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Abstract

Abstract Construction of confidence intervals or regions is an important part of statistical inference. The usual approach to
constructing a confidence interval for a single parameter or confidence region for two or more parameters requires that the
distribution of estimated parameters is known or can be assumed. In reality, the sampling distributions of parameters of
biological importance are often unknown or difficult to be characterized. Distribution-free nonparametric resampling
methods such as bootstrapping and permutation have been widely used to construct the confidence interval for a single
parameter. There are also several parametric (ellipse) and nonparametric (convex hull peeling, bagplot and HPDregionplot)
methods available for constructing confidence regions for two or more parameters. However, these methods have some
key deficiencies including biased estimation of the true coverage rate, failure to account for the shape of the distribution
inherent in the data and difficulty to implement. The purpose of this paper is to develop a new distribution-free method for
constructing the confidence region that is based only on a few basic geometrical principles and accounts for the actual
shape of the distribution inherent in the real data. The new method is implemented in an R package, distfree.cr/R. The
statistical properties of the new method are evaluated and compared with those of the other methods through Monte Carlo
simulation. Our new method outperforms the other methods regardless of whether the samples are taken from normal or
non-normal bivariate distributions. In addition, the superiority of our method is consistent across different sample sizes and
different levels of correlation between the two variables. We also analyze three biological data sets to illustrate the use of
our new method for genomics and other biological researches.
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Introduction

Confidence interval estimates of individual parameters are more

informative than simple point estimates and thus they are widely

used in statistical inference [1,2,3]. However, a joint confidence

region (CR) for two or more parameters is often needed in

practical applications. Classical applications include the joint CR

for two or more regression coefficients in a typical multiple

regression analysis [2]. More recently, there have been calls for the

use of the joint CRs to ascertain superior genotypes identified for

target environments in biplot analysis of genotype-by-environment

interaction [4,5] or to unambiguously infer about population

stratification in human admixtures [6,7,8,9,10].

Construction of the confidence intervals or regions for

parameters often assumes that the data are from a normal

distribution and they are balanced. For example, for bivariate

normally-distributed data, the required CR is an ellipse whose

shape depends largely on the level of the correlation between the

two variables. However, when the distribution is unknown or hard

to be characterized, several nonparametric procedures are

available for construction of the confidence intervals or regions.

Data peeling is a valuable approach to inspecting the structure of

multivariate data [11]. The predominant implementation of data

peeling is based on the convex hull of the data [12]. In convex hull

peeling, the outmost convex hull is identified, the observations in

the convex are assigned with index value of one and then these

observations are removed from the data. This procedure is iterated

but the index value is increased by one for each iteration until all

observation are assigned with indexes. A CR can be determined

by identifying the layer of peeling with the indexes higher than the

threshold (preset significant level). The peeling approach is further

developed by considering data depth [13,14] to address the

inquiry to the effectiveness of the procedure [11,15]. HPDregion-

plot [16] is another nonparametric method for constructing CR.

The fundamental behind the HPDregionplot is to use the contour

that embraces the desired proportion of the capacity based on the

two-dimensional kernel density estimates [17] as CR.

One of the key limitations with these parametric and non-

parametric methods is the inaccurate estimation of the coverage

rate by the CRs with the data of unknown distributions. All the

non-parametric methods are computationally demanding [18] and

some of them (e.g., HPDregionplot) are sensitive to small sample

sizes. In this paper, we introduce a simple distribution-free

geometry-based procedure that allows for constructing the CR for

two or more parameters when there is no knowledge about the

sampling distributions of the estimated parameters. We examine
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statistical properties of the new method through computer

simulations and illustrate its use through two biological examples.

Materials and Methods

Quantile for a single parameter
For a single parameter, the distribution-free approach to

computing a percentile is quite straightforward. Although different

definitions for percentiles exist [19], all the definitions would lead

to similar results given a large number of the random samples [20].

After obtaining estimates from individual random samples, three

basic steps are followed to construct a distribution-free confidence

interval: (1) to sort the N estimates in the ascending order; (2) to

search for the nearest ranks for pth percentile by picking up the

closest integers to N|p; and (3) to estimate the desired percentile

by linear interpolation between the two consecutive ranks.

Quantiles for multiple parameters
Although the above procedure considers one variable only, it

can be extended to the calculation of the CR simultaneously for

two or more variables. For simplicity, let us consider the case of

two variables. Let x and y be the two vectors of size (N|1). The

values in vector x are the Euclidean distances, in geometry,

between the observed points and the vertical coordinate (i.e., the

reference line at x~0). Similarly, the values in vector y are the

Euclidean distances between the observed points and the

horizontal coordinate (i.e., the reference line at y~0). Thus the

quantiles estimated for a single parameter are also the quantiles of

the relative distances between the observed points and the

reference line at x~0 or y~0. However, with unknown joint

sampling distribution of variables x and y, all potential reference

lines across the entire plane need to be considered while

constructing the distribution-free CR.

Here we describe a general geometry-based approach to

constructing the CR for any bivariate data. As mentioned earlier,

the confidence interval for one variable can be regarded as a

special case in which the reference line has been set to either

vertical or horizontal coordinate axis (x~0 or y~0). Now let us

consider the confidence interval for an arbitrary reference line (cf.

Figure 1). Since the positions of the observations in relation to a

reference line, i.e., the distances with directions, are used to obtain

the percentile, all reference lines have the same slopes but with

different intercepts. We simplify the derivation by assuming all

reference lines through the origin of the coordinates. The arbitrary

reference line is expressed as

Figure 1. The confidence region constructed for an arbitrary reference line. The simulated population is an equal-proportional mixture of

the observations sampled from two bivariate normal distributions which are given by N
{6:5

1:5

� �
,

1 0
0 1

� �� �
and N

{3:5
4:5

� �
,

2:25 0
0 2:25

� �� �
,

respectively. The two parallel dashed lines are the boundaries of the confidence region for the reference line with angle h. The black and gray open
circles are points outside and within the boundaries, respectively. The histogram shows the distribution of the distances with respect to the reference
line and the heights of the bars are the observed frequencies multiplied by 5.
doi:10.1371/journal.pone.0081179.g001
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y~ tan (h)x, ð1Þ

where h is the angle between the reference line and the horizontal

abscissa (see section A of Appendix S1 for detailed derivation). It is

also evident from Figure 1 that the relative position (distance) of

the ith observations (xi, yi) to the reference line as given in eq (1), is

calculated as (see section A of Appendix S1 for detailed

derivation),

di~
tan(h)xi{yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan (h)2z1

q : ð2Þ

Applying eq. (2) repeatedly for all N observations, we obtain the

relative positions that are stored in vector d. If the d vector is

viewed as a single variable, then the algorithm described earlier

can be directly applied to calculate the required quantiles. Here we

consider that the statistical inference is based on the two-tailed

tests. For a specified significance level a, the confident interval of a

single parameter is flanked by the observed lower- and upper-

boundaries, i.e., the (N|a=2)th and ½N|(1{a=2)�th percentiles.

In geometry view, the boundaries lh,1~dN|a=2 and

lh,2~dN|(1{a=2) represent the distances between two parallel

lines and the reference line to ensure that 95% of the total data

points lie within the boundaries and 5% outside the boundaries in

the direction hzp=2 (see Figure 1). The function of the ith

boundary line in an arbitrary direction in the plane is given as (see

section B of Appendix S1 for detailed derivation)

y~ tan (h)xzlh,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z tan (h)2

q
,i~1,2: ð3Þ

Let us denote the subset of all out-of-boundary points in the

direction with the angle of h as Ph. The observed significant level

in this direction is expected to approximate the specified

significant level for a single parameter (a),

a
0
h~

nh

N
&a ð4Þ

where nh is the number of out-of-boundary points in the direction

with the angle of h in Ph. Using the same strategy, we obtain the

boundary lines in all directions by rotating the reference line in all

directions over the plane. By taking all boundaries jointly into

consideration, we construct a CR as a polygon in the plane under

the assumption that the significant level for each direction is a. To

the newly constructed region, the observations outside the polygon

are counted as

Figure 2. The confidence region and polygon boundaries obtained by rotating the reference line. The polygon is formed by the dash
lines and the confidence region is constructed by setting the significant level for each test at a. The outer polygon with solid lines represents the
expanded confidence region with observed significant level approximating to desired significant level a.
doi:10.1371/journal.pone.0081179.g002
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P~
[

Ph: ð5Þ

Since the directions with angles of h and hzp are actually the

same reference line, we require the slope of the reference lines to

increase monotonically with the angle while rotating the reference

line with the range of h being h [ ½{p=2,p=2�.
It should be noted that the method described above can also be

viewed as a set of multiple tests and thereby the observed

significant level for the CR is actually greater than the a level that

is specified for each test, i.e.,

a’~
n

N
~a{d ð6Þ

where n is the number of observations in P, d is the difference

between the expected and the desired significant levels (Figure 2).

Thus, the a value that is actually specified to calculate the CR for

each test should be lower than the desired significant level for

multiple tests. Although it is difficult to provide a general function

to describe the relationship between the two values, the desired a
value can be obtained iteratively from the follow equation

akz1~akz(a0{a
0
k)

a
0
k

a0

ð7Þ

where ak is the assigned value of the significant level required for

generating the CR in each direction, a
0
k denotes the actually

significant level for the CR bounded by the polygon as showed in

eq (6), and a0 is the desired significant level for the overall test.

In this study, we construct the CR that is approximated by a

polygon in a two-dimensional plane for the two variables. In each

direction, the polygon is bounded by the lower- and upper-

boundaries as given in eq (3). The vertices of the polygon are the

crossover points of all adjacent boundary lines. The vertice

between two adjacent reference lines with the angle of d is a point

in the plane whose two coordinate values are given by,

Figure 3. Coverage discrepancy of the empirical confidence regions in simulation design I. The empirical confidence regions for a range
of probability levels (a = 0.005 to 0.5) are constructed by five methods (distfree, ellipse, bagplot, convex hull peeling and HPDregionplot) based on a

small sample (n = 200) and a large sample (n = 10,000) taken from a bivariate normal distribution with mean vector m~
0

0

� �
and variance-covariance

matrix of S~
1 rxy

rxy 1

� �
, where rxy takes 0, 0.5 and 0.9. The confidence region by bagplot is available only at a = 0.5.

doi:10.1371/journal.pone.0081179.g003
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x~{
lh,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z tan (h)2

q
{lhzd,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z tan (hzD)2

q
tan (h){ tan (hzD)

y~{
lh,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z tan (h)2

q
| tan (hzD){lhzd,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z tan (hzD)2

q
| tan (h)

tan (h){ tan (hzD)
,

ð8Þ

where, i~1,2 (see section C of Appendix S1 for detailed derivation).

Results

Simulation studies
The performance of our new method is evaluated by analyzing

simulation data. We simulate bivariate data with two variables x

and y. Three bivariate sampling distributions are considered in

our simulations. In simulation I, x and y are sampled from a

bivariate normal distribution N(m,S), where m~
0
0

� �
and

S~
1 rxy

rxy 1

� �
with rxy being the correlation between variables,x

and y. In simulation II, the two variables (x and y) are generated

from a bivariate noncentral F-distribution following the approach

of Song and Hsiao [21]. The marginal F-distribution of each of the

two variables is specified asF (d1,d2~30,l~10), where d1 and d2

are degrees of freedom and l is the noncentrality parameter. In

simulation III, the two variables (x and y) are generated from a

mixture of two bivariate normal distributions which is given by

2

3
N

0

0

� �
,

1 rxy

rxy 1

� �� �
z

1

3
N

3

3

� �
,

1 rxy

rxy 1

� �� �
. In all three

simulations, the correlation rxy takes three values of 0, 0.5 and 0.9.

In each simulation, we take n = 200 and n = 10,000 pairs of x2y

observations from the distribution to represent small and large

samples, respectively.

For each data, empirical CRs are constructed using our new

method (distfree.cr/R, http://statgen.ualberta.ca), the classical

ellipsoidal confidence region approach [2] implemented by the

CAR package [22] in R [23] and other three nonparametric

methods, the HPDregionplot in the emdbook/R package [16], the

classic convex hull peeling [12], and data peeling based on the

Tukey’s depth [24]. The CRs are constructed for seven

significance levels, a~0.005, 0.01, 0.025, 0.05, 0.1, 0.2 and 0.5.

However, only one level of significance a~0:5 is used for the

peeling approach based on the Tukey’s depth because we use the

bagplot approach [24], via the bagplot function in the aplpack/R

package [25], to implement the peeling based on Tukey’s depth,

but both the method [24] and the software implementation [25]

are developed exclusively for a~0:5 (Dr Peter Wolf, private

communication). We develop an R code to implement the classical

convex hull peeling approach based on its definition (available at

http://statgen.ualberta.ca). The adequacy of the CRs is measured

using coverage discrepancy plots [26] for each simulation run, i.e.,

Figure 4. Coverage discrepancy of the empirical confidence regions in simulation design II. The empirical confidence regions for a range
of probability levels (a = 0.005 to 0.5) are constructed by five methods (distfree, ellipse, bagplot, convex hull peeling and HPDregionplot) based on a
small sample (n = 200) and a large sample (n = 10,000) taken from a bivariate noncentral F-distribution with the correlation between two variables of
rxy = 0, 0.5 and 0.9. The confidence region by bagplot is available only at a = 0.5.
doi:10.1371/journal.pone.0081179.g004

ð8Þ
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the deviation of the realized-aestimate of each method to its real

value. The realized-ais calculated as the proportion of the

observations outside an empirical confidence polygon, which is

determined using the pnt.in.poly function in the SDMTools/R

[27].

In all three simulations, our method outperforms other methods

(Figures 3, 4, and 5) as the realized-a estimates by our method is

close to or coincides with the true significance levels for both small

(n = 200) and large (n = 10,000) samples with all three rxy values.

The classic ellipsoidal method provides overestimation when a is

low and underestimation when a is high. All methods including the

ellipsoid approach produce similar 95% CRs for the data from the

bivariate normal distribution as in simulation I (Figure 6).

However, the CRs determined by the ellipsoid approach fail to

account for the actual shapes of non-normal sampling distributions

as in simulations II and III (Figures 7 and 8). The HPDregionplot

is the most sophisticated strategy in capturing the shape of non-

normal sampling distribution in all simulations. However, the

realized-a estimates by the HPDregionplot approach are con-

stantly lower than the true significance levels; the underestimation

tends to increase with the significant level and the correlation (rxy),

and it is more pronounced for non-normal data in simulations II

(Figure 4) and III (Figure 5) than for normal data in simulation I

(Figure 3). It is somewhat surprising to note that the bagplot

method performs as well as our method with small sample

(n = 200) but it performs poorly with the large sample (n = 10,000)

particularly when rxy is high.

Empirical examples
We also analyze three empirical examples to illustrate the use of

our new method for the analysis of real data sets. The first data set

is taken from Table 4.3 of Rawlings et al. [2]. Since the data set

was already described and analyzed by Rawlings et al. [2], we will

only recapitulate the essential details of the data. The original data

set consisted of physical fitness measurements on 31 men involved

in a physical fitness program at the North Carolina State

University. The variables measured were age (years), weight (kg),

oxygen uptake rate (ml per kg body weight per minute), time to

run 1.5 miles (minutes), heart rate while resting, heart rate while

running (at the same time oxygen uptake was measured), and

maximum heart rate while running. Rawlings et al. [2] carried out

the multiple regression analysis to investigate the response of

oxygen uptake to the change of time to run 1.5 miles (minutes),

heart rate while resting, heart rate while running (at the same time

oxygen uptake was measured), and maximum heart rate while

running.

For illustration, we only show the CRs of the pairwise regression

coefficients as constructed by our new method and the classic

methods. The CRs are constructed using the convex hull data

peeling approach [12], the classical ellipsoidal method as

Figure 5. Coverage discrepancy of the empirical confidence regions in simulation design III. The empirical confidence regions for a range
of probability levels (a = 0.005 to 0.5) are constructed by five methods (distfree, ellipse, bagplot, convex hull peeling and HPDregionplot) based on a
small sample (n = 200) and a large sample (n = 10,000) taken from a mixture of two bivariate normal distributions which is given by
2

3
N

0

0

� �
,

1 rxy

rxy 1

� �� �
z

1

3
N

3

3

� �
,

1 rxy

rxy 1

� �� �
, where rxy takes 0, 0.5 and 0.9. The confidence region by bagplot is available only at a = 0.5.

doi:10.1371/journal.pone.0081179.g005
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implemented using the CAR package in R [22], the HPDregion-

plot in the emdbook/R package [16] and our new geometry-based

method (distfree.cr/R, http://statgen.ualberta.ca). Bootstrapping

is used to generate 10,000 random samples from the original data.

The size of each bootstrap sample is set to 31, the number of

individuals as used in the original study. The multiple regression

analysis is done for each bootstrap sample. The pairwise regression

coefficients as well as their CRs (a~0:05) calculated by the four

approaches are plotted (Figure 9). The realized-avalues are

calculated as the proportions of the total observations that lie

outside the CRs determined by our new method and the classical

methods for all six pairs of regression coefficients. For each pair,

the chi-square test statistics is computed to examine the

significance of coverage discrepancies of the empirical CRs under

the preset significance level of a~0:05. The testing results show

the superiority of our new method over the classic methods

because the deviations of the realized-avalues from a~0:05 by our

new method are not biased from 0.05 in all pairs whereas there are

4, 6, and 2 pairs with biased realized-a estimates for convex hull

peeling, ellipse, and HPDregionplot, respectively.

The second data set is obtained from the 1000 Genomes project

[28]. This data set consists of 1,092 human individual records from

four super populations, which include 246 Africans (AFR), 181 Ad

Mixed Americans (AMR), 286 East Asians (ASN), and 379

Europeans (EUR). For each record, there is an integrated

haplotype map of 38 million single nucleotide polymorphisms

(SNPs), 1.4 million short insertions and deletions and 14,000 larger

deletions. Prior to the analysis, we use the PLINK software [29] to

remove the SNPs with minor allele frequency (MAF) of ,0.05 and

the SNPs with interval sizes smaller than 50 k base pairs in order

to have a manageable subset of data. After the removal, a total of

51,529 SNPs remain and we use this subset of the data for the

subsequent analysis. Principal component analysis (PCA) as

implemented in the EIGENSTRAT software [9] is carried out.

The first two principal components are used to generate the scatter

plots as well as to construct the 95% confidential regions for

individual super populations using the new method as well as the

classical methods (Figure 10).

It is evident from Figure 10 that the four methods generate

distinctly different CRs particularly for the AFR and AMR

populations. The four methods also reveal different patterns of

population differentiation. The CRs constructed by the ellipse and

HPDregionplot methods suggest that the EUR population is

largely contained within the AMR population. In contrast, the

CRs constructed by our new method and convex hull peeling

approach suggest that the EUR population is somewhat distin-

guishable from the AMR population. In addition, the realized-a
values derived from our new methods are always closer to the

prescribed significance level of a = 0.05 than those from the

classical methods.

The third empirical example is the winter wheat (Triticum

aestivum L.) data set that has been used (e.g., Yan et al.[30]) for the

biplot analysis of genotype6environment interaction. We (Yang et

al. [31] and Hu and Yang [32]) have recently analyzed this data

Figure 6. The 95% empirical confidence regions estimated by the four methods (distfree, ellipse, convex hull peeling and
HPDregionplot) in simulation I which is detailed in Figure 3.
doi:10.1371/journal.pone.0081179.g006
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set as well to illustrate the application of our bootstrapping

approach to statistical inference about genotypic and environ-

mental scores obtained from singular value decomposition (SVD)

of the two-way genotype6environment table. Here the example

serves to show how the CRs constructed for individual genotypic

and environmental scores corresponding to the first two principal

components (PC1 and PC2) are valuable in pointing out the

uncertainty around the mega-environments delineated by the

earlier studies. Briefly, the data set consists of the yields of 18

winter wheat genotypes (G1 to G18) tested at nine environments

(E1 to E9) in Ontario, Canada. Prior to the analysis, the deviations

of cell means for all 162 (1869) genotype-environment combina-

tions from location means are calculated. The resultant matrix is

the basis for bidirectional bootstrapping, SVD and Procrustes

rotation as explained in Hu and Yang [32].

The biplot of PC1 vs. PC2 genotypic and environmental scores

along with the 95% CR is presented in Figure 11. The PC1 and

PC2 account for about 78% of the total variability. To highlight

key features in the biplot, the CR are displayed only for those

scores that are significantly different from the origin of the biplot

[i.e., the CR of the scores that do not include the point of (0,0)]. A

hexagon is drawn to connect six genotypes (G3, G7, G8, G12,

G13 and G18) that are located at the corners (i.e., vertices) of the

hexagon in the biplot. To further facilitate the interpretation of the

biplot, six line segments perpendicular to different sides of the

polygon are drawn through the origin to subdivide the polygon

into six sectors involving different subsets of environments and

genotypes: the genotype at the corner of each sector is considered

as the ‘best’ performer in the environments included in that sector

as often claimed in the earlier studies (e.g., Yan et al. [30]).

However, it is evident from the 95% CR of the scores that the

‘best’ genotypes are often not statistically different from other

genotypes. For example, genotype G8 at the upright corner is

indistinguishable from genotypes G4 and G10 in the same sector,

judging from their overlapped CR. Simple visual inspection of the

biplot [30] claimed that genotype G18 yielded more than

genotype G8 in eastern Ontario (represented by E5 and E7) and

G8 yielded more than G18 in southwestern Ontario (represented

by the other seven environments). With the 95% CR being now

attached to individual scores (Figure 11), this claim is no longer

true because the CRs for G8 and G18 overlap. Thus, identifica-

tion of superior genotypes or mega-environments based on the

initial inspection of biplots is simply a curious visual observation

only and it must be substantiated by subsequent parametric or

non-parametric statistical assessments before being recommended

for practical utility.

Discussion

In this study, we develop a new geometry-based, distribution-

free approach to constructing the CR for two or more variables.

Our new method is based only on a few basic geometrical

principles and accounts for the actual shape of the distribution

(Figures 1 and 2). Thus, it should be a significant complement to

the existing parametric (ellipsoidal [2]) and nonparametric

Figure 7. The 95% empirical confidence regions estimated by the four methods (distfree, ellipse, convex hull peeling and
HPDregionplot) in simulation II which is detailed in Figure 4.
doi:10.1371/journal.pone.0081179.g007

Distribution-Free Approach for Confidence Region
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methods including bagplot [16], convex hull peeling [12], and

HPDregionplot [25]).

Our method outperforms other parametric and non-parametric

approaches to constructing CRs judging from coverage discrep-

ancy plots of realized-a estimates. It is evident from Figures 3, 4,

and 5 that our method always provides more accurate estimates of

a than the other methods regardless of whether the sampling

distribution is normal (simulation I) or not (simulations II and III).

In addition, the superiority of our method is consistent over

different levels of correlation between the two variables. So why is

our method better? Simply put, it is the only method that

accommodate for the actual shape of the distribution and allows

for adjusting the realized-avalue to an individual data point level.

While the convex hull peeling and data peeling based on Tukey’s

depth can also account for the shape of the actual distribution

represented by the original data, the realized-avalue may still be

different from the true a because the CR is determined by a

‘peeling’ layer. Thus, all the data points on the same layer have to

be included or excluded simultaneously once the layer is

determined as the border of the CR. The true a value can be

under- or over-estimated unless each peeling layer consists of only

one data point, an unlikely scenario for not too small samples or

unless, by chance, the peeling layer along with outer layers

constitute the exact a value.

The realized-a estimates by the parametric ellipsoidal method

and semi-parametric HPDregionplot may also be biased, but for a

different reason. In these methods, the original data are used

merely to estimate parameters. It is these estimated parameters

along with assumed normal distribution, rather than the original

data that are used for constructing CRs. If the data is normally

distributed, an unbiased estimate of a can be achieved; if, on the

other hand, the data is from a non-normal distribution, the

estimate of a may be biased upward or downward. If the true CR

is a concave polygon or a crescent moon or the union of disjoint

convex areas, then the HPDregionplot is the only method that is

capable of capturing the true shape of the CR(e.g., the shape of the

simulated distribution in simulation III). However, the HPDre-

gionplot may produce the CRs with multiple isolated polygons for

small sample sizes (e.g., simulation II for n = 200). Furthermore, in

the current version of the emdbook/r package (version 1.3.2.1) on

CRAN [16], the HPDregionplot function may also generate

unclosed rather than closed polygons for CRs. In an attempt to

address this issue, Dr. Ben Bolker, the author of the emdbook/r

package, provided us with a set of new parameters for

HPDregionplot function (private communication). While the use

of these new parameters guarantees the closed polygons by

extending the regions for the kde2d function, the polygons derived

by the new HPDregionplot function are slightly larger than that

calculated by the previous version, thereby leading to the

underestimation of the realized-a values. Unfortunately, there is

currently no solution to the issue. The HPDregionplot approach

works well with accurate estimates of the empirical kernel density.

Figure 8. The 95% empirical confidence regions estimated by the four methods (distfree, ellipse, convex hull peeling and
HPDregionplot) in simulation III which is detailed in Figure 5.
doi:10.1371/journal.pone.0081179.g008
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High information content in the original data would be especially

important for accurate estimation. This is probably why higher

correlation between the two variables has caused greater

discrepancy between the realized and true a values (Figures 3, 4,

and 5). However, no similar trend is observed when the

autocorrelation within the variables is considered (Figures S1-S4).

As shown above, the coverage discrepancy is a necessary

criterion for evaluating the performance of different methods for

constructing CRs. Nevertheless, it is not a sufficient criterion. For

example, it is evident from Figure 4 that, in simulation II, the

realized a estimates by the ellipsoidal method are biased upward

with low a, but downward with high a. An inflexion point exists

near a = 0.05 where there is little coverage discrepancy. However,

this coincidence does not necessarily mean that the ellipsoidal-

based CR can be used to approximate the CR for the sample

taken from an F-distributed data because there is bias at all other a
levels. It is shown (Figure S5) that the point of the transition from

over- to under-estimation of a changes with the degrees of freedom

for the F-distributions, but there is little dependence on the

noncentrality parameter.

Since each curve in the coverage discrepancy plot (Figures 3, 4,

and 5) is calculated from a single random sample, the repeatability

of the coverage discrepancy patterns revealed by the plots may be

questioned [26]. To confirm the results in Figures 3, 4, and 5, ten

additional random samples are generated from the three simulated

bivariate distributions described earlier. The coverage discrepancy

Figure 9. The joint confidence regions of the regression coefficient estimates of the physical fitness measurements on 31 men
involved in a physical fitness program at the North Carolina State University. The numbers in the figure are the realized-a values of the
corresponding confidence regions. * and ** indicate significant deviations of the realized-avalues from a~0:05, according to chi-square tests, at
P,0.05 and P,0.01, respectively.
doi:10.1371/journal.pone.0081179.g009
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Figure 10. Plots of 1,092 human individuals in 2-D space using the scores of the first two principal components as calculated by
EIGENSTRAT based on 51,529 SNP markers. The polygons represent the 95% confidential regions of four individual populations: AFR for
African, AMR for Ad Mixed American, ASN for East Asian, and EUR for European.
doi:10.1371/journal.pone.0081179.g010

Figure 11. Biplot of 18 genotypic scores and nine environmental scores from the Ontario winter wheat data. The 95% confidence
regions are constructed for the genotypic and environmental scores using 10,000 bootstrap samples.
doi:10.1371/journal.pone.0081179.g011
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curves by the five methods are displayed in Figure S6. The plots

show that the patterns revealed by the coverage discrepancy

curves are fairly stable across different samples.

We provide detailed descriptions of our new distribution-free

approach to constructing CR for two parameters only. This does

not mean that it works only for the two-dimensional data. In fact,

our method can be extended to higher-dimension situations. In

constructing a CR for three or more parameters, we need to

calculate the distances between the data points and reference

planes (three variables) or reference hyperplanes (four or more

variables). For example, the formula for the distance between the

ith point in the three-dimensional space fxi,yi,zig and the

reference plane (axzbyzczze~0) is given by Korn and Korn

[33],

di ~
jaxizbyizczizejffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2zb2zc2
p

~
j cos wxxiz cos wyyiz cos wzzize0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 wxz cos2 wyz cos2 wz

q ð9Þ

The second part of equation (9) is obtained using the ‘normal’

form of the reference plane (a normal line is the line perpendicular

to the reference plane),

cos wxxiz cos wyyiz cos wzzize0~0

where

cos wx~
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2zb2zc2
p , cos wy~

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2zc2
p ,

cos wz~
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2zb2zc2
p , e0~

effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2zc2
p ,

ð10Þ

with wx, wy and wz being the angles between the normal line and

axis x, axis y and axis z, respectively, and e0 being the distance

between the reference plane and the origin. The actual

implementation requires the following two considerations: (1) the

sample size required to construct a reliable CR is exponentially

increased with the addition of variables; and (2) the amount of

computation under higher dimension circumstances is escalating

as more reference lines need to be taken into account while

constructing the high-dimensional CR. Nevertheless, further

research is needed for implementing and interpreting the

multidimensional CRs.

Although the normal distribution has been widely assumed in

the past [1,2], the joint sampling distribution of the pairwise

regression coefficients that are obtained from the data of the

oxygen intake experiment by bootstrapping is evidently deviated

from a bivariate normal distribution (Figure 9). Thus the basic

assumption required for constructing ellipsoidal CRs may often be

incorrect and this might lead to distorted CRs and thus to

incorrect practical uses.

The second empirical example serves to demonstrate the use of

our new method for adding the statistical inference capability to

one of the most popular tools currently used in human population

genomics. The correction for population stratification is an

essential step towards eliminating spurious genetic effects in the

genome-wide association study (GWAS) of admixed populations

[34]. Cavalli-Sforza et al. [6] proposed the use of the principal

component analysis (PCA) for detecting the stratification among

human populations. Recently, the strategy has been further

developed and adopted in using genomic data for the analysis of

population stratification in human [7,8,9,10]. The effectiveness of

such PCA-based detection depends on correct inference about the

ancestry and population structure. Currently, the commonly used

means of inferring the population stratification is the use of scatter

plots of the first few principal components known as "radiation of

circular or elliptic clines from a specification area" or the

"principal-component map" [6]. However, the determination of

population sharing or membership based on these plots or maps is

somewhat arbitrary because it is based solely on visual inspection.

Since the sampling distributions of the principal component scores

derived from SNP markers are unknown, the use of the classical

ellipsoidal method for constructing the CRs may not be adequate.

The third example shows further utility of our new method for

strengthening the biplot analysis of genotype6environment

interaction. Thus, our distribution-free approach to constructing

any multivariate CRs provides a statistical basis for such

determination.

Supporting Information

Figure S1 The impact of autocorrelations (0, 0.5 and
0.9) on the coverage discrepancy plots for small sample
n~200 in simulation I which is detailed in Figure 3.
(EPS)

Figure S2 The impact of autocorrelations (0, 0.5 and
0.9) on the coverage discrepancy plots for large sample
n~10,000 in simulation I which is detailed in Figure 3.
(EPS)

Figure S3 The impact of autocorrelations (0, 0.5 and
0.9) on the coverage discrepancy plots for small sample
n~200 in simulation II which is detailed in Figure 4.
(EPS)

Figure S4 The impact of autocorrelations (0, 0.5 and
0.9) on the coverage discrepancy plots for large sample
n~10,000 in simulation II which is detailed in Figure 4.
(EPS)

Figure S5 The effect of F distribution with equal
degrees of freedom (d1 = d2) on the coverage discrepancy
plots of the empirical confidence regions as approxi-
mated by a normal distribution.
(EPS)

Figure S6 Coverage discrepancy plots based on 10
independent simulated samples of sizes n = 200 and
n = 10,000. The two variables are assumed independent.
(EPS)

Figure S7 The confidence region constructed for two
reference lines.
(EPS)

Appendix S1 Derivation of equations.
(DOCX)
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