver-
sion to AD in MCI subjects. The AUC of estimated RAVLT Immediate
was 0.72 (ENLR), 0.72 (KRVR) and 0.63 (RVR). The AUC of estimated
RAVLT Percent Forgetting was 0.71 (ENLR), 0.69 (KRVR) and 0.60
(RVR). The difference between observed and estimated AUCs (based
on either ENLR or KRVR) was 0.03 with the 95 % confidence inter-
val (CI) of [−0.05, 0.11] for RAVLT Immediate. For RVR, the difference
was 0.12 with the CI of [0.03, 0.21]. In the case of RAVLT Percent
Forgetting, the difference between observed and estimated AUCs
was 0.01 with the CI of [−0.07, 0.09] (ENLR), 0.02 with the CIs of
[−0.07,0.10] (KRVR) and 0.12 with the CI of [0.03,0.20] (RVR). As the
results indicate, the AUCs obtained based on estimated RAVLT scores
using ENLR and KRVR methods were similar to AUCs obtained the

observed RAVLT scores, i.e., estimated scores demonstrated similar
power in the detection of AD conversion compared to the observed
scores.

It is interesting to study whether pMCI and sMCI subjects can
be more effectively separated if using both observed and estimated
scores instead of only using observed scores. To test this, we trained a
Gaussian plug-in classifier (Duda et al., 2012) using Matlab’s classify
function. The accuracy of the classifier was measured using 100 runs
of 10 fold CV. The average accuracy when using both estimated and
observed values for RAVLT Immediate (percent forgetting) was 0.75
(0.71). When using only the observed values the accuracy was 0.70
(RAVLT Immediate) and 0.67 (RAVLT percent forgetting)11 . The per-
formance improvement was significant in terms of run-wise applied
permutation test (p < 0.0001). By combining the two observed
RAVLT scores, the classification accuracy was 0.71. These results indi-
cated that estimated and observed RAVLT scores contained different
information that may be useful for early AD diagnosis.

11 The difference to the AUCs reported above is because the resubstitution method,
not dependent on any classifier, used to compute the values 0.75 and 0.71 above and
the cross-validation based estimate (tied to the specific classifier) led to the AUCs of
0.70 and 0.67
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Table 3
The top predictors for estimating RAVLT Immediate in all subjects (AD, MCI and NC). For each voxel, the average magnitude of the standardized regression coefficients (normalized
with respect to the standard deviation of the response variable) across 100 different 10-fold CV iterations are calculated. The third column shows the number of voxels with the
average magnitude greater than or equal to 0.01 in the corresponding region and the fourth and fifth columns show the maximum value of the average magnitude of regression
coefficients and its CI within the region. The ranking is based on the maximum value of the average magnitude of regression coefficients in each region. The region definitions
correspond to those of the AAL atlas and we abbreviate gyrus as G.

Region definition Label Number of voxels Max weight 95 % CI for max weight

Middle temporal G right 86 3 0.05 [0.0185, 0.0784]
Amygdala right 42 4 0.04 [0.0123, 0.0815]
Insula left 29 2 0.04 [0.0076, 0.0645]
Hippocampus left 37 7 0.03 [0.003, 0.0637]
Sup temporal G left 81 2 0.03 [0.0075, 0.0637]
Calcarine right 44 1 0.03 [0.0007, 0.0641]
Thalamus right 78 1 0.03 [0.0074, 0.0540]
Inf parietal G left 61 1 0.02 [0.00004, 0.0479]
Middle cingulum left 33 2 0.02 [0, 0.0440]
Parahippocampal G left 39 1 0.02 [0, 0.0462]
Anterior cingulate left 31 2 0.02 [0, 0.0483]
Supplementary motor area left 19 1 0.02 [0, 0.0435]
Middle temporal G left 85 2 0.02 [0, 0.0469]
Middle frontal G right 8 1 0.02 [0, 0.0419]
Precuneus left 67 2 0.01 [0, 0.0358]
Lingual G right 48 1 0.01 [0, 0.0397]
Inf occipital G left 53 1 0.01 [0, 0.0360]
Inf frontal G, oper. right 12 1 0.01 [0, 0.0382]
Parahippocampal G right 40 1 0.01 [0, 0.0408]
Fusiform G left 55 1 0.01 [0, 0.0435]

4. Discussion

The purpose of the current study was to analyze the relationships
between AD related structural changes within the brain with RAVLT
cognitive measures in order to find how accurately RAVLT cognitive

measures reflect the structural atrophy caused by AD. To this end, we
build a predictive model to estimate RAVLT scores from gray matter
density via elastic net penalized linear regression model by consider-
ing various datasets of subjects with different AD severity levels in the
learning and evaluation procedures. The aim of considering different

Table 4
The top predictors for estimating RAVLT Percent Forgetting in all subjects (AD, MCI and NC). For each voxel, the average magnitude of the standardized regression coefficients
(normalized with respect to the standard deviation of the response variable) across 100 different 10-fold CV iterations are calculated. The third column shows the number of
voxels with the average magnitude greater than or equal to 0.01 in the corresponding region and the fourth column shows the maximum value of the average magnitude of
regression coefficients with the region. The ranking is based on the maximum value of the average magnitude of regression coefficients within each region. The region definitions
correspond to those of the AAL atlas and we abbreviate gyrus as G.

Region definition Label Number of voxels Max weight 95 % CI for max weight

Angular G right 66 1 0.07 [0,0433, 0.0879]
Hippocampus right 38 1 0.05 [0.0208, 0.0855]
Hippocampus left 37 6 0.05 [0.0148, 0.0863]
Amygdala left 41 2 0.04 [0.0122, 0.0795]
Amygdala right 42 4 0.04 [0.0042, 0.0814]
Insula left 29 1 0.04 [0.002, 0.0683]
Parahippocampal G right 40 3 0.04 [0.0067, 0.0674]
Middle occipital G left 51 2 0.04 [0.0073, 0.0631]
Calcarine left 43 2 0.03 [0.0012, 0.0682]
Temporal pole, middle temporal G right 88 1 0.03 [0, 0.0702]
Sup temporal G right 82 1 0.03 [0, 0.0647]
Lingual G left 47 2 0.03 [0, 0.0644]
Inf occipital G right 54 2 0.03 [0, 0.0597]
Middle cingulum left 33 1 0.03 [0, 0.0528]
Sup frontal G, orb. left 5 1 0.02 [0, 0.0539]
Middle frontal G left 7 2 0.02 [0, 0.0523]
Temporal pole; sup temporal G left 83 2 0.02 [0, 0.0586]
Cerebellum-6 right 100 1 0.02 [0, 0.0465]
Middle frontal G right 8 2 0.02 [0, 0.0477]
Fusiform G left 55 1 0.02 [0, 0.0506]
Inf temporal G right 90 1 0.02 [0, 0.0450]
Inf frontal G, orb. right 16 1 0.02 [0, 0.0647]
Inf parietal G left 61 3 0.02 [0, 0.0450]
Cerebellum-6 left 99 1 0.02 [0, 0.0562]
Precuneus left 67 1 0.02 [0, 0.0434]
Olfactory G left 21 1 0.02 [0, 0.0535]
Parahippocampal G left 39 2 0.02 [0, 0.0443]
Thalamus right 78 2 0.01 [0, 0.0417]
Sup frontal G right 4 2 0.01 [0, 0.0378]
Sup frontal G left 3 1 0.01 [0, 0.0393]
Middle temporal G right 86 1 0.01 [0, 0.0422]
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Fig. 2. The selection probability of voxels in the estimation RAVLT Immediate (A) and RAVLT Percent Forgetting (B) across 100 different 10-fold CV iterations. The images are
displayed according to the neurological convention.
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Fig. 3. Scatter plot for estimation of RAVLT Immediate (left) and RAVLT Percent Forgetting (right) based on ENLR using AD and NC subjects (top), AD and MCI subjects (middle)
and NC and MCI subjects (bottom).

datasets with different levels of memory problems was to determine
the dependency between the RAVLT performance and the demen-
tia related atrophy. The results of the current study revealed strong
association between information detected by RAVLT scores and AD
related structural atrophy. As the results show (see Table 2), including
subjects from similar groups such as “AD and MCI” or “NC and MCI”
produced lower predictive performance compared to using groups of
subjects with significant structural differences within the brain, such
as “AD and NC”.

Several studies have investigated the role of RAVLT cognitive mea-
sures in the evaluation of AD as well as the relationship between AD
related atrophy and RAVLT measures (Estévez-González et al., 2003;

Balthazar et al., 2010; Stonnington et al., 2010; Wang et al., 2011). A
recent study by Stonnington et al. (2010) investigated the association
between AD related structural changes and a RAVLT measure (percent
retention) by applying relevance vector regression for the estimation
of RAVLT based on MR structural images. However, they did not find a
significant correlation between estimated and observed values (R =
0.13, normalized RMSE = 1) in an ADNI dataset of 39 AD, 92 MCI and
32 NC subjects. For comparison purposes, we also calculated normal-
ized RMSE (by normalizing the observed scores to have zero mean and
unit variance) for the estimation of RAVLT immediate (RMSE = 0.87,
R = 0.50) and RAVLT Percent Forgetting (RMSE = 0.90, R = 0.43). In
contrast to Stonnington et al. (2010), our study indicated a significant
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Fig. 4. Mean RAVLT scores (A–B) during 3years follow-up assessment in pMCI and sMCI subjects with error bars representing the standard deviation.

relationship between RAVLT measures and structural atrophy caused
by AD. The improved prediction performance of our model stems both
from the larger number of subjects used to train the model and from
a better approach for learning the model (ENLR in contrast to KRVR
used by Stonnington et al., 2010). Relative to the machine learning
approach used, Stonnington et al. (2010) speculated that the estima-
tionofRAVLT,whichfocusesonthespecificaspectsofcognitiveability,
might be challenging based on the whole brain MRI. However, our
results demonstrate that this challenge can be in part overcome by
using sparsity inducing learning methods, such as ENLR. In addition to
RAVLT Immediate and RAVLT Percent Forgetting, we also estimated
the delayed recall score from gray matter density using proposed
approach in a full dataset (AD, MCI and NC; Results of this experiment
are available in the Supplement). As expected, the predictive accuracy
evaluated by cross-validation (R = 0.44, Q2 = 0.19, MAE = 2.83)
was almost equivalent to that of RAVLT Percent Forgetting, which is
a measure of delayed recall taking into account the relationship of
immediately and delayed recalled words.

The knowledge of top predictors is crucial to understand which
brain regions are most influential in estimation of RAVLT scores as well
as how strongly these measures are related to brain atrophy caused
by AD. One proposed use of the elastic net penalized linear regres-
sion for constructing predictive model was to obtain an interpretable
model. As stated in Section 2.4, the ENLR performs variable selection

simultaneously with model estimation, thus providing a subset of rel-
evant voxels for the learning procedure. Note that while also KRVR
provided relatively high predictive performance for the estimation
of both RAVLT scores (although the predictive performance of KRVR
was consistently lower than the predictive performance of ENLR in
all experiments, see Table 2), the interpretation of the KRVR model is
hard due to kernelization. The top ranked predictors for estimating
RAVLT Immediate (learning) are listed in Table 3 and for estimat-
ing RAVLT Percent Forgetting are listed in Table 4. Our finding of top
predictors of medial temporal lobe structures and amygdala for esti-
mation of RAVLT Immediate and angular gyrus, hippocampus and
amygdala for estimation of RAVLT Percent Forgetting are consistent
with previous knowledge. The essential role of medial temporal lobe
structures, especially hippocampus, for episodic memory has been
known for long (Squire and Wixted, 2011; Jeong et al., 2015). Specif-
ically, these structures are thought to be involved for the formation
and the maintenance of memories after learning before storing to
other cortical areas (Squire and Wixted, 2011). In addition, atrophy
in bilateral temporal white matter close to the structures involved
in memory formation including the hippocampus, entorhinal cortex,
and amygdala has been consistently combined with AD pathology (Li
et al., 2012).

Recent studies have suggested the involvement of widely dis-
tributed cortical network and the importance of its interactive roles

Fig. 5. ROC curves of MCI subjects classification to sMCI or pMCI using observed RAVLT and estimated RAVLT based on different methods (ENLR, RVR, KRVR). The learning was done
using all subjects (AD, MCI and NC) and the evaluation was done on pMCI and sMCI subjects (median within 100 runs). Left: RAVLT Immediate, Right: RAVLT Percent Forgetting.
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in the memory process (Jeong et al., 2015). In addition to temporal
lobe, prefrontal and parietal cortical areas have been associated with
episodic memory (Squire and Wixted, 2011; Brem et al., 2013; Jeong
et al., 2015).

Theinvolvementofangulargyrus,locatedininferiorparietalcortex,
in retrieval has been confirmed by functional neuroimaging studies
(Kwok et al., 2012; Sestieri et al., 2011) and is also reported in a review
study by Jeong et al. (2015). The insular cortex has been related with
taste memory processes but may have a role in interaction with amyg-
dala in non-taste recognition memory as well (Bermudez-Rattoni,
2014). Insula and angular gyrus are also parts of the default network
(including also anteromedial prefrontal cortex, the precuneus, and the
medial temporal lobe) which has been discovered to be disrupted in
AD (Jeong et al., 2015). Our findings of the brain regions best predicting
learningandretrieval inRAVLTareinlinewithpreviousresearchbased
on neuroimaging data of neurobiological changes associated with dis-
orders causing dementia and normal memory processes. Specifically,
our results indicate that in addition to well-known hippocampus and
amygdala, also middle temporal gyrus, angular gyrus and insula are
also associated with verbal episodic memory tasks.

Furthermore, our results suggest that a wide network of brain
regions is involved in memory processes. While making interpreta-
tions about importance of brain regions for prediction is certainly
possible with sparse linear regularization based models such as
ENLR, this does not mean that ranking the importance of different
brain regions in the machine learning analysis of whole brain imag-
ing data would be straight-forward. Even within the same machine
learning algorithm, different complementary measures of variable
importance can be derived. For example, we have provided two sep-
arate and complementary indicators of voxel/region importance in
Fig. 2 and Tables 3 and 4. Also, it is important to bear in mind that
the weights in machine learning models have a different meaning
than the parameter estimates in the forward models produced by a
standard mass-univariate analysis (Haufe et al., 2014).

The accuracy of estimated RAVLT measures improved little by
adding age-correction procedure in the learning process(although the
improvement was statistically significant by run-wise applied permu-
tation test). Studies of normal memory processes have indicated that
subject demographics, and especially age, have considerable effect
on the RAVLT cognitive test in the cognitively normal individuals
(Magalhães and Hamdan, 2010; Malloy-Diniz et al., 2007) and at the
same time, aging changes the brain structure Good et al. (2001). How-
ever, in our experiments removing the normal aging effect resulted
only inslight improvement intheestimatedRAVLTscores.Wehypoth-
esize that this was due to a large effect of AD pathology on both MRI
and RAVLT that completely overshadows the effects of normal aging.

In the current work, we explored the utility of estimated and
observed RAVLT measures for predicting conversion to AD in MCI
subjects. The AD conversion prediction in MCI patients has attracted
increasing interest recently, due to an opportunity for an early-stage
AD diagnosis (Eskildsen et al., 2013; Wee et al., 2013; Gaser et al.,
2013). Previous studies have assessed the predictive value of different
neuroimaging techniques in AD conversion prediction. In our previous
work (Moradi et al., 2015), we developed a MRI based biomarker by
using MRI data and age information which resulted in cross-validated
AUC of 77% for discriminating pMCI and sMCI patients, we further
obtained an AUC of 90% by integrating MRI biomarker with neuropsy-
chological test results. In another recent study by Eskildsen et al.
(2015), an AUC of 76% was reported for predicting AD in MCI patients
based on structural MRI and age information using machine learning
algorithms. Moreover, the prediction of AD in MCI patients using dif-
ferent biomarkers was recently studied by Dukart et al. (2015). Within
different single biomarkers including sMRI, positron emission tomog-
raphy (FDG-PET) and apolipoprotein (APOE), the highest performance
was achieved by FDG-PET (AUC = 82%). They also showed that inte-
grating several biomarkers significantly improved the AD conversion

prediction in MCI patients (AUC = 84%). In overall, the reported accu-
racies based on single neuroimaging modalities in recent studies
varies between 70–80% (Moradi et al., 2014; Eskildsen et al., 2015;
Salvatore et al., 2016), however, studies based on combination of
several data sources such as neuroimaging, genetics information and
cognitive test results, have been reported higher performance for
predicting AD in MCI patients (accuracy between 80–90%) (Moradi
et al., 2015; Dukart et al., 2015; Ritter et al., 2015). Although the
current work did not focus on the AD conversion prediction, the
achieved performance for predicting conversion to AD in MCI patients
based on both RAVLT Immediate (AUC = 0.75) and RAVLT Percent
Forgetting (AUC = 0.71) were comparable to the predictive perfor-
mance of neuroimaging biomarkers (Teipel et al., 2015; Salvatore et
al., 2016).Moreover, the analysis of longitudinal 3 years follow-up
assessments of RAVLT measures in MCI subjects showed a notable
decline in the RAVLT Immediate score and an increase in RAVLT per-
cent Forgetting in pMCI subjects while remaining relatively stable
for both scores in sMCI subjects. These findings reconfirm the diag-
nostic power of RAVLT for early diagnosis of Alzheimer’s disease as
reported elsewhere Estévez-González et al. (2003). Interestingly, the
estimated RAVLT scores were almost as good as the observed ones in
predicting conversion to AD indicating that structural brain imaging
representations of episodic memory displayed most of the essential
information in RAVLT for detecting AD pathology. However, the con-
version predictions improved when observed and estimated scores
were combined suggesting that the differential information contained
in these two types of scores might be useful for early AD diagnosis.

In summary, we designed a predictive model for analyzing the
association between RAVLT measures (learning and retrieval) and AD
related structural atrophy using MRI scans in a large ADNI dataset.
our experimental results indicated a strong relationship between
RAVLT Immediate and Percent Forgetting scores and the brain atro-
phy caused by AD. Moreover, both RAVLT Immediate and RAVLT
Percent Forgetting were found to be reliable for AD diagnosis and
reflect well the underlying AD pathology. However, we found that
RAVLT Immediate is more correlated with AD related brain atrophy
as well as it has a higher predictive accuracy for the AD conversion
prediction in MCI patients.
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Appendix A. Penalized linear regression

Linear regression models the response variable y as a linear
combination of the predictor variables x . The predictor variables
x ∈ R

N×D are MRI based gray matter densities, where N is the number
of subjects and D is the number of voxels, i.e., the dimensionality of
MRI data, and the response variable y is the RAVLT score. The linear
model is formalized as

yi = wT xi + w0 + 4i =
D∑

j=1

wjxi,j + w0 + 4i, (A.1)

where the index i refers to a subject, w and w0 are the model
parameters and 4i is the error term. The ordinary least squares (OLS)
estimation determines the model parameters by minimizing the
residual sum of squares (RSS):

RSS(w) =
N∑

i=1

(yi − w0 − w1xi1 − . . . − wDxiD)2, (A.2)

However, when the number of predictors is larger than the num-
ber of subjects (D � N), the OLS does not provide a unique solution.
Moreover, a high number of predictors may cause the curse of
dimensionality, i.e., the lack of generality caused by over-fitting. For
avoiding the curse of dimensionality, many variable/feature selec-
tion methods have been proposed in neuroimaging data (Tohka et al.,
2016; Mwangi et al., 2014). Among them, the regularization methods
have gained considerable attention (Miller, 2002). Similarly to OLS-
based parameter estimation, penalized linear regression estimates
the model parameters by minimizing RSS, but it also shrinks some
of the regression parameters towards zero. In this way, it performs
simultaneously parameter estimation and variable selection. Here,
as the dimensionality of MRI data is high (D = 29852), we used
penalized least squares approach with the elastic net penalty (Zou
and Hastie, 2005). The elastic net penalty is a weighted average of
the LASSO penalty

∑D
j=1 |wj| (Tibshirani, 1996) and the ridge penalty∑D

j=1 w2
j . The LASSO penalty acts as a variable selector by forcing

many parameters to have zero values leading to a sparse solution.
In neuroimaging applications in which many relevant variables are
correlated with each other, LASSO tends to select only one of them
while ignoring other correlated variables albeit they would be rele-
vant (Carroll et al., 2009). This is obviously not desired. In contrast,
ridge regression penalty shrinks the coefficients of the correlated
variables towards each other and assigns similar coefficients values
to them. However, ridge regression does not result in a sparse solu-
tion, with many zero parameters. However, a combination of these
two penalties leads to a sparse model combined with the grouping
effect, providing a good solution in neuroimaging applications (Zou
and Hastie, 2005; Carroll et al., 2009). In ENLR, the model is solved
by minimizing the elastic net cost function:

1
2N

N∑

i=1

(yi − w0 − xT
i w)2 + k[(1 − a) ‖w‖2

2 /2 + a‖w‖1], (A.3)

where the regularization parameter k is found by cross-validation
and a ∈ [0, 1] defines the compromise between ridge and lasso
penalties. In our experiments, we selected a = 0.5 to give equal
weights for the ridge and lasso penalties. A limitation of the elas-
tic net penalty is that it does not consider spatial relationships of
the voxels and neighboring voxels are not required to receive similar
weights. While there are regularizers that take into account the spa-
tial relationships among the voxels, such as GraphNet Grosenick et
al. (2013), these come with more parameters to select, longer com-
putation times and have found to produce more variable estimate of

the generalization error in the case of dementia related classification
tasks Tohka et al. (2016).

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org10.1016/j.nicl.2016.12.011.
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