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ABSTRACT

Motivation: Distinguishing direct from indirect influences is a central
issue in reverse engineering of biological networks because it
facilitates detection and removal of false positive edges. Transitive
reduction is one approach for eliminating edges reflecting indirect
effects but its use in reconstructing cyclic interaction graphs with
true redundant structures is problematic.

Results: We present TRANSWESD, an elaborated variant of
TRANS:tive reduction for WEighted Signed Digraphs that overcomes
conceptual problems of existing versions. Major changes and
improvements concern: (i) new statistical approaches for generating
high-quality perturbation graphs from systematic perturbation
experiments; (i) the use of edge weights (association strengths)
for recognizing true redundant structures; (i) causal interpretation
of cycles; (iv) relaxed definition of transitive reduction; and
(v) approximation algorithms for large networks. Using standardized
benchmark tests, we demonstrate that our method outperforms
existing variants of transitive reduction and is, despite its conceptual
simplicity, highly competitive with other reverse engineering
methods.
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1 INTRODUCTION

Reverse engineering of cellular networks has become a key
methodology in analysing and exploiting the increasing amount of
data generated by omics technologies (Gardner and Faith, 2005;
Hecker et al., 2009; Markowetz and Spang, 2007). Whereas the
structure of metabolic reaction networks could be reconstructed—
mainly from genomic information—in great detail for many
organisms (Oberhardt et al., 2009) knowledge of the topology
of regulatory and signal transduction networks is in many cases
still incomplete and wiring diagrams even of ‘canonical signalling
pathways’ may differ in different cell lines (Saez-Rodriguez e al.,
2009). The ultimate goal of reverse engineering methods is the
identification of interactions between the involved players (genes,
proteins, etc.) by analysing data of systematic and controlled
perturbation experiments. The result is a network, in many cases
represented as a graph, which can be directed or undirected and
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may have signs and/or weights at its edges. Some algorithms deliver
refined representations such as Boolean networks (Akutsu et al.,
2003; Saez-Rodriguez et al., 2009), reaction networks (Durzinsky
et al., 2008) or differential equations (Nelander et al., 2008) but the
main result is still the underlying network topology.

A simple yet smart method for reverse engineering is based on
Transitive Reduction, a graph theoretical method (Aho et al., 1972)
whose potential for reconstructing regulatory networks was first
recognized by Wagner (2001). The basic idea is as follows: to
reconstruct a regulatory network with n nodes, one first measures
the state of the nodes in the wild-type and then performs at least
n perturbation experiments: in experiment i node i is perturbed,
whereas all other n—1 nodes are screened whether they changed
their state compared to the wild-type. If a perturbation in i affected
J, a directed edge from node i to j, denoted by i — j, is drawn. The
complete set of these observed effects in all perturbation experiments
yields the perturbation graph. Each edge in the perturbation graph
reflects either a direct or an indirect effect of one node upon another.
The next step deals with a central issue in network reconstruction,
namely identification and removal of edges that represent indirect
effects. Transitive reduction as used by Wagner (2001) aims at
finding the minimal (most parsimonious) subgraph that can explain
all effects seen in the experiments. Transitive reduction in its most
general form allows removal and addition of edges to find the
minimum graph (Aho et al., 1972). However, in the context of
network reconstruction, one usually focuses on the special case
where edges may only be removed, i.e. where one searches for a
minimal subgraph explaining the perturbation graph [also known as
minimum equivalent graph problem (Berman et al., 2009; Moyles
and Thompson, 1969)]. Herein, we only consider transitive reduction
based on edge removals. Wagner (2001) determined the minimal
subgraph from the perturbation graph by removing all edges i — j
for which a (simple) path starting in i and ending in j (not using
i—j) can be found, assuming the effect of i on j to be indirect,
thus explainable by the path. The resulting graph is the transitive
reduction of the perturbation graph. A simple example is depicted
in Figure 1a. Every acyclic graph has a unique transitive reduction
(with a minimal number of edges; Aho et al., 1972) explaining all
measured perturbation effects.

The method proposed by Wagner (2001) is easy to implement but
has some drawbacks that might be the reason for its rare application.
First, transitive reduction as described above does not consider
the full amount of information that is available from perturbation
experiments, even when considering only qualitative observations.
If a node shows a significant response to a perturbation, one can at
least classify the measured effect as ‘up’ or ‘down’. This information
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Fig. 1. Examples of perturbation graphs and their transitive reductions.

See text for discussion and explanations.

can be taken into account by adding a sign label to each edge in the
perturbation graph, which becomes then a signed directed graph
(see Fig. 1b—a signed version of Fig. 1a). Transitive reduction can
then be performed in a similar way: an edge i —j is deleted only
if there is a path from i to j whose overall sign (product of the
signs of the involved edges) corresponds to the sign of this edge.
As can be seen in the example in Figure 1b, this may save edges
that were mistakenly deleted in the unsigned version. A second
drawback of the original approach of transitive reduction is the
risk to remove true edges, even in signed perturbation graph. The
radical pruning strategy of transitive reduction aims at minimizing
false positive (FP) edges in the reconstructed network but it may
lead to a high number of false negatives (FNs). This effect becomes
visible in networks comprising many (coherent) feed-forward loops
where a node may affect another node via direct (edge) and indirect
(path) links of the same sign. Since feed-forward loops have been
shown to occur frequently in gene regulatory networks (Shen-Orr
et al., 2002), this property can become a serious limitation of the
method. A third shortcoming is the prerequisite that the perturbation
graph is acyclic—a condition that is often not fulfilled in realistic
biological networks. If the perturbation graph is cyclic, the solution
of transitive reduction is, in general, not unique. As we will see,
negative cycles in signed perturbation graphs may bring about even
more complications for transitive reduction.

In this article, we will present TRANSWESD (TRANSitive
Reduction in WEighted Signed Digraphs), a new variant of transitive
reduction that seeks to overcome these problems. Generalizations of
transitive reduction to signed and cyclic directed graphs have been
proposed by other authors (Albert et al., 2007; Tresch et al., 2007).
However, our approach combines and extends existing variants and
differs in several key aspects (e.g. use of weighted perturbation
graphs, treatment of negative cycles and handling of elementary
versus non-elementary paths). We also discuss issues related to
the identification of significant perturbation effects, a key step in
generating the perturbation graph. Using standardized benchmark
tests, we demonstrate that our method outperforms existing variants
of transitive reduction and is, despite its conceptual simplicity,
highly competitive with other reverse engineering methods.

2 METHODS
2.1 Definitions

We summarize some standard terminology and notations from graph theory
as will be used herein. A graph G=(V,E) consists of a set V of nodes (or
vertices) and a set E of edges connecting pairs of nodes. In our case, nodes
may represent genes, mRNA, proteins etc., whereas edges correspondingly
represent physical or influential node-to-node interactions. We will only be
concerned with directed graphs (digraphs) where edges are directed (also
called arcs), i.e. e€ E is an ordered pair e=(u,v) of distinct nodes u,veV,
also denoted by u — v, where u is the start node and v the end node. A signed
digraph G=(V,E,¢) contains additionally a sign mapping ¢: E — {—,+}
indicating for each edge whether its start node has a promoting or inhibiting
effect on its end node. A directed edge (u, v) with sign s is denoted by u —v.
A weighted signed digraph G=(V,E,¢,y) contains additionally a weight
mapping y: E— N>o that assigns each edge a weight which we assume
here to be non-negative. An edge (u, v) with sign s and weight w is denoted
by u— V.

A walk in a digraph is an alternating sequence of nodes and edges
Vo, €1, V1, €2,...ey, vy starting and ending with node vy and v, respectively,
which fulfills the condition that nodes v;_; and v; are connected by the
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edge e;. In our terminology, a path is a walk with the additional condition that
no node occurs twice, i.e. a path does not contain a cycle. The latter property
is sometimes emphasized by calling a path ‘simple’ or ‘elementary’ and walks
are sometimes called non-elementary paths. Finally, an (elementary) cycle is
a closed walk with no repeated nodes except for the first and last node which
coincide. Concrete paths or cycles are written as alternating sequences of
nodes and arrows (edges), e.g. u— v— w, which gives a unique identifier
for a path or cycle if no parallel edges exist between the involved nodes.
A path with start node u and end node v is denoted by #=>v and may also
consist of a single edge u— v.

The length of a path/cycle is calculated from the weights of the involved
edges, e.g. by summing them up (X-metric). We also need another variant,
called MAX-metric, where the length of a path is the maximum weight of
all its edges. The sign of a path/cycle is obtained by multiplying the edge
signs (a signed digraph is, therefore, not equivalent to a weighted digraph
with positive and negative edge weights). A path from u to v with overall
sign s is denoted by u =, v. If this path has length d then we write u=>; 4v.

2.2 Workflow of the whole procedure

We start with a general outline of our algorithm.

Step 1: as explained in the introduction, starting point is a wild-type
experiment plus n perturbation experiments in each of which one of the n
nodes is perturbed and the resulting response of the other nodes is measured,
either in transient phase or in steady state (we assume the latter if not stated
otherwise). We denote the wild-type states with x° (x? denotes the wild-type
state of the i-th node) and assume that the measurements for each species
are normalized to the maximum value that has ever been observed for the
respective species, i.e. x?e [0, 1]. The vector of normalized steady states
measured in the k-th perturbation experiment (where node k is perturbed)
is denoted by x, i.e. x:‘ is the state of the i-th node in experiment k. With
pFe{—1,+1} we denote whether the pertubation in k forced a decrease (—1)
(e.g. by knockout or knockdown) or increase (+1) (e.g. by over-expression)
of the amount/activity of node k.

Step 2 (Section 2.3): for each node, we compare the unperturbed state
(xl(-)) to the measured states in the perturbation experiments (xf). Using an
appropriate threshold strategy, significant changes are identified and included
as signed edges k— i in the resulting perturbation graph.

Step 3 (Section 2.4): each identified edge in the perturbation graph is
endowed with a weight extracted from the measurements indicating the
association/interaction strength between the two connected nodes.

Step 4 (Section 2.5): the final step is the computation of the transitive
reduction using our novel TRANSWESD algorithm, which can handle
weighted signed digraphs that may also contain cycles. (Note that, in
principle, TRANSWESD may accept any perturbation graph, even if the
way to generate the graph is different from Steps 1-3.)

2.3 Generating the perturbation graph: thresholding

To decide whether a perturbation of k induces a significant effect on node i
(and is thus integrated as edge k — i in the perturbation graph) one can either
use correlation analysis of the entire data or only direct variation measures
quantifying the change of x; when perturbing x;. The correlation measure
of the entire data is beneficial for determining the strength of association
between nodes (see Section 2.4) but disadvantageous for detecting the
direction of interaction. We, therefore, make use of a direct variation measure
allowing us to detect sign and direction of edges. In the first place, we might
completely ignore the presence of noise and define the variation measure
for node pair (k, i) as A;" :=(x{-‘ 7xlo)pk (p* is the indicator of perturbation
direction as described above). Initially, we may introduce edges

k—_i ifA¥<0 and k— i ifa¥>0 1)
yielding a signed perturbation graph. Clearly, this graph will capture true
direct as well as indirect effects. However, since experimental data are subject
to stochastic fluctuations due to measurement and intrinsic noise, many non-
Zero Af, and thus edges k — i would not correspond to true causal influences,

neither direct nor indirect ones. A naive use would thus lead to a very dense
perturbation graph (in the extreme case, all nodes are connected to each
other), which essentially contains only little meaningful wiring information
of the real graph. To reduce the number of FP edges—in particular, those
that do not have a causal explanation in the true network—we introduce two
threshold parameters for the magnitude of the variation measure \Aff |. This
is motivated by the assumption that most of the true interactions produce
detectable experimental signals that can be distinguished from fluctuations
due to noise and, in some cases, indirect interactions. Consequently, true
interactions that produce insufficient variations cannot be reconstructed from
the data.

The threshold ¥ is introduced to set a required overall minimal magnitude
of the variation measure when searching for edges. It is kept constant for all
pairs of nodes. The second threshold §; accounts for the individual dynamic
nature of each node and is derived from the variance of node’s i entire
perturbation profile excluding the perturbation of node i itself.

‘We thus introduce an edge from node & to i in the perturbation graph only
if the two conditions, (i) IA{-‘\ > and (ii) |A§‘| > B;, are met. We compute
Bi:=To; with variance scaling factor I and SD o; of gene x;. Notice that
depending on the chosen values for ¥ and I" and the fluctuations of node x;,
we either have ¥ > §; or ¢ < ;. Benchmark tests (Section 3) indicated that
Condition (i) or (ii) alone leads to weaker prediction performance (results not
shown). Employing only Condition (i) neglects individual node dynamics.
For instance, edges of nodes that have small absolute variations due to
suppression by other nodes are likely to be missed. Condition (ii) alone
is error prone to experimental data from dense graphs, which raises the
probability to measure noise. Magnitudes for both parameters ¥ and I' may
be estimated from perturbation data of known interaction graphs, which
should be functionally close to the investigated system. Alternatively, if the
noise distribution function is known, it is straightforward to calculate the
thresholds for a given P-value.

A suitable threshold strategy for obtaining a high-quality perturbation
graph from noisy data is an important step, since there is a critical edge
density for each graph up to which transitive reduction-related algorithms
work well in terms of pruning result and computational time. Whereas edges
reflecting indirect effects may be filtered by TRANSWESD at a later stage
(see below), edges indicating neither direct nor indirect (thus noise) effects
cannot be corrected and will lead to reconstruction errors. On the other hand,
the number of FNs is also to be minimized as they cannot be recovered
by transitive reduction. An example illustrating our thresholding strategy
is given in the Supplementary Material and we note that our approach has
some parallels to noise learning models as proposed by Yip et al. (2010) for
filtering non-deterministic effects. The main difference is that our approach
does not assume a certain kind of noise distribution function.

2.4 Quantifying the strength of associations

For our variant of transitive reduction, we need to assign weights to the signed
edges in the perturbation graph that quantify the strength of the directed
relationships. Hence, for each ordered pair of nodes (u,v), we determine
the pairwise conditional correlation (p,,,) from the u-th and v-th element
of the measured state vectors x%,x',x2, ... x*~1 x¥*1 ... x" (cf. Rice er al.,
2005). pu,y is computed as linear correlation coefficient where we exclude
the data from the v-th experiment because we want p, , to quantify the
dependency of v on « and the external perturbation in v cannot be explained
by u. Accordingly, p,,, is not symmetric.

For each edge u— v captured in the perturbation graph P derived in
Section 2.3, we assign its weight to be 1 —|p,. |, i.e. the smaller the weight
the higher the association. This weighting scheme, where an edge weight
indicates the ‘distance’ between the behaviours of two nodes, is somewhat
contrary to other works where a large weight usually indicates a high
association. However, we need this representation because we will employ
shortest path calculations to find paths with highest overall associations
(lowest overall weights).
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It sometimes happens that s 7 sgn(p,,,) indicating that the response of v
upon perturbing u does not reflect the sign derived from the correlation
analysis. It appeared nevertheless useful to keep this edge but with
high weight (close to the maximal possible weight 1) indicating a weak
association. We also tested other weights, e.g. the change of v when
perturbing u, |x}/ —x?l, but it turned out that the algorithm performs better
with p,,,, simply because it evaluates many (n) experiments. On the other
hand, for deciding whether an edge u— v exists at all in P (and for fixing
its sign), the effect a perturbation in « induces in node v appeared to be better
suited than conditional correlation (Section 2.3).

2.5 Transitive reduction with TRANSWESD

At this stage, we have obtained a weighted, signed and directed perturbation
graph P=(V,E,@,y), where we assume that its edges display direct or
indirect relationships. Keeping edges capturing indirect effects would result
in FP predictions and transitive reduction seeks to remove FPs to obtain true
negatives (TNs)—but with the risk to remove true positive (TP) predictions
resulting in FNs. Starting with simple and ending with cyclic perturbation
graphs, we generalize the idea of transitive reduction step by step and explain
our extensions in TRANSWESD that seek to minimize shortcomings of
previous variants.

2.5.1 Transitive reduction in signed acyclic graphs ~ Wagner (2001) used
transitive reduction to prune unsigned acyclic perturbation graphs. It is
straightforward to generalize this procedure to signed acyclic perturbation
graphs P (at this point we neglect the weights). The basic idea is to check
for each edge u— v in P whether there is an elementary path u=>;v not
involving this edge, which can then be seen as an explanation for the observed
influence u— v allowing one to remove this edge. For this purpose, in a
first step we compute for each pair of nodes («, v) the shortest positive and
shortest negative path telling us whether a positive and/or negative path
from u to v exists at all. As we are only interested in the existence of paths
we may use arbitrary edge weights, e.g. setting all to one, and arbitrary
metric. We may employ the double label algorithm, a generalized version
of the Dijkstra algorithm for computing shortest positive/negative paths in
Y-metric. It delivers exact results in polynomial time if the signed graph is
acyclic (Hansen, 1984; Klamt and von Kamp, 2009). We store the lengths of
the shortest positive and negative paths in a matrix S and S~, respectively.
For example, S*(u,v) stores the length of the shortest positive path from u
to v. An infinite length (inf) is stored if no path exits.

In a second step, we prune P to the minimal graph Pzg (minimal with
respect to number of edges) satisfying

S}'R(u, v) <inf for all removed positive edges u— v in P and
(@)

Srr(u,v) < inf for all removed negative edges u— _v in P

In acyclic signed graphs, the unique solution can easily be found with
the help of ST and S~: We check for each edge u— ;v whether we can
find a successor z #v of u such that an edge u— 4z and a path 7=, v exist
fulfilling the sign condition ¢-7=s (this path exists if $’(z, v) <inf). If so, we
can conclude that the influence u — ;v can be explained by the augmented
path u—,z=>, v, which is ensured to be elementary as we have an acyclic
graph. We, therefore, remove u — ;v and continue with the next edge. Note
that it is not necessary to re-compute the shortest paths lengths S* and S~
after removal of edge u— v: in all paths using this edge, we can replace the
latter by u— 4 z=>,v because, again, in acyclic graphs it is ensured that the
resulting path is still elementary and thus a valid explanation. Eliminating all
removable edges, we obtain the unique minimal equivalent graph Pzg which
produces the same perturbation effects as the original graph P. Transitive
reduction in unsigned graph uses the same algorithm but neglects the sign
condition.

Our definition of transitive reduction differs in some aspects from the
version used in Albert et al. (2007). First, only elementary paths (not
involving cycles) are considered as possible explanations for edges. Second,

instead of Condition (2) Albert et al. follow the original (stronger) definition
of transitive reduction, namely that

S}'R (u,v) < inf wherever ST (u,v) <inf and 3
Srr (u,v) <inf wherever S~ (u,v) <inf )

‘We argue that Condition (3) can be relaxed to (2), since in our application
of transitive reduction there is no necessity to preserve a path u=; v between
two nodes u and v if no edge u —; v (i.e. neither a direct nor an indirect effect
of u on v) could be deduced from the experiments. However, as long as we
consider acyclic graphs both definitions will nevertheless lead to the same
result because then (3) follows from (2).

The example in Figure 1b shows that accounting for the edge signs avoids
removing edges that cannot be explained: in contrast to Figure 1a (unsigned
perturbation graph) the edge A— _B is kept because the path A—,C— B
cannot explain the negative sign of this edge.

2.5.2 Transitive reduction in signed and weighted acyclic graphs As
explained in Section 1, rigorous transitive reduction cannot detect redundant
structures such as coherent feed-forward loops implying a possibly large
number of FNs. An attenuated pruning strategy could be achieved by
considering also edge weights quantifying the overall strength of the
associations. We now allow the removal of an edge (and consider it as
an indirect influence) only if its sign and also its weight can be explained
by another path. Condition (2) is thus generalized now demanding that the
pruned graph P7g should be minimal and satisfy

S}rR (u,v) <aw for all removed positive edges u— . ,, v in P and 4

S (u,v) <aw for all removed negative edges u—_ ,, v in P, @
with positive confidence factor « discussed below. For this purpose, we
now consider explicitly the edge weights based on conditional correlation as
derived in Section 2.4. As in the previous section, we compute the shortest
path lengths ST and S~ in P. For quantifying the overall weight (length) of
a path, we use MAX-metric, i.e. an influence path is as good as its ‘weakest’
edge having the largest weight and thus the lowest association. In acyclic
graphs, we can again use the double label algorithm adapted for MAX-metric.

In order to fulfill (4), the transitive reduction step has to be modified
as follows: we remove an edge u—,, v if we can find a successor z #v
of u such that an edge u— 4z and a path z=> 4 v exist fulfilling the sign
condition g - =s and now additionally the weight condition max(c,d) <o -w.
The positive factor a controls the overall association strength a path must
have in order to explain a given edge. Normally, one will choose a value
close to one (we use 0.95) but one may also prefer smaller values, demanding
significantly larger associations in all edges of a path to explain an edge. In
the extreme case « =0, we have Prg =P. If o> 1 one would allow edges in
a path to have lower associations than of the edge the path explains. With
a=inf Condition (4) coincides with Condition (2) and we were thus back
at transitive reduction in unweighted graphs. Again, having an acyclic graph
ensures first that the augmented path u— 4 z=>,4 v yielding u=>g max(c,a) v
is elementary, i.e. z=>; 4 v does not contain edge u— 4 . z, and is thus a valid
explanation for u — ,, v and, second, that we do not need to recompute S +
and S~ after removal of an edge. Therefore, similar as in the previous section,
if Condition (4) is fulfilled for the removed edges, it will also be fulfilled for
all other edges.

Figure 1c demonstrates that an edge is kept if alternative paths cannot
explain its high association strength. In contrast to Figure 1b, A—_ 3D is
retained because the path A—_ ¢ 6B— 4 5D has length 0.6 and is thus not
a valid explanation when choosing o < 1 (but it would be with « > 2).

We note that the triangle reduction scheme presented in Rice et al. (2005)
uses an analogous version of the procedure described in this section; however,
this scheme was only applied to triangles, i.e. an edge u — v was removed
only if two consecutive edges u—z— v explain it.

2.5.3 Transitive reduction in signed and weighted cyclic graphs ~ We now
discuss the most general case where the perturbation graph may contain
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cycles—an inherent property of many cellular networks. Feedbacks may
not only lead to complex dynamic network behaviour, they also hamper
the inference of causal relationships. It is thus not surprising that also
transitive reduction becomes more complicated, not only in the structure
of the algorithm but also in terms of computational complexity.

As in the acyclic case, our procedure TRANSWESD starts with the
computation of shortest path lengths ST and S~. Here, we face an
intrinsic algorithmic problem: in graphs containing negative cycles this
problem is known to be NP-complete for elementary paths (Lapaugh and
Papadimitriou, 1984). Fortunately, one can check with low computational
demand whether a negative cycle exists or not. If not, we may again
use the double label algorithm computing exact results in polynomial
time. Even if negative cycles exist, it turned out that exact shortest
path computation is often possible in realistic cellular networks with
several hundreds of nodes (such as the gene regulatory network stored
in RegulonDB) by using a depth first search or special variants thereof
(Klamt and von Kamp, 2009). The latter article also describes a
polynomial algorithm that produced reasonable approximations in large-
scale networks.

A second technical issue concerns the interpretation of causality
in negative cycles. In Figure 1d, we see a small example of a
perturbation graph containing the negative cycle C— 4 g3D—_ 04C. The
key question is whether we consider the negative non-elementary path (walk)
A— 4 02C— 4 03D—_ 04C— 4 03D— 4 03B as a valid explanation for the
negative influence A—_ B we observe when perturbing A. With o <1,
sign and length of this walk would actually allow that. Tresch et al. (2007)
considered walks as possible explanations and although Albert et al. (2007)
did not consider weights, their approach is also based on this interpretation.
This brings the advantage that one only needs to compute the shortest
positive/negative walks, which is computationally easy [e.g. by an adapted
Floyd-Warshall algorithm (Albert ez al., 2007; Tresch et al., 2007)] in contrast
to shortest elementary paths. However, we think that the negative edge
between A and B should be kept for the following reasons: we assume
that the network is in steady state when it is perturbed in A (without loss
of generality we assume an over-expression in A). The negative edge in
the perturbation graph in Figure 1d indicates that we measured a decreased
activation level of B. From system theory (Maurya et al., 2003), one can
prove that the graph without this edge cannot show a decrease in B upon
constitutive over-expression of A if we measure the initial response or the
steady-state response in B. The initial response in a network is governed by
the sign of the elementary paths and since removal of edge A— _ (. ¢B would
imply that only a positive elementary path from A to B remains the initial
response would be positive in B (simply speaking, the effect of the positive
path cannot be overtaken by the effect of the negative feedback induced by
this path when looking at the initial response in B). Also in steady state, B
cannot exhibit a decreased activity (compared to unperturbed wild-type) if
the negative edge from A to B is removed. If only positive elementary paths
from A to B exist, a negative feedback can induce an opposite effect in steady
state only in conjunction with other structural requirements including positive
feedbacks (Maurya et al., 2003). Albeit a negative effect in B might be
observed transiently, we generally consider non-elementary paths containing
a negative cycle as not sufficient for explaining an edge; only elementary
paths with appropriate sign and weight are accepted. The negative edge from
A to B is, therefore, kept in Figure 1d.

A third problem that may arise in cyclic graphs is non-uniqueness. An
advantage of our approach is that edge weights eliminate many possible
sources of non-uniqueness, in particular those related to positive cycles.
Figure le depicts an unweighted perturbation graph containing a positive
cycle. The positive edge from A to B could be explained by the positive path
A—; C—;B. On the other hand, the positive edge from A to C could be
explained by the positive path A—_ B—; C. Methods based on unweighted
perturbation graphs as in Albert ef al. (2007) will thus remove one of both
edges and keep the other. The choice depends on the edge processing order.
With additional information on association strengths (edge weights) a unique

solution can often be found with & <1 as shown in Figure 1f: we would
remove the edge from A to B as it can be explained by the positive path from
A to C via B whose overall length (in MAX-metric) is shorter than that of
the edge whereas the edge from A to C would be kept.

However, even with edge weights non-uniqueness may occur as illustrated
in Figure 1g. In a first step, we may remove edge A— 0gC (with
a=0.95 explainable by path A—_ o5B—_ 06C or, alternatively, by
A— 4 035D— 4 04B—406C). In a second step, we may either remove
edge A— 5B (explainable by A— 935D— 1 04B) or edge D—4 4B
(explainable by D—_ g 3E— 92C—_ 0.25B). We can only remove one of
both and then have to stop pruning because otherwise no explanation for
the removed edge A— 4 (gC would remain in the network and thus violate
Condition (4). Hence we may end up with two possible minimal solutions
for the reconstructed graph. In general, such case can only occur if for a
given edge at least two explaining paths exist and, again, if the network
contains negative cycles. In our algorithm, we use a greedy strategy, i.e. in
each iteration we try to remove the explainable edge with largest weight
(lowest association strength) fulfilling Condition (4).

Accordingly, we proceed as follows: after computing ST and S, we
use these matrices to detect potentially explainable edges. A potentially
explainable edge u—>, v is one where we can find a successor z#v of
u such that an edge u—, .z and a path z=>, 4v exist fulfilling the sign
condition ¢g-t=s and the weight condition max(c,d) <a-w. In contrast to
acyclic networks, it may happen that the augmented path u— 4 . z2=>;4v is
not elementary because the path z=>; ;v may run over u thus introducing
a cycle in u. Whether a candidate edge is really explainable will be
seen when recalculating the path lengths after removal of this edge (see
below). All potentially explainable edges are ordered with respect to their
weights (highest first) and one now iterates over these edges in descending
order. Hence, in Figure 1g, we would first remove A—_ 0gC and then
A— 05B and we have to keep D— ¢4B. This example illustrates also
a fourth issue that we have to account for in cyclic perturbation graphs: in
principle, D— 4B could be explained by D—_ g3E— 02C—_ 025B.
However, as mentioned before, removal is not allowed because then influence
A— 08C originally contained in P would not be explainable anymore
in the pruned graph and Condition (4) would be violated. Thus, in cyclic
graphs, if an edge might be explainable by a path we cannot expect that
all other elementary paths remain intact when removing this edge. In our
example, the original edge A— 4 ¢gC is not explainable anymore by the
path A— 035D— 1 04B— 4 06C if we removed edge D— 94B. The
explanation of the latter, D— _ g 3E— 4 9 2C— _ .25B, cannot be embedded
in the path A— 4 035D — 4 04B— 4 0.6C since the resulting path would not
be elementary. Again, negative cycles cause such complicated structures.
Before cutting an explainable edge, we therefore have to check whether
after its removal the shortest path lengths SI+ and S still fulfill Condition
(4) in the resulting intermediate graph P;.Accordingly, we have to recalculate
the shortest signed paths. As this will be the most time-consuming part
of the whole algorithm we may try to simplify this step, e.g. by fast
computation of approximations of the shortest path lengths mentioned above.
Furthermore, one may completely ignore the recalculation step (i.e. use the
original ST and S~ throughout all iterations) and check after the whole
procedure whether Condition (4) is violated in the pruned graph. In fact,
as we will see in Section 4, in many realistic applications no or only few
errors are introduced if o<1 and (4) therefore holds. If not, one may
accept a low number of errors or re-introduce edges of node pairs (u,v)
violating (4).

Using the exact algorithm, the resulting pruned graph fulfills Condition
(4) but is not necessarily unique or minimal with respect to the total number
of edges. However, in the Supplementary Material it is shown that the pruned
graph is usually unique and minimal with respect to a partial order on a sorted
list of edge weights. Furthermore, TRANSWESD also includes the special
cases of acyclic weighted/unweighted perturbation graphs as discussed in
previous sections: if no (experimentally derived) weights are available one
would simply set all edge weights to 1 and «=inf. In those acyclic cases,
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the solution is also minimal with respect to the total number of edges as in
the original definition of transitive reduction.

A pseudo-code version of the TRANSWESD algorithm is given in the
Supplementary Material and an implementation has been integrated as API
function in our MATLAB toolbox CellNetAnalyzer (Klamt et al., 2007).

3 RESULTS

Using the developed reverse engineering methodology presented
herein, we took part in the fourth challenge of the Dialogue of
Reverse Engineering Assessments and Methods (DREAM4) on in
silico gene network reconstruction. The DREAM initiative offers a
platform for objective assessment of rivalling methods based on in
silico data providing a realistic scenario for high-throughput gene
expression profiling and reconstruction of gene regulation networks
(Marbach et al., 2009; Stolovitzky et al., 2007, 2009). From the
DREAM4 challenge, we present the results of our method for the
dataset Insilico_Size_100 subchallenge, which can be downloaded
from the DREAM website (http://wiki.c2b2.columbia.edu/dream/
index.php/The_ DREAM_Project). Based on 5 sub-networks of 100
nodes sampled from gene networks of Escherichia coli and yeast,
realistic kinetic models with randomly selected parameters were
generated and simulated with GeneNetWeaver (Marbach et al.,
2009) using stochastic differential equations. For reconstructing
these networks, in silico measurement data were provided containing
noisy steady-state mRNA expression levels of wild-type and single-
gene knockout and knockdown experiments as well as time-series
data. The gold standards of the five networks were provided after
announcing the results of all submissions and we can thus compare
our computed results to the real networks.

For each network, we first generated the perturbation graph as
described above using the wild-type and knockout steady-state
data. The two required parameters were trained from the DREAM3
challenges. Edge weights were computed as conditional correlation
coefficients from knockout and knockdown data. The results were
very similar when using only the knockout data. The provided
time series data were not used at all. We then applied transitive
reduction with TRANSWESD to the generated perturbation graphs
yielding the final reconstructed graph. Found edges were sorted
according to their weight required for performance analysis [relevant
for AUROC (area under the receiver operator characteristics curve)
and AUPR (area under the precision-recall curve) values; see
below]. For comparison with the method of Albert et al. (2007),
we used NET-SYNTHESIS (Kachalo ez al., 2008) to apply their
algorithm of transitive reduction in the unweighted version of the
perturbation graph. We also implemented the SOS (save our signs)
pruning procedure proposed by Tresch et al. (2007). This transitive
reduction method also operates on weighted graphs but differs from
TRANSWESD in two key aspects: (i) as discussed in Section 2
and analogous to NET-SYNTHESIS, this pruning approach accepts
non-elementary paths (containing negative cycles) for explaining
edges and (ii) the length of a path is computed as the product of
edge probabilities. Based on this metric, an edge z— v is removed
if there is a (elementary or non-elementary) path z=>v of the same
sign whose overall probability is larger than the probability of the
edge z— v. Actually, SOS pruning distinguishes two probabilities,
one for having a positive edge (p+) and one for having a negative
edge (p—) and the sign s of the edge is given by the sign of p4 —p_.
For the DREAM setting, we used the same perturbation graph

as for TRANSWESD and we assigned the conditional correlation
coefficients either with full amount to p (if s is positive) or to p—
(if s is negative), whereas the other probability was set to zero.

Table 1 summarizes the results for all five networks and indicates
for each inferred network the number of TP/FP/TN/FN edges,
the computation time and standard statistical metrics assessing
the quality of reconstructed networks. The latter were determined
by the DREAM evaluation scripts and include AUROC, AUPR
as well as pAUROC and pAUPR (probabilities that a given or
larger AUROC/AUPR value is obtained by random network link
permutation as estimated from 100 000 runs; see Stolovitzky et al.,
2009). As the AUPR value is more sensitive in sparse networks
it is especially useful to assess the quality of reconstructed gene
regulatory networks.

The P-values reveal that our method produces results that are
significantly better than randomly chosen networks. This even holds
for the perturbation graph alone indicating that an appropriate
thresholding strategy for classifying observed changes as relevant or
not delivers large amounts of meaningful information. Note that even
the raw perturbation graphs obtained by our thresholding strategy
outperform many solutions submitted to the DREAM4 challenge.
Applying TRANSWESD to the perturbation graphs increased the
AUPR value in four of five networks, whereas in one network
(2) AUPR decreased marginally. As expected, the desired removal
of FPs by transitive reduction is inevitably accompanied by the
removal of some TPs. This often implies a decrease in the AUROC
value. However, in most of the cases this reduction is about one
magnitude lower than the improvement in AUPR. The positive effect
of transitive reduction becomes more apparent when looking at the
P-values and at the numbers of true and FPs. In Network 3, for
example, the number of FPs could be reduced by 98 (from 291 to
193) sacrificing only 3 TPs (reducing the TPs from 85 to 82), which
results in a moderate increase of AUPR from 0.309 to 0.326 and a
more significant increase in the P-value from 6.23e-111 to 1.97e-
116. The effect of TRANSWESD becomes even more pronounced if
we take the same data but based on deterministic simulation without
any noise (these data were provided when releasing the results of
the challenge). For illustration, Table 1 displays the results when
taking noise-free data for Network 5. Without noise we can choose
small thresholds, e.g. # =0.005 and I'=0. As expected, AUROC and
AUPR are much higher already in the perturbation graph. But using
TRANSWESD we can further increase the AUPR (pAUPR) value
from 0.442 (6.82¢-102) to 0.567 (9.11e-132). The number of FPs
is reduced from 476 to 110, whereas the number of FNs increases
moderately from 33 to 61. Hence, a perturbation graph with high
quality increases the effectiveness of transitive reduction.

In Network 2, we observed a decrease of the AUPR measures
when applying TRANSWESD, although the number of FPs is
reduced by 71 compared to 12 additional FNs. Strikingly, when
announcing the results of DREAM4 challenge, it was mentioned
that Network 2 exhibited oscillations and that the knockout data
provided represented, therefore, transient and not steady-state data.
Under those conditions, some edges in the perturbation graph may
correspond to perturbation responses resulting from the action of
non-elementary influence paths (with negative cycles) leading to a
higher error rate of TRANSWESD.

As expected, the computational costs for generating the
perturbation graph are constantly low. In contrast, running times
for applying the full TRANSWESD algorithm varies for the
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Table 1. Benchmark results: Networks 1-5 correspond to the five networks of the Insilico_Size_100 sub-challenge of DREAM4 for which noisy simulation

data were provided for network reconstruction

DREAM4-network/reconstruction method TP TN FP FN AUROC (pAUROC) AUPR (pAUPR) Running Time
NETWORK 1 (100 nodes, 176 edges)

Perturbation graph 99 9495 229 77 0.873 (7.91e-35) 0.467 (6.23e-111) <355

Unweighted perturbation graph+ NET-SYNTHESIS 67 9650 74 109  0.856 (1.98e-32) 0.394 (7.96e-93) <5s

Perturbation graph + SOS pruning 97 9524 200 79  0.869 (2.78e-34) 0.465 (2.27e-110) <55

Perturbation graph + TRANSWESD 97 9562 162 79  0.870 (1.88e-34) 0.490 (1.97e-116)  full: 55; appr.: <5 (0 errors)
NETWORK 2 (100 nodes, 249 edges)

Perturbation graph 98 9371 280 151  0.779 (2.96e-39) 0.333 (7.20e-143) <55

Unweighted perturbation graph + NET-SYNTHESIS 51 9572 79 198  0.765 (7.70e-36) 0.257 (1.55e-103) <5

Perturbation graph + SOS pruning 94 9396 255 155 0.775(3.19¢-38) 0.329 (1.54 e-141) <55

Perturbation graph + TRANSWESD 86 9442 209 163  0.773 (8.77e-38) 0.327 (6.07e-140)  full: >5h; appr.: <5 (0 errors)
NETWORK 3 (100 nodes, 195 edges)

Perturbation graph 85 9414 291 110 0.844 (3.65e-51) 0.309 (1.21e-74) <5s

Unweighted perturbation graph+ NET-SYNTHESIS 52 9726 79 143 0.827 (1.08e-46) 0.282 (1.24e-67) <5s

Perturbation graph + SOS pruning 84 9447 258 111  0.842 (8.8e-51) 0.311 (4..24e-75) <5s

Perturbation graph + TRANSWESD 82 9512 193 113  0.844 (2.84e-51) 0.326 (7.38e-79) full: >5h; appr.: <55 (0 errors)
NETWORK 4 (100 nodes, 211 edges)

Perturbation graph 105 9377 312 106 0.835(1.51e-41) 0.374 (3.58e-88) <5s

Unweighted perturbation graph+ NET-SYNTHESIS 54 9592 97 157  0.798 (2.84¢-34) 0.292 (5.72e-68) <5s

Perturbation graph + SOS pruning 101 9422 267 110  0.829 (2.52¢-40) 0.374 (3.79¢-40) <35s

Perturbation graph + TRANSWESD 98 9485 204 113 0.827 (6.71e-40) 0.400 (1.44e-94) full: 23 min; appr: <5s (0 errors)
NETWORK 5 (100 nodes, 193 edges)

Perturbation graph 68 9238 469 125 0.774 (1.11e-29) 0.155 (1.78e-33) <5s

Unweighted perturbation graph + NET-SYNTHESIS 32 9607 100 161  0.747 (6.07e-25) 0.143 (1.92¢-30) <5s

Perturbation graph + SOS pruning 66 9298 409 127 0.769 (8.95e-29) 0.156 (1.14e-33) <5s

Perturbation graph + TRANSWESD 58 9384 323 135 0.758 (7.63e-27) 0.159 (2.32¢e-34) full: >5h; appr.: <5s (0 errors)
NETWORK 5 without noise (100 nodes, 193 edges)

Perturbation graph 160 9231 476 33 0.936 (4.13e-67) 0.442 (6.82e-102) <355

Unweighted perturbation graph + NET-SYNTHESIS 83 9660 47 110  0.910 (4.50e-60) 0.456 (3.09e-105) <S5

Perturbation graph + SOS pruning 136 9576 131 57 0923 (1.71e-63) 0.534 (5.55e-124) <55

Perturbation graph + TRANSWESD 132 9605 102 61  0.923 (2.06e-63) 0.567 (9.11e-132)  full: >5h; appr.: <5 (0 errors)

Shown are the reconstruction results for the (raw) perturbation graphs and for the pruned graphs obtained by applying NET-SYNTHESIS/TRANSWESD/SOS pruning to the
perturbation graph. Running times (Intel Core2 Quad CPU Q6700; 2.67 GHz) are given for NET-SYNTHESIS and for full and approximate algorithm (appr.) TRANSWESD.

Network 5 was additionally reconstructed with non-noisy simulation data.

different networks and may become extensive. In two networks
(1 and 4), we were able to apply the exact algorithm to the
perturbation graph in reasonable time. For the other networks,
we interrupted the exact algorithm after Sh and used the
approximate variant (approximate shortest path computation and
no recalculation of paths after edge removals), which in all
networks needed <S5s. Checking the approximation results for
errors [removed edges violating Condition (4)], we saw that
the simplified algorithm introduced no errors in any of the
five networks indicating that the simplified algorithm delivers
reasonable approximations in realistic gene regulatory networks.
However, when choosing « > 1 the number of errors may quickly
increase, especially if the network contains positive cycles (data not
shown).

We also computed the transitive reduction using the method
of Albert et al. (2007) implemented in NET-SYNTHESIS taking
as input the same perturbation graph as used for TRANSWESD
(without weights). As the computed result is non-unique and
very sensitive to edge ordering, we repeated the computation for
10 different (random) orderings and took the best result [in terms
of AUPR value; for fair comparison, we sorted the (remaining)
edges in the final graph also with respect to the edge weights taken
from the perturbation graph]. The algorithm is much faster than
full TRANSWESD (but comparable with the approximate version:

<5s in all networks) and removes much more edges resulting
in significantly less FNs. However, this comes at the price of
eliminating a relatively high number of TPs. The resulting AUPR
values are constantly significantly lower than in networks obtained
by TRANSWESD. It even turns out that all networks obtained by
NET-SYNTHESIS have (partially considerably) lower AUROC and
AUPR values than the perturbation graphs from which they were
produced. These results indicate that the attenuated pruning strategy
of TRANSWESD based on edge weights is highly advantageous
for reconstructing regulatory networks. Probably for this reason, the
SOS pruning strategy of Tresch et al. (2007)—which also operates
on weighted graphs—yielded better results than NET-SYNTHESIS.
However, the improvement in the AUPR value (if it increased the
AUPR value of the perturbation graph at all) is significantly lower
than for TRANSWESD except in the problematic case of the non-
stationary Network 2, where SOS pruning performed slightly better
but also led to a decrease of the AUPR value compared to the
perturbation graph. Generally, SOS pruning deleted significantly less
edges than TRANSWESD, which can probably be attributed to the
very conservative metric (multiplication of probabilities) used by
SOS pruning for quantifying path lengths.

As a proof of principle, with the results presented in Table 1,
our algorithm was ranked on place 3 (out of 19 submissions)
in the DREAM4 Insilico_Size_100 sub-challenge. This result is
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encouraging, especially due to the fact that our method needs only
a fraction of the simulation data that were provided.

4 DISCUSSION AND CONCLUSION

In this work we presented TRANSWESD, an elaborated variant
of transitive reduction, which is applicable to an extended class of
perturbation graphs, i.e. cyclic, signed and weighted digraphs. Major
changes and improvements concern: (i) new statistical approaches
for generating weighted and signed perturbation graphs; (ii) the
use of edge weights (association strengths) for recognizing true
redundant structures; (iii) causal interpretation of cycles; (iv) relaxed
definition of transitive reduction; and (v) approximation algorithms
for large networks.

The success of transitive reduction depends to a large extent
on the quality of the perturbation graph, and thus on the chosen
threshold method and (indirectly) on type and quality of the available
data. Whereas the quality is mainly governed by the signal to noise
ratio, the type of data (e.g. gene expression, protein level, protein
phosphorylation level, etc.) may have a profound effect on the
observable perturbation effects.

We presented a modular procedure for generating perturbation
graphs providing a basis of FP reduction methods. The main task of
this procedure is to filter causally explainable (direct and indirect)
effects from noise. Indirect effects may also be filtered during
this process although this will be the main task of FP reduction
methods such as TRANSWESD. Our workflow for generating the
perturbation graph consists of three sequential modules: (i) planning
and conducting perturbation experiments; (ii) generation of signed
perturbation graph from experimental data; and (iii) assign edge
weights (reflecting association strengths) from correlation measures.
Each module might be exchanged or adapted, e.g. if other types of
data are available. For example, certain interactions may not be
deducible from single perturbations or/and steady-state data and
may require special perturbation strategies in Module (i). Only
multiple knockouts, for instance, will detect a positive influence
of one node upon another if this influence is combined with others
via Boolean OR-logic. It is straightforward to integrate information
of single and multiple perturbations when deriving the perturbation
graph in Module (ii). Furthermore, data of the transient response
phase combined with suitable data analysis in Modules (ii) and
(iii) could also be considered when generating the perturbation
graph. Notice that depending on the specific perturbation data
(transient, steady-state, time-courses) other, possibly non-linear
correlation measures such as mutual information might be better
suited to quantify strengths of associations (Daub et al., 2004),
though linear measures appear to be appropriate if monotone
dependencies (unique edge signs) can be assumed. Perhaps the
most crucial step in generating the perturbation graph is to classify
a perturbation effect as significant (an edge is introduced) or
not. In contrast to the correlation measures, this classification
is based on one single value. Therefore, experimental replicates
would help much in providing a higher confidence level for the
edges. Generally, the amount of data needed by our approach for
generating the perturbation graph is considerable since all nodes
must be perturbed separately and the respective responses in all
other nodes have to be measured. However, the core procedure of
TRANSWESD is independent of the method employed for deducing

the perturbation graph, hence, for sparse datasets, other approaches
could be used.

Benchmark tests demonstrated that our two-threshold strategy
for generating the perturbation graph delivers networks that
already have a comparably high reconstruction quality on its own.
A similar observation was made by Yip et al. (2010): simple noise
models filtering noise from relevant perturbation effects had higher
accuracy than more elaborate differential equation models (though
a combination of both could slightly improve the results). The
authors did not address the removal of edges from indirect effects
but they mentioned it as a potential means to improve the results.
In fact, the benchmarks showed that our TRANSWESD algorithm
can significantly enhance the reconstruction quality by carefully
removing edges that are likely to be FP.

We have illustrated that transitive reduction of signed acyclic
graphs is, algorithmically, rather straightforward. However, even
in acyclic graphs, the use of edge weights may be highly
beneficial as it helps to avoid eliminating true redundant structures.
Pruning cyclic graphs raises several problems many of which
are tackled in TRANSWESD by using edge weights. We further
illustrated the question of interpreting causality that arises for
negative cyclic structure and propose to use elementary paths
as a solution to the cost of more computational time. By these
features, TRANSWESD outperformed available transitive reduction
algorithms in realistic and objective benchmarks. Another advantage
of TRANSWESD is that—if all edge weights are distinct—a
unique graph in terms of a partial order (defined on the edge
weights) will be delivered. It would be interesting to compare
TRANSWESD also with other pruning strategies, e.g. based on
partial correlations (de la Fuente et al., 2004) or data processing
inequalities (Margolin et al., 2006). The latter two were originally
developed for undirected graphs but an adaptation to directed graphs
could be possible.

In large networks with many cycles, TRANSWESD may become
inefficient as it requires the computation of shortest signed paths, an
NP-complete problem. We suggested two approaches for calculating
approximate solutions either by approximate computation of shortest
signed paths or/and by waiving the recalculation of shortest paths
when removing edges. In the benchmarks, approximate solutions
were identical to the exact solutions.

Similar as the method of Albert et al. (2007), TRANSWESD
may easily account for prior knowledge by assigning a weight
of 0 to known interactions. One may also introduce an upper
boundary for the number of edges that a path may contain if
this path is used to explain an edge. So far, TRANSWESD is
restricted to edge removal. When integrating multiple sets of
perturbation data, it might be beneficial to extend TRANSWESD
to the general case of transitive reduction, namely to also allow
edge insertion in a smart, data-driven manner. This needs further
investigations.

In summary, our presented reconstruction workflow requires
simple data and delivers edge candidates with relative high
probability to exist. Edges are identified with weights, signs
and directions providing additional crucial information for
designing new experiments and for testing new hypotheses.
TRANSWESD was presented as an essential component of
this workflow but it may independently serve as a general FP
reduction method in combination with other reverse engineering
methods.
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