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ABSTRACT Genome-wide association studies (GWAS) have become a powerful tool for analyzing complex
traits in crop plants. The current study evaluates the efficacy of various GWAS models and methods for
elucidating population structure in potato. The presence of significant population structure can lead to
detection of spurious marker-trait associations, as well as mask true ones. While appropriate statistical
models are needed to detect true marker-trait associations, in most published potato GWAS, a ‘one model
fits all traits’ approach has been adopted. We have examined various GWAS models on a large association
panel comprising diverse tetraploid potato cultivars and breeding lines, genotyped with single nucleotide
polymorphism (SNP) markers. Phenotypic data were generated for 20 quantitative traits assessed in differ-
ent environments. Best Linear Unbiased Estimates (BLUEs) for these traits were obtained for use in assessing
GWAS models. Goodness of fit of GWAS models, derived using different combinations of kinship and
population structure for all traits, was evaluated using Quantile-Quantile (Q-Q) plots and genomic control
inflation factors (lGC). Kinship was found to play a major role in correcting population confounding effects
and results advocate a ‘trait-specific’ fit of different GWAS models. A survey of genome-wide linkage
disequilibrium (LD), one of the critical factors affecting GWAS, is also presented and our findings are
compared to other recent studies in potato. The genetic material used here, and the outputs of this study
represent a novel resource for genetic analysis in potato.
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Cultivated potato, Solanum tuberosum Group tuberosum is a
highly heterozygous, autotetraploid crop. Due to the many genetic
complexities posed by autopolyploidy, most potato genetic studies
have been performed at the diploid level using bi-parental populations.

Significant recent progress has been made in the development of
improved algorithms and software for linkage and QTL analysis in
autopolyploid crop species (Hackett et al. 2014; Hackett et al. 2013;
Rosyara et al. 2016). The genes affecting many key agronomic and
economically important potato traits remain undiscovered, despite
the availability of dense genetic maps as well as the potato genome
sequence and associated genomic resources (Sharma et al. 2013;
Potato Genome Sequencing Consortium 2011). A major contribu-
tory factor is that the genetic locations of many trait QTL are
imprecisely determined due to the complex genetic architecture
of many traits as well as to the use of highly heterozygous parental
lines for QTL studies. Moreover, markers found to be tightly linked
to useful trait alleles in biparental crosses often have limited trans-
ferability to wider germplasm pools. Moreover, biparental popula-
tions display recombination limited to a single meiosis, which
hampers the resolution of QTL mapping (Stich et al. 2013). The accu-
rate molecular dissection of several complex traits at the tetraploid level
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across a wide range of potato germplasm using high-throughput
molecular marker platforms is a highly desirable goal.

Associationmapping studies have expanded significantly in number
in crop plants and are gaining importance for studying the genetic
architecture of traits of agricultural and adaptive significance. Associ-
ation mapping offers considerable advantages over use of bi-parental
populations, such as enhanced mapping resolution, a greater number
of traits that can be analyzed in a single study, as well as an increased
likelihood that marker-trait associations discovered are likely to be
robust across a wider germplasm pool. This latter benefit raises the
possibility of using association mapping panels as ‘training sets’ for the
establishment of genomic selection models. Early association mapping
attempts in potato were largely confined to candidate gene approaches
(Achenbach et al. 2009; Gebhardt et al. 2004; Li et al. 2005a; Malosetti
et al. 2007; Pajerowska-Mukhtar et al. 2009; Urbany et al. 2011).
Though successful in identifying marker-trait associations, the candi-
date gene approach has some critical issues such as (1) bias caused by
the selection criteria used to choose genes on the basis of information
available from previous genetic, biochemical and/or physiological
studies (Stich et al. 2013), (2) limitation to traits for which the bio-
chemical and molecular basis are known (Hall et al. 2010), and (3) it is
prone to missing important but unknown genes involved in the target
traits (Stich et al. 2013). Nevertheless, association mapping using can-
didate genes has been shown to be a powerful approach for complex
trait analysis in potato. Potato association mapping studies using
genome-wide markers have been performed (D’hoop et al. 2014;
D’hoop et al. 2008; Fischer et al. 2013; Lindqvist-Kreuze et al. 2014;
Rosyara et al. 2016; Schönhals et al. 2016; Vos et al. 2016). These truly
genome-wide association studies (GWAS) have led to significant find-
ings of marker alleles associated with important potato traits, such as
tuber shape, flesh color, after cooking darkening and enzymatic
browning (D’hoop et al. 2014), late blight resistance (Lindqvist-
Kreuze et al. 2014), starch content (Schönhals et al. 2016). Perhaps
most notable among these was the important role played by GWAS
in identifying the StCDF1 gene, a circadian clock gene underlying a
major-effect QTL for plant maturity (Kloosterman et al. 2013).

GWAS requires a detailed understanding and exploration of pop-
ulation structure to minimize false-positive and false-negative associa-
tions due to population stratification. In early potato association
mapping studies, assessment of population structure and GWAS were
performed using ‘conventional’marker types such as amplified-frag-
ment length polymorphisms (AFLPs) and simple sequence repeats
(SSRs) (D’hoop et al. 2014; D’hoop et al. 2008) and a limited set of
single-nucleotide polymorphisms (SNPs) (Achenbach et al. 2009;
Pajerowska-Mukhtar et al. 2009). However, for a comprehensive anal-
ysis the use of high-throughput and marker-dense genotypic data are
preferable. The first such platform in potato containing 8303 SNPs
(Felcher et al. 2012; Hamilton et al. 2011) has been deployed to char-
acterize diploid and tetraploid germplasm (Hardigan et al. 2015; Hirsch
et al. 2013; Kolech et al. 2016; Stich et al. 2013). A further challenge for
performing genetic studies at the tetraploid level has been the lack of
suitable automated methods for correctly inferring marker allele dos-
age. SNPs are co-dominant markers and methods for calling allele
dosage in autotetraploids have recently been developed (Hackett
et al. 2013; Voorrips et al. 2011; Schmitz Carley et al. 2017). These
developments coupled with the potential for performing high-throughput
assays have rendered SNPs as the preferred markers for GWAS. Associa-
tion studies in potato utilizing high-throughput genome-wide markers are
increasing (Kloosterman et al. 2013; Lindqvist-Kreuze et al. 2014; Rosyara
et al. 2016; van Eck et al. 2017; Vos et al. 2016; Berdugo-Cely et al. 2017;
Schmitz Carley et al. 2017).

Wehave developed an associationmapping panel of 341 tetraploid
potato cultivars and breeding lines, largely comprising European
founder and cultivated germplasm but including 29 non-European
cultivars.Here, we report the genotyping of this panel using an 8k SNP
array and the examination of various GWAS models using a set of
20 quantitative traits. We also present an assessment of genetic
diversity, individual relatedness, population structure, and a
genome-wide survey of linkage disequilibrium (LD) in potato.

MATERIALS AND METHODS

Field Trials and Phenotyping
Field trials were conducted in 2012 and 2013 at two different sites
(Cambridge and York, United Kingdom). At each site replicated trials
(two replicates) with two nitrogen levels (100 and 200 kg/ha) were
conducted according to an alpha design, thereby leading to a total of
eight ‘environments’. Twenty quantitative traits weremeasured, but not
all were phenotyped in every environment (Table S1). The traits ana-
lyzed were plant height, yield, days to emergence (assessed as days to
reach 50% emergence), stolon attachment (1-9, 1 very strong), tuber
uniformity (1-9, 9 very uniform), foliage (height to breadth ratio,
assessed at�80% ground cover but before canopy closure), total num-
ber of tubers, tuber dry matter (percentage dry matter based on air-
dried and water-immersed weights), eye depth (1-9; 1 deep, 9 shallow),
tuber shape (length to breadth ratio), tuber skin brightness (tuber skin
texture; 1-9, 9 very smooth), mean number of stems per plant (assessed
after full emergence but before the development of secondary stems;
main stems only), tubers per stem, tuber flesh color (1-9; 1 white, 9 deep
yellow), after cooking blackening (tubers steamed for 20 min and
assessed for darkening after 30min; 1-9, 1 severe), enzymatic browning
(darkening of tuber cut surface assessed after 1 hr; 1-9, 1 severe), tuber
fry quality (percentage glucose in tubers stored at 6� with CIPC
(Chlorpropham) for�3 months after harvest), dormancy break (num-
ber of tubers with sprouts . 3 mm, storage at 10� without CIPC),
ethylene treated tuber sprouting, andmaturity. To generate phenotypic
values for each trait, genotype was modeled as a fixed effect while all
other effects were treated as random, and the Best Linear Unbiased
Estimates (BLUEs) for all traits were calculated using REML imple-
mented in Genstat 15th edition (VSN International Limited, http://www.
vsni.co.uk). These trait BLUEs were used in GWAS as well as all other
analyses involving phenotypic values.

Field trials were rogued by potato field staff for any discrepancies in
the observed phenotypes and misidentification/mislabeling of clones.
Genotypes which showed inconsistent phenotypes were sent for DNA
fingerprinting at Science and Advice for Scottish Agriculture (SASA,
https://www.sasa.gov.uk/) for further validation against the varietal SSR
genotypic database held at SASA. Correspondence of phenotypic data
between replicates, sites and years was also assessed for any gross
inconsistencies. For all traits, residuals plots from REML analysis
were examined for presence of any outliers and adherence to a
normal distribution.

Germplasm and Genotyping
The germplasm panel comprised 351 diverse tetraploid genotypes in-
cluding a set of 57 advanced breeding lines. Seed tuber material was
obtained from SASA or from stocks held at The James Hutton Institute
(Hutton)andmultiplied in2011, the yearpreceding thefirstfield trial. In
addition, we included seven diverse diploid potato genotypes in the
genotyping panel to act as ‘outgroups’ and to aid validation of popu-
lation structure analysis. The diploid material included the sequenced
doubled monoploid Solanum tuberosum group Phureja DM1-3 516 R44
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clone (Lightbourn and Veilleux 2007; Potato Genome Sequencing
Consortium 2011), hereafter referred to as DM. The details of the
germplasm included in the study are presented in Table S2.

GenomicDNAwas extracted fromyoung leaf tissue from individual
field grown plants using the Qiagen DNeasy Plant Maxi Kit (Qiagen),
quantified using the Quant-iTTM PicoGreen dsDNA Assay Kit
(Invitrogen, San Diego, CA), and normalized to a concentration
of 30 ng/mL. The panel was genotyped at GenProbe (Liverpool, UK)
for the Infinium 8k Potato SNP Array (Felcher et al. 2012; Hamilton
et al. 2011) according to the manufacturer’s protocols. The cultivar
Adirondack was ‘spiked’ as a control in all 16 Infinium array BeadChip
genotyping batches of 24 genotypes each. SNP genotypes were called
using R package fitTetra (Voorrips et al. 2011) which employs a mix-
ture model based on the allele signal ratio and fits distributions to the
response signals to classify the individuals into one of the five possible
genotypic classes in the tetraploid genotype model, giving dosage in-
formation (0, 1, 2, 3 or 4) for each SNP. SNPs with inconsistent geno-
type calls across control tetraploid samples (cv. Adirondack) and those
reported as mapping to more than one location in the potato genome
(Hirsch et al. 2013) were excluded (Table S3). For performing GWAS,
SNPs with 20% (or more) missing data and 5% (or below) minor allele
frequency (MAF) were excluded. Physical positions for all SNPs were
derived from Sharma et al. (2013).

Kinship and Population Structure Analyses
SNP dosage scores were used as input data in the SAS/STAT Distance
Procedure for the estimation ofGower’s SimilarityMetric (Gower 1967)
among all individuals and the estimated matrix was used as a genomic
relationship matrix. Population structure was assessed using three dif-
ferent approaches, namely principal component analysis (PCA), non-
metric multidimensional scaling (nMDS) and STRUCTURE (STR)
analysis. The genotype membership matrices (Q) obtained from the
population structure analyses were used as covariates in the GWAS
regression models. PCA was performed on the genomic relationship
matrix and the first 20 eigenvectors were calculated. For nMDS, the
square root of the symmetric relationship matrix obtained via Singular
Value Decomposition was used and the analysis was performed with
datafitting up to 20 dimensions. PCA and nMDSwere performed using
JMP Genomics 7.1 software (SAS Institute, Cary NC). Model-based
analysis of population structure was carried out using STRUCTURE
software (Pritchard et al. 2000) with ‘admixture’model assuming allele
frequencies are correlated between inferred populations. The ‘burn-in’
and simulation stages were both set at 10,000 iterations. The number of
subpopulations was evaluated from 1 to 10 and each analysis was
replicated three times. The optimal population structure estimates
(Q matrices) from nMDS (dimensions) and PCA (eigenvectors) were
chosen by evaluating their respective screeplots displaying ‘badness-of-fit’
and eigenvalues, respectively. In STRUCTURE subpopulations were
inferred by the DK method of Evanno et al. (2005) and a single
replicate from the chosen K was used to assign the probability that
a genotype belonged to in each subpopulation.

Genome-wide Association Analysis
GWAS model procedures were as described by Yu et al. (2006) imple-
mented in GWASpoly R package (Rosyara et al. 2016) using additive
model; and follow the linear mixedmodel equation as expressed below:

y ¼ Xbþ Saþ Qv þ Zmþ e

where y is a vector of observed phenotypes; b is a vector of fixed
effects other than the SNP under testing and/or population structure

effects; a is a vector of SNP effects; v is a vector of population effects
where Q, modeled as a fixed effect, refers to the incidence matrix for
subpopulation covariates relating y to v; m is a vector of random
polygenic background effects with covariance proportional to a kin-
ship matrix K with Var[m] = sg

2K; e is a vector of residual effects with
Var[e] = Ise

2; X, S and Z are incidence matrices of 1s and 0s relating
y to b, a and m, respectively; and sg

2 and se
2 denote genetic and

residual variance, respectively. This mixed model equation was adap-
ted to perform GWAS using four different statistical models, as de-
tailed below:

a. Naïve model, without controlling for population structure ‘Q’ or
individual relatedness ‘K’

b. Kinship model, controlling just for individual relatedness
c. Population Structure model, controlling for population structure

effects
d. Full model, accounting for kinship as well as population structure

confounding effects

In addition to the description above, all these four models had SNP
fitted as afixed effect and are hereafter referred to asNaïve, K,Q andQK
models, respectively. Q and QK models were successively evaluated
using population structure estimates derived from three differentmeth-
ods as described in the preceding section, thereby leading to a total of
eight GWAS models being tested. Fitness of different GWAS models
for all traits was evaluated using Quantile-Quantile (Q-Q) plots of the
observed vs. expected –log10(p) values which should follow a uniform
distribution under the null hypothesis. Models were ranked using ge-
nomic control inflation factor (lGC) metric calculated using R package
‘GenABEL’ (GenABEL project developers 2013). Bonferroni correction
(with genome-wide a = 0.05) was used for establishing a p-value de-
tection threshold for statistical significance.

Linkage Disequilibrium
Pearson correlation coefficient (r2) was used to calculate correlations
between marker-pairs using SNP dosage scores (0 to 4). LD was calcu-
lated based onmarker pairs located within (a) chromosomal short arm,
(b) chromosomal long arm, (c) euchromatin (both chromosomal arms
combined), (d) heterochromatin, and (e) whole chromosomal region
for all 12 chromosomes. Extent of LD decay was estimated by imple-
menting Quantile regression (R package ’quantreg’; Koenker 2017) on
the 90th percentile as recommended by Vos et al. (2017). From the fitted
regression two LD estimators were obtained, viz. LD1/2max,90 and
LD1/10,90, denoting the distances at which LD equals one-half of its
maximum fitted r2 value (r2max,90) and where r2 equals 0.1 on the 90th

percentile, respectively. For whole chromosomal regions, extent of LD de-
caywas also estimated using non-linear regression of r2 against the physical
map distance according to Marroni et al. (2011). Marker positions for the
different subsets of the genome were derived from Sharma et al. (2013).

Genetic Diversity
The measure of polymorphic information content (PIC) for each SNP
was calculated according to Botstein et al. (1980). Pairwise genetic
distances were calculated using Nei’s (1972) distance estimate which
were further subjected to hierarchical clustering using ward.d2 method
(Murtagh and Legendre 2014). Trees were constructed using R package
dendextend.

Data availability
Supplemental Material is available at figshare and brief captions for
the uploaded material are provided here, as follows: Table S1 (traits
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phenotyped); Table S2 (germplasm included in the study); Table S3 (List
of SNPs mapping to multiple positions); Table S4 (GenomeStudio and
fitTetra genotype call comparisons); Table S5 (Chromosomal region-
wise details of SolCAP SNPs); Table S6 (Size of pericentromeric
heterochromatin); Table S7 (Pairwise measures of population differ-
entiation); Table S8 (Significant marker-trait associations); Table S9
(Annotation of SolCAP SNPs used in the study); Table S10 (Genotype
andphenotype data); Figure S1 (Manual and automated SNPgenotype
calling example); Figure S2 (PCA performed on the genomic relation-
ship matrix of the association panel clones); Figure S3 (Traits Pairs
plot); Figure S4 and S5 (LD in chromosomal short and long arms,
respectively); Figure S6 (nMDS Screeplot); Figure S7 (population
structure present in the association panel); Figure S8 (clustering of
genotypes based on Nei (1972) genetic distance); Figure S9 (PCA
Screeplot); Figure S10 (STRUCTURE results); Figures S11 and S12
(nMDS and PCA based population stratification); Figures S13 and
14 (Q-Q plots for different categories of model comparisons). Sup-
plemental material available at Figshare: https://doi.org/10.25387/
g3.6716033.

RESULTS AND DISCUSSION

Germplasm and Genotyping
Germplasm included in the study, including geographic origin, year of
introduction, and predominant market class, is listed in Table S2. The
tetraploid panel and selected diploid material were genotyped using the
8303 Illumina Infinium SNP array (Felcher et al. 2012). fitTetra analysis
resolved genotypic classes for 6059 SNPs. Genotyping accuracy was
assessed by comparing genotype scores among 16 control (cv. Adiron-
dack) samples. Genotype calls were largely in agreement with a consis-
tency rate of 98.3%. SNPs displaying inconsistent genotyping calls across
control samples as well as those with multiple mapping locations in the
potato genome were excluded yielding a set of 5,718 robust SNPs for
further analyses. Illumina standard SNP calling software GenomeStudio,
at the time of analysis, was not suitable for automatic genotype calling in
tetraploids. Genotype score comparisons (for tetraploids) from these
platforms largely corroborated each other (data not shown) and a rep-
resentative example is shown for the marker ‘solcap_snp_c1_1000’
(Figure S1). A comparison of genotype scorings from both approaches
for all diploid genotypes is presented in Table S4.

Genotypic data were further verified by the correspondence of the
clusters obtained using PCA with known information about the germ-
plasm. The very tight clustering of 16 control ‘Adirondack’ samples
further demonstrated genotyping data integrity with negligible or very
low level of technical variation across the 16 genotyping batches. The
remainder of the tetraploid clones clustered into a cohesive group while
the diploid clones formed three distinct groups, the sequenced Group
Phureja clone DM clustering with the closely related Group Phureja
diploid cultivar ‘Mayan Gold’ as expected (Figure S2).

The germplasm panel displays a broad range of genotypic and
phenotypic diversity, reflecting the diverse geographic origins, release
dates, and market classes of the selected potato varieties and breeding
clones. Distribution of minor allele frequencies (MAF) across all tetra-
ploid genotypes is shown in Figure 1. The genotype panel showed
enrichment for common SNPs with higher MAF (.0.1) values, desir-
able for performing GWAS. Genetic diversity in the panel was assessed
using estimates of marker PIC values. The PIC values of the SolCAP
SNPs for the association panel ranged from 0.06 to 0.50 with a mean
value of 0.34 (Figure 2). Stich et al. (2013) reported a similar average
PIC value of 0.35 in a study involving cultivated European tetraploid
material genotyped with the same panel. The SolCAP SNP platform is

derived using SNPs from only six potato cultivars (Hamilton et al.
2011), which could possibly cause ascertainment bias and limit its
applicability in analyzing the germplasm which is not well represented
by these six cultivars. However, in the current analysis the majority of
SNPs were highly polymorphic with 63.5% showing PIC values above
0.35 and none falling below 0.05 (Figure 2). The observed PIC values
indicate high levels of polymorphism in European potato cultivars
further validating the suitability of the deployed SNP platform for ge-
netic studies on cultivated potato. Among the six cultivars used in
developing the SNP platform, only one (Bintje) is from Europe, the
remainder being North American. Potato is believed to have been in-
troduced intoNorth America from Europe (Love 1999), which explains
the good representation and sharing of SNP alleles between European
and North American cultivars. Moreover, Uitdewilligen et al. (2013)
reported that more than half of the common SNPs identified in a panel
of 83 tetraploid potato cultivars were discovered by sequencing any
three random cultivars. Given its history the SNP array used here
may well display ascertainment bias for a very diverse set of potato
germplasm including non-cultivated material however the inclusion
of six diverse cultivars in its design makes it eminently suitable for
genotyping a wide cultivated potato population as in this study.

Phenotyping
The association panel was phenotyped for 20 quantitative traits in up to
eight environments (Cambridge Nitrogen plus-2012, York Nitrogen
plus-2012, Cambridge Nitrogen minus-2012, York Nitrogen minus-
2012, Cambridge Nitrogen plus-2013, York Nitrogen plus-2013,
Cambridge Nitrogen minus-2013, York Nitrogen minus-2013). A
‘pairs’ plot showing a scatterplot of the relationship between traits, the
distribution of individual traits and the correlation between traits is
presented in Figure S3. The residuals for all traits were normally
distributed (data not shown). Figure 3 shows a biplot for the first
2 dimensions for the PCA performed on the full set of 20 traits.
The first two axes account for 17.4% and 12.8% of the variation in
the data. The colors denote the subpopulations identified by nMDS
analysis (described in the subsequent sections). Figure 3 clearly shows
the effects of breeding for different traits for varied end-uses over the

Figure 1 Minor Allele Frequency (MAF) distribution of 5,718 SolCAP
SNPs in 341 tetraploid genotypes.
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last more than 100 years, for example, dry matter and yield both
have high but quite different correlations with the first two principal
components. There is no clear or obvious relationship between any
of the traits and the nMDS-derived subpopulations.

Assessment of Genome-wide Linkage Disequilibrium
Linkage disequilibrium in the association panel was estimated using
Pearson’s r2 statistic using pairwise combinations of SNPs present
across all 12 chromosomes. Previously LD in potato has been assessed
using a varying level of structural units ranging from a few fragments
per chromosome (Simko et al. 2006) to genome-wide superscaffolds
(Stich et al. 2013). A more recent study (Vos et al. 2017) estimated
short-range LD separately for pericentromeric heterochromatin and
chromosomal arms. Here, we have estimated extent of LD in different
regions (short and long arms individually as well as combined, and
pericentromeric heterochromatin) of each chromosome as well as the
whole chromosome. Marker positions in these subsets of the genome
were obtained from Sharma et al. (2013) and a list of markers included
in these specific regions is provided in Table S5.

The r2max,90, LD1/2max,90 and LD1/10,90 estimates for the different
subsets of the genome are provided in Table 1. The trends observed
among 12 chromosomes displayed a moderate LD decay in potato.
Inter-chromosomal differences in LD decay patterns were also visible
with each chromosome showing a different physical distance range
exceeding which the LD decayed below the most commonly used sig-
nificant threshold value of 0.1 (D’hoop et al. 2010; Stich et al. 2013).
The minimum and maximum LD1/10,90 limits for short and long chro-
mosomal arms were different and also differed by chromosome. How-
ever, the overall LD1/10,90 for short and long arms and the combined
euchromatin were comparable viz. 2.52 Mb, 2.76 Mb and 2.73 Mb,
respectively. LD decay plots for short and long chromosomal arms
for all 12 chromosomes are shown in Figure S4 and Figure S5, respec-
tively. LD decay in the pericentromeric heterochromatin for all chro-
mosomes was negligible due to the suppression of recombination in
this fraction of the genome, therefore, it was not possible to model LD
decay for pericentromeric heterochromatin at the set thresholds as also
reported by Vos et al. (2017). Despite this insignificant LD decay in

heterochromatin, the overall LD1/10,90 calculated at whole chromosome
level (3.27 Mb) was within twofold limits of that observed for the
euchromatin (2.73 Mb). Chromosome-scale LD blocks and decay pat-
terns for all 12 chromosomes are shown in Figure 4; and combined LD
decay plots over all chromosomes for the analyzed subsets of the genome
are presented in Figure 5. The extended spread of the points, as compared
to the typical L-shaped LDdecay patterns, in the higher LD range (Figure
4) closely approximates the magnitude of the pericentromeric hetero-
chromatin boundaries reported for all chromosomes (Sharma et al. 2013;
Table S6). All chromosomes exhibited modest LD1/10,90 at the whole
chromosomal-region level, ranging from 2.54 Mb (Chromosome 9) to
4.68 Mb (Chromosome 3), whereas chromosome 8 displayed extremely
conserved LD1/10,90 of 20.04 Mb. Berdugo-Cely et al. (2017) also report
slowest LD decay for chromosome 8 (LD1/10,90 = 8 Mb) in their autotet-
raploid Andigena population (N = 652). Figure 4 also shows that large
LD blocks on all chromosomes are visible but the one present on chro-
mosome 8 is the most prominent. Inheritance of such large ancestral LD
block suggests chromosome 8 has undergone selection pressures which
differ from other chromosomes in some as yet unknown way during the
last 150 years of breeding. Vos et al. (2015) have reported chromosomal
positions of new variants introduced since 1945 by introgression breed-
ing. Although the numerical breakdown per chromosome is not pro-
vided, from the illustration provided (Figure 5 in Vos et al. 2015) it is
evident that chromosome 8 has received the least (almost negligible)
number of introgressed segments/variants in the last six decades
of potato breeding.

Discrepancies inLDestimates couldarise fromdifferences in the type
of populations under examination, spacing and type of markers used,
genotyping methods, physical/genetic distance units covered and the
significance thresholds used for defining the LDdecay. For these reasons
a direct comparison of LD patterns and estimates observed in previous
potato studies is not feasible. However, overall LD trends observed in
different studies can still be compared for drawing broad inferences.
D’hoop et al. (2010) and Simko et al. (2006) reported decay of LD to r2

equalling 0.1 within a distance of 5 cM and 10 cM, respectively. In our
study, overall LD1/10,90 for euchromatin and whole chromosomal re-
gions were 2.73 Mb and 3.27 Mb, respectively. Relating physical size of
the assembled potato genome (727 Mb; Potato Genome Sequencing
Consortium 2011) and only the euchromatin (�398 Mb, Table S6;
Sharma et al. 2013) to a representative genetic map in the order of
754 cM (Prashar et al. 2014), 1Mb corresponds to about 1 cM and 2 cM
using the respective scales of the genome. Considering these estimates,
the extent of LD decay observed in our study is comparable to those
reported by D’hoop et al. (2010) and Simko et al. (2006). Recently Vos
et al. (2017) suggested LD1/2max,90 as an unbiased estimator for com-
paring extent of LD decay across different studies. The implementation
of the same estimator in the current study facilitates direct comparison
of LD decay estimates with those obtained by Vos et al. (2017). These
authors studied LD decay rates for different age (year of release) potato
groups and reported a decline in LD over the last century from an
LD1/2max,90 of 1.5 Mb in cultivars released before 1945 to 0.6 Mb in
the recent cultivars released after 2005. The share of cultivars for these
two age categories in their panel was 8.4% and 47.5% respectively as
compared to 10% and 12% for the same categories in our association
panel. Considering the minority of the cultivars from the latter category,
the extent of LD decay (overall euchromatin LD1/2max,90 = 0.91 Mb;
Table 1) observed in our collection of genotypes corroborates well and
lies within the range of LD for different age groups as reported by Vos
et al. (2017). These authors also conclude that in general background
levels of LD are reached at a physical distance ranging from 2 to 4 Mb
which are also comparable to those obtained here.

Figure 2 Distribution of polymorphic information content (PIC) values
calculated for 341 tetraploid genotypes across 5,718 SolCAP SNPs.
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Stich et al. (2013) reported a sharp LD decay to an r2 value of 0.1
within a distance of 275 bp. This is in steep contrast to the findings
observed in the current study as well as to all other previous reports in
potato. Potato is propagated vegetatively and cultivars are not separated
from their progenitors by many meiotic generations, for example, the
maximumnumber reported byGebhardt et al. (2004) andD’hoop et al.
(2008) was 5 and 10 respectively. This peculiar feature present in potato
also contradicts the very rapid decay in LD observed by Stich et al.
(2013). Vos et al. (2017) attributed contrasting LD estimates reported
by Stich et al. (2013) to their use of average r2 as an LD estimator
combined with non-linear regression. In addition to the LD estimators

described above, we also estimated LD decay using average r2 and non-
linear regression (data not shown) as implemented by Stich et al.
(2013). Since LD estimates by these authors were derived from all
genomic superscaffolds (euchromatin as well as heterochromatin) us-
ing the same SNP array, the chromosome-scale LD estimates obtained
here using the alternative method as described above can be compared
to the results reported by Stich et al. (2013). For our panel overall
chromosome-scale LD1/10 was 1.09 Mb which despite being derived
from average r2 fitted using non-linear regression is still within reason-
able LD decay limits expected for potato but much slower than that
reported by Stich et al. (2013). These observations in combination

Figure 3 Biplot of the first two significant components obtained by applying PCA to the BLUEs of 20 traits for 290 tetraploid clones. Genotypes
are colored according to the nMDS-based subpopulations.

3190 | S. K. Sharma et al.



with Vos et al. (2017), derived from two different measures of LD
estimation, contradict the claimsmade by Stich et al. (2013) and further
suggest the discrepancy in the latter study could be due to the use of a
highly diverse andmuch smaller (N = 36) set of tetraploid genotypes as
compared to a larger collection of genotypes deployed in the other
studies.

Analysis of Kinship and Population Structure
Genotyping was carried out for 351 tetraploid and 7 diploid potato
genotypes. Initial data quality checks revealed ten pairs of tetraploid
genotypes showing more than 99% similarity. These genotypes also
containedthosecloneswhichduringtheroguingoffield trialshadshown
morphological features incompatiblewith those expected fromprevious
knowledge. The identical pairs were DNA fingerprinted with SSRs and
only the individuals, oneper pair, forwhichphenotypic assessments and
fingerprinting patternsmatchedwith the potato database were retained,
thereby, reducing the net number of genotypes in the tetraploid panel
from 351 to 341.

The individual relatedness between genotypes in the revised panel
was estimated using a genomic relationship matrix. Kinship analysis
assignedmore closely related lines such as those belonging to individual
breeding programs and/or possessing resistance to specific pest or
disease (potato cyst nematode, virus etc.) into ten smaller clusters
(hereafter referred to as ‘Kinship groups’). Although the categorization
of clones into distinct groups is subjective, the clustering of the panel
into ten kinship groups is supported by the hierarchical clustering de-
rived dendrogram (Figure 6). Kinship groups 1 and 2 together are most
divergent from the rest of the tetraploid germplasm and quite different
from each other. Kinship group 1 largely comprises cultivars from the
USA and Canada, whereas group 2 is mainly a collection of ‘salad’ and
early potato varieties from various European countries. Regarding the
other groups which show quite weak differentiation overall, Kinship
groups 3-5 are quite similar comprising mainly Dutch, UK and
German cultivars. Kinship group 6 is a small collection of mainly
very old UK ‘heritage’ cultivars, as well as two ‘russetted’ US cul-
tivars. Kinship groups 7 and 8 predominantly comprise older UK
potato varieties, with groups 9 and 10 being mainly more modern
UK and Irish cultivars and breeding lines carrying potato cyst
nematode and late blight resistance.

The level of population stratification was examined using a number
of nMDS solutions ranging from 1 to 20 dimensions. The Screeplot in
Figure S6 illustrates the badness-of-fit measures for fitting different
nMDS solutions. A 5-dimension solution was deemed closest to the
point of inflection (elbow junction) with a criterion of representing the
full data set in the smallestpossiblenumberof dimensions.At the chosen
nMDS solution, there was no clear visual separation of clones into
distinct subpopulations indicating a lack of strong population structure
within the panel (Figure S7). However, nMDS analysis was still able to
detect subtle relationships among the clones, possibly resulting from the
weak underlying stratification among genotypes, as depicted in the
nMDS-based dendrogram (Figure 7) showing clustering of clones into
five subpopulations (Q). The nMDS-based dendrogram revealed two
large clusters where one cluster comprised four subpopulations while
the other formed a single subpopulation. These five putative subpop-
ulations also showed low levels of population differentiation (Fst,
Table S7) which further supports the absence of any strong population
structure in the panel used here. These findings are in accordance
with the observations made in previous studies (D’hoop et al. 2008;
Gebhardt et al. 2004; Malosetti et al. 2007; Simko et al. 2004a; Simko
et al. 2004b; Stich et al. 2013) and further validate the notion that
cultivated potato lacks a distinct population structure.

The correspondence of kinship groups to the nMDS-derived sub-
populations was very high with six kinship groups nesting into their
respective subpopulations as single large blocks.Members of the remain-
ing kinship groups did show their assignment to separate subpopulations
but still the allocation was in cohesive blocks of at least three genotypes.
This allocationofmembersof individualkinshipgroups tomore thanone
subpopulation could be attributed to their shared lineage. The details of
individual members belonging to these kinship groups and subpopula-
tions are present in Table S2a. The germplasm was also analyzed using
phylogenetic analysis (Nei 1972) by including all tetraploid and diploid
genotypes. The clustering of tetraploid clones corroborated well with
nMDS-derived subpopulations as illustrated in Figure S8. Some
advanced breeding lines (e.g., ‘GL’ series) formed distinct clusters and
others were interspersed among the cultivar groups. The four diploid wild
genotypes clustered into a separate group, which surprisingly included
one tetraploid clone, 3053-18, a ‘late blight R-gene differential’ for the
resistance gene R5. This result is likely due to close genetic relationship

n Table 1 Extent of LD decay in different regions of the 12 chromosomes

Chromosome Short arm Long arm Euchromatina Whole chromosome

r2max,90 LD1/2max,90 LD1/10,90 r2max,90 LD1/2max,90 LD1/10,90 r2max,90 LD1/2max,90 LD1/10,90 r2max,90 LD1/2max,90 LD1/10,90

1 0.79 0.71 2.56 0.70 0.89 2.66 0.71 0.89 2.66 0.73 0.90 2.78
2 NA NA NA 0.65 1.05 3.03 0.65 1.05 3.03 0.72 1.35 4.09
3 0.77 0.82 2.82 0.67 1.19 3.57 0.68 1.14 3.46 0.80 1.38 4.68
4 0.60 1.04 2.82 0.66 0.79 2.32 0.64 0.86 2.46 0.64 0.91 2.64
5 0.65 0.78 2.24 0.72 0.59 1.88 0.67 0.70 2.08 0.65 0.85 2.60
6 0.87 1.24 4.62 0.81 1.02 3.37 0.80 1.11 3.66 0.77 1.44 4.59
7 0.72 0.51 1.64 0.71 0.89 2.73 0.69 0.82 2.52 0.69 0.89 2.88
8 0.84 0.86 2.76 0.70 0.97 2.91 0.74 0.93 2.88 0.43 9.29 20.04
9 0.59 0.68 1.93 0.67 0.86 2.60 0.79 0.67 2.22 0.65 0.83 2.54
10 0.56 1.03 2.92 0.82 0.93 3.06 0.75 0.96 3.03 0.78 0.95 3.10
11 0.81 0.76 2.54 0.53 0.81 2.08 0.77 0.71 2.30 0.72 1.09 3.67
12 0.53 0.72 1.86 0.72 0.71 2.14 0.72 0.66 2.01 0.71 0.86 2.91
All Combined 0.77 0.79 2.52 0.71 0.90 2.76 0.70 0.91 2.73 0.71 1.04 3.27
a
Short and long arms combined.

r2max,90: Maximun Pearson correlation coefficient (r2) achieved in the 90th percentile.
LD1/2max,90: Physical distance (Mb) at which LD has decayed to half its maximum r2 value in the 90th percentile.
LD1/10,90: Physical distance (Mb) at which LD has decayed to r2 = 1/10 in the 90th percentile.
NA, not applicable.
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of 3053-18 to the late blight resistant wild species in this cluster, close
relatives of which were used to introgress late blight resistance
(Trognitz and Trognitz 2007). The remaining three diploid genotypes
(DM, S. tuberosum group Phureja cv. MayanGold and S. stenotomum)
were clustered with one of the tetraploid clusters predominantly con-
taining older (mainly salad) cultivars and advanced breeding lines.

Population structure was also assessed using PCA (Figure S9) and
STRUCTURE (Figure S10). Population structure obtained using PCA
and nMDS was compared to visualize patterns of variation in terms of

‘country of origin’ and ‘year of release’. The assessment using ‘year of
release’ failed to reveal any specific patterns for both PCA as well as
nMDS (data not shown). This observation contrasts with that of D’hoop
et al. (2010) who reported subpopulations differing in year of market
release in a set of 430 tetraploid cultivars. Stich et al. (2013) also did not
detect any correlation between population structure and the cultivar
release date. They attributed this difference to the lack of enough sta-
tistical power in their analysis as their panel comprisedonly 36 tetraploid
cultivars, a weakness that does not apply to the current study.

Figure 4 Upper panels: Linkage disequilibrium (LD) measure r2 in the association panel plotted vs. the physical map distance (Mb)
between pairs of SNPs located on the whole chromosomal region for all 12 chromosomes. The trend line of the nonlinear quantile regression
of r2 (90th percentile) vs. the physical map distance between the SNP markers is depicted in red, dashed blue line depicts the standard LD decay
threshold (r2 = 0.1). Lower panels: Genome-wide LD scans for all 12 chromosomes using 5,718 SNPs. Red areas show regions with higher LD.
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Visualization of nMDS-based population structure in terms of
‘country of origin’ of each genotype yielded a more harmonious repre-
sentation of the germplasm as compared to the PCA. The subpopulations

were not clearly defined but a country-specific pattern was apparent
(Figure S11). One subpopulation (olive green, bottom-most) comprised
modern UK cultivars while another subpopulation (red, right-most)

Figure 5 Linkage disequilibrium (LD) measure r2 plotted vs. the physical map distance (Mb) between pairs of SNPs in the association panel
located on (A) chromosomal short arm, (B) chromosomal long arm, (C) both arms combined (euchromatin), and (D) whole chromosome region. The
illustrations include combined analyses for all 12 chromosomes except chromosomal short arm for which chromosome 2 is excluded as it is
pericentric. The trend line of the nonlinear quantile regression of r2 (90th percentile) vs. the physical map distance between the SNP markers is
depicted in red, dashed blue line depicts the standard LD decay threshold (r2 = 0.1).

Figure 6 Heatmap displaying relationships among the 341 lines present in the association panel. The red diagonal represents perfect relationship
of each line with itself; the symmetric off-diagonal elements represent relationship for pairs of lines. The blocks of warmer colors on the diagonal
show clusters of closely related lines. The adjoining dendrogram illustrates Kinship groups identified in the panel. The details of members of these
Kinship groups are present in Table S2.
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Figure 7 Heatmap and hierarchical clustering of the association panel using a 5-dimension solution from the nMDS (non-metric multidimensional
scaling) analysis for adequately representing the panel members (341 clones) in the optimum number of dimensions (subpopulations). The details
of members of the identified five subpopulations are present in Table S2.
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contained older UK varieties. Two interspersed subpopulations at the
center (cyan and brown) primarily contained ‘mainland’ European
germplasm; and the remaining one (blue, upper-left) included mainly
international non-European material. The analysis suggests the majority
of the UK potato cultivars represent more diverse genetic pools than rest
of the European and non-European cultivated potato germplasm with
limited admixture. Similarly in other studies, population stratification
within a region has been reported. For example, two subpopulations of
European winter wheat from multiple national programs (Tommasini
et al. 2007) and four subpopulations from a collection of US soft winter
wheat cultivars with release dates spanning approximately 30 years
(Breseghello and Sorrells 2006) were previously reported. In contrast to
nMDS, no region-based grouping patterns were visible in clusters gen-
erated using first two PCA eigenvectors (Figure S12). Previous studies
have also shown nMDS as a more appropriate method for visualizing
population structure as it can capture the underlying population strati-
fication with the first few dimensions that may not be inferred with the
same number of eigenvectors using PCA or principal co-ordinates anal-
ysis (PCO) (Miclaus et al. 2009).

Evaluation of Population Structure Estimation Methods
for GWAS
All GWAS analyses described here as well as in the subsequent sections
were performed on 290 tetraploid clones. This reduction in the asso-
ciation panel was due to clone identity issues, as described in the
preceding section, as well as loss of some genotypes due to lack of
enough seed tubers for successive field trials. Seed tubers for these
genotypes were not supplemented from other sources to avoid inducing
any bias arising due to variation in seed tuber generation as the seed
material for the reported study was generated from a designated seed
production site in the preceding year. Regarding markers, a total of
5,157 SNPs were retained for GWAS after filtering for missing data
(.= 20%) and minor allele frequency (MAF=,0.05) thresholds. Per-
formance of GWAS models was evaluated using Q-Q plots of the
expected vs. observed –log10(p) values and genomic control inflation
factors (lGC) achieved for each ‘trait xmodel’ combination. The success
(ranking) of GWASmodels in controlling the overall genome-wide type
I error rate (i.e., keeping the genomic control inflation factor to the
desired level of lGC�1), summarized over 20 traits, is shown in Table 2.

Various methods have been used for controlling the confounding
effects of population structure for GWAS. Here we examined GWAS
models with population structure estimates (Q matrices) from three

differentmethods viz. STRUCTURE, principal component analysis and
non-metric multidimensional scaling. Table 3 displays trait-wise lGC
estimates for Q and QK GWAS models involving Q matrices from
above three methods and their overall rankings are provided in Table
2. In Q models, STRUCTURE was marginally more effective (8 traits)
in controlling p-value inflation than nMDS and PCA while the latter
two performed better for 6 traits each. Evaluation of these models as
QK models (i.e., with correction for population structure as well as
kinship) controlled the p-value inflation observed in Q models with
different methods for population structure estimation and brought
lGC close to 1. This further implies that with the inclusion of cor-
rection for kinship effects, the method used for population structure
estimation is not very critical for performing GWAS in potato.
Figure S13 and Figure S14 illustrate Q-Q plots obtained from Q
and QK models tested using three different Q-matrices, respectively.
Overall the results indicate that no single method was able to capture
population confounding effects better than the others for all 20 traits.
Nevertheless, when overall model performance was taken into con-
sideration, nMDS seemed to provide slight advantage over PCA
and STRUCTURE (Table 2A) and was selected for all subsequent
assessment of GWAS models.

Evaluation of Different GWAS Models
Four principal GWAS models (Naïve, K, Q and QK) were investigated
for all 20 traits. The lGC values and rankings for these four models
achieved for all 20 traits are presented in Table 4. Combined ranking
summary for main GWAS models is provided in Table 2B. The effi-
ciency of K and QK models, in keeping p-values close to the expected
(lGC�1), were comparable where K model was most effective for
7 traits andQK for 13 traits. Furthermore, comparison of the individual
components of the QKmodel revealed that correction for Kinship was
more efficient in overcoming the germplasm confounding effects than
adjusting for population structure. As compared to K Model, Q Model
never ranked first or second for any of the 20 traits and performed close
to K and QK models for only one trait (Dormancy break, Table 4).
Q model performed better (ranked third) than Naïve model for all but
one trait (Stolon attachment) and lGC for both models were always
inferior (larger) to the K model. Figure 8 displays Q-Q plots obtained
for four principal GWAS models for all 20 traits. These plots further
reveal that Q-Q plots for K and QKmodels were largely indistinguish-
able for all traits and wherever one model performed better than the
other, it only improved the analysis marginally. This further implies
that kinship alone is sufficient to control type I error (false positives) for
conducting GWAS in cultivated potato. Also, the ineffectiveness of
Q model in controlling p-value inflation further confirms lack of sig-
nificant population structure in potato.

A careful assessment of kinship and population structure in
GWAS studies is required to avoid spurious associations arising
from systematic differences in allele frequencies due to the difference
in sample ancestries. However, the results described above indicate
that this may only be critical when the trait in question is also
confounded with the kinship and/or population structure present
in the germplasm. Overcompensation of mixed models for popula-
tion structure and relatedness can lead to false negatives (type II
error) as also reported by Zhao et al. (2011) in rice. In a study
involving evaluation of GWAS models for 13 traits, Rosyara et al.
(2016) report a preference for the QK model, however, trait specific
model fitness details are not divulged. Results here instruct that a
single model type is not suitable for all traits and emphasize the need
to carefully select an optimal combination of covariates for each trait
to avoid false associations as well as overfitting of the GWAS models.

n Table 2 Ranking of GWAS models derived using Genomic
Control Inflation Factor (lGC) metric summarized over 20 traits

GWAS Modelsa Rankingb

First Second Third Fourth

(A) Q Models
nMDSQ 6 11 3 —

PCAQ 6 2 12 —

STRQ 8 7 5 —

(B) Principal Models
Naïve 0 0 1 19
K 7 13 0 0
Q 0 0 19 1
QK 13 7 0 0
a
nMDS, non-metric multidimensional scaling; PCA, principal component anal-
ysis; STR, STRUCTURE.

b
Rows and columns under each GWAS model category add up to the total
number (20) of traits analyzed.
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Overall, the results endorse greater significance for correcting kinship
than population structure in GWAS for cultivated potato.

Model Validation Using GWAS Results
Wedemonstrate here the effectiveness of differentmodels viz. Naïve, K,
Q and QK for performing GWAS in potato and validate our findings
using previously published reports. Figure 9 and Table 5 shows Man-
hattan plots and significantly associated SNPs identified around well
reportedQTL regions in potato. Only truemarker-trait associations i.e.,
(a) from models where p-value inflation was close to the expected
normal value (lGC�1) and (b) which passed the set Bonferroni cor-
rection p-value (a = 0.05) threshold are included for reporting GWAS

results. Effectiveness of K and QKmodels over Q and Naïve models in
controlling type I error is clearly evident in theManhattan plots (Figure
9) and the results mainly follow the same pattern as revealed by Q-Q
plots (Figure 8) and lGC values (Table 2). Trait associations obtained
from all four main models are listed in Table S8.

GWAS for Tuber Shape and Eye Depth co-identified ‘solcap_snp_
c1_8019’ as the most significant association located at 48.9 Mb on chro-
mosome 10. Rosyara et al. (2016) also detected the same SNP for these
linked traits in their association panel using the same SNP array. Previous
biparental mapping studies (Li et al. 2005b; Prashar et al. 2014; �Sliwka
et al. 2008; Vaneck et al. 1994) have also mapped major QTL for
Tuber Shape and Eye Depth to the same locus on chromosome 10.

n Table 3 Genomic Control Inflation Factor (lGC) analyses of GWAS models as a function of three different methodsa for adjusting
population structure

Q only models lGC Model Rankingb

Trait nMDSQ PCAQ STRQ nMDSQ PCAQ STRQ

After Cooking Blackening 1.569 1.586 1.571 1 3 2
Brightness 1.823 2.105 1.785 2 3 1
Days to Emergence 1.286 1.378 1.244 2 3 1
Dormancy Break 1.086 1.25 1.186 1 3 2
Dry Matter 2.453 2.45 2.494 2 1 3
Enzymatic Browning 1.388 1.613 1.457 1 3 2
Ethylene treated tubers sprouting 1.59 1.562 1.519 3 2 1
Eye Depth 1.666 1.481 1.578 3 1 2
Flesh Color 1.922 3.062 1.966 1 3 2
Foliage 1.168 1.302 1.132 2 3 1
Frying Color 2.254 2.4 2.244 2 3 1
Maturity 1.449 1.428 1.622 2 1 3
Plant Height 1.554 1.692 1.426 2 3 1
stems per Plant 1.444 1.474 1.297 2 3 1
Stolon Attachment 1.678 1.289 1.601 3 1 2
Total Tubers 1.404 1.991 1.319 2 3 1
Tuber Shape 1.888 2.035 2.075 1 2 3
Tuber Uniformity 1.593 1.548 1.621 2 1 3
Tubers per Stem 1.629 1.572 1.653 2 1 3
Yield 1.693 1.86 1.723 1 3 2

QK modelsc lGC

Trait nMDSQK PCAQK STRQK

After Cooking Blackening 0.944 0.977 0.956
Brightness 0.906 0.91 0.92
Days to Emergence 0.991 0.975 0.976
Dormancy Break 0.97 0.974 1.003
Dry Matter 0.925 0.953 0.931
Enzymatic Browning 0.945 0.964 0.947
Ethylene treated tubers sprouting 0.971 0.991 0.955
Eye Depth 0.977 0.908 0.93
Flesh Color 0.878 0.861 0.9
Foliage 0.964 0.991 0.927
Frying Color 0.957 0.993 0.969
Maturity 0.928 0.943 1.001
Plant Height 1.026 1.086 1.037
stems per Plant 0.97 0.988 0.965
Stolon Attachment 0.968 0.954 0.951
Total Tubers 0.972 0.949 0.914
Tuber Shape 0.975 0.968 0.981
Tuber Uniformity 1.007 1.025 1.021
Tubers per Stem 0.956 0.969 0.952
Yield 0.978 1.011 0.982
a
nMDS, non-metric multidimensional scaling; PCA, principal component analysis; STR, STRUCTURE.

b
1, first; 2, second; 3, third.

c
QK models not ranked as inclusion of K in GWAS models brought lGC close to 1 for all three Q methods tested.
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Prashar et al. (2014) identified ‘solcap_snp_c1_8020’ as the main
QTL SNP for this locus which we also report among the most sig-
nificant associations detected here for Tuber Shape and Eye Depth
(Table S8).

Genetic mapping studies have previously reported a major locus
affecting plant maturity on chromosome 5 (Bradshaw et al. 2008).
Analysis of a proxy (for maturity) phenotype ‘Stolon Attachment’ de-
tected a significant association (solcap_snp_c2_50302) on chromo-
some 5 around 0.5 Mb away from the StCDF1 gene, identified as the
gene underlying the maturity locus by Kloosterman et al. (2013). Pre-
vious GWAS attempt (Rosyara et al. 2016) with the same SNP array did
not detect any association for maturity, however a recent study
(Schmitz Carley et al. 2017) with SolCAP 8K array does identify ‘sol-
cap_snp_c2_50302’ as the most significant association for the maturity
locus. Interestingly, analyses of Foliage and Plant Height also revealed
the same SNP (solcap_snp_c2_50302) as the most significant associa-
tion validating the confounded behavior of these traits with maturity.

The Y-locus controlling the white-to-yellow flesh color in potato
maps to chromosome 3 (Bonierbale et al. 1988; Jacobs et al. 1995) and is
believed to be mainly regulated by the b-carotene hydroxylase (bch)
gene (Kloosterman et al. 2010). Out of the three copies of bch present
on chromosome 3 (Potato Genome Sequencing Consortium 2011), one
isoform (PGSC0003DMG400009501) is located at 44.1 Mb. In this
study, a strong association for Flesh Color was observed at 49.4 Mb
(solcap_snp_c2_20285) on Chromosome 3 with another significant
association at 45.6 Mb (solcap_snp_c2_25653, Table S8), approximately
1.5 Mb away from the causal gene.

Among theGWASmodels examinedhere,Q,K andQKwere able to
reduce p-value inflation relative to the Naïve model, with K and QK
further performing significantly better than the Q model. These trends
were consistent in lGC comparison, Q-Q plots andManhattan plots. K
and QK models corroborated well with each other, however, for their
co-identified marker-trait associations p-values from the K model were
generally (4 out of 6) lower and thus more significant than those re-
ported by the QK model (Table 5). Moreover, association for Plant
Height was only detected using K model and its absence in the QK

model perhaps indicates overfitting of the mixed model. Lack of
significant associations as well as appearance of only marginally
significant results for some of the traits (Plant Height and Stolon
Attachment) could be attributed to low marker density of the
SolCAP SNP array as also suggested by Rosyara et al. (2016).
These authors emphasized the importance of higher marker den-
sity and larger population size for future GWAS studies. Here we
report that a careful selection of model parameters is equally
critical for obtaining true associations and improving success
rates of GWAS in potato.

Implications for GWAS in Potato
The genotypes evaluated here were targeted to diverse end-uses but the
population structure analysis did not detect clear separation of cultivars
into distinct subpopulations. This is largely expected in potato as
breeders do not take population structure into account while choosing
parents of a cross. Suchpractice, however, is reported to generate diverse
levels of individual relatedness (Garris et al. 2005) as also observed in the
examined association panel. The presence of a weak population struc-
ture in cultivated potato per se could be attributed to admixed popula-
tions and also possibly to introgression breeding for developing disease
resistance using common resistant parents. Moreover, autotetraploidy
and high levels of heterozygosity have a strong tendency to ‘blur’ dif-
ferences between genotypes and contribute to weak population struc-
turing. Bouaziz et al. (2011) compared several methods to counter
population stratification for correcting different types of population
structure simulated in their study and further opined that addressing
populations with a weak population structure requires more careful
analysis than with discrete populations. Yu et al. (2006) have described
five categories to which population members can be assigned. Briefly,
these include populations with minimal population structure or famil-
ial relatedness (type I), family-based samples (type II), samples with
familial relationships within structured population (type III), samples
with explicit population structure (type IV) and samples with very high
levels of population structure coupled with diverse levels of familial
relatedness (type V). It is also implied that while suitable methods for

n Table 4 Genomic Control Inflation Factor (lGC) analyses of four principal GWAS models

Trait lGC Model Rankinga

Naïve K Q QK Naïve K Q QK

After Cooking Blackening 2.405 0.93 1.569 0.944 4 2 3 1
Brightness 2.17 0.892 1.823 0.906 4 2 3 1
Days to Emergence 1.816 0.969 1.286 0.991 4 2 3 1
Dormancy Break 2.243 0.986 1.086 0.97 4 1 3 2
Dry Matter 2.987 0.943 2.453 0.925 4 1 3 2
Enzymatic Browning 1.868 0.95 1.388 0.945 4 1 3 2
Ethylene treated tubers sprouting 2.324 0.965 1.59 0.971 4 2 3 1
Eye Depth 2.255 0.928 1.666 0.977 4 2 3 1
Flesh Color 4.251 0.881 1.922 0.878 4 1 3 2
Foliage 1.964 0.991 1.168 0.964 4 1 3 2
Frying Color 3.195 0.987 2.254 0.957 4 1 3 2
Maturity 1.53 1.012 1.449 0.928 4 2 3 1
Plant Height 1.994 1.048 1.554 1.026 4 2 3 1
stems per Plant 1.867 0.963 1.444 0.97 4 2 3 1
Stolon Attachment 1.667 0.947 1.678 0.968 3 2 4 1
Total Tubers 2.021 0.953 1.404 0.972 4 2 3 1
Tuber Shape 2.153 0.963 1.888 0.975 4 2 3 1
Tuber Uniformity 1.749 1.025 1.593 1.007 4 2 3 1
Tubers per Stem 1.825 1.003 1.629 0.956 4 2 3 1
Yield 3.276 0.987 1.693 0.978 4 1 3 2
a
1, first; 2, second; 3, third; 4, fourth; for cases where lGC was deflated (below 1), models closest to ‘1’ were ranked highest.
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accounting for population structure and individual relatedness need to
be implemented to control for false positives (type I error), excessive or
unnecessary use of these measures could also lead to loss in

statistical power. Considering the description above, the genotypes in
our association panel are likely to fall somewhere between type II and
III categories as a prominent individual relationship among the panel

Figure 8 Q-Q plots comparing the inflation of p-values for the four principal GWAS models for all 20 traits using the additive marker model. Red
circles: Naïve model; Green squares: K model; Blue diamonds: Q model; and Black triangles: QK model. Red line indicates p-values under the
expected normal distribution.
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Figure 9 Comparison of Manhattan plots for Naïve, K, Q and QK models. Significance threshold (black dashed line) is based on the genome-wide
false positive rate (a = 0.05) for the Bonferroni correction method and the marker-trait associations (MTAs) crossing the set threshold are depicted
in large red dots.
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members was visible accompanied by the presence of weak population
stratification. These findings are further supported by the evaluation of
different GWAS models where K model performs significantly better
than the Q model for all traits and the QK model is only marginally
more effective (than K model) for 13 (out of 20) traits. Other studies
(Li et al. 2011; Rosyara et al. 2016; Yu et al. 2006) have also reported
greater improvement with K model relative to Naïve and Q model
implying the efficacy of kinship over population structure in controlling
confounding effects due to relatedness.

CONCLUSIONS
The current study analyses LD in various subsets of the genome and
reports a moderate level of LD decay in potato. Stich et al. (2013), with
their estimates of very rapid decay of LD, predict a low success in
GWAS using an 8K SNP array on a panel of 300 genotypes and further
suggest a requirement of about 3 million SNPs for enhanced success.
LD decay estimates provided here suggest the suitability of the 8k array
for performing GWAS in potato, although success will also depend on
the trait being examined. GWAS with monogenic traits (e.g., tuber
shape) with large effect QTL will have greater success with 8k SNP
array than with the polygenic traits (e.g., yield) with complex architec-
ture as observed in the current and previous studies (Rosyara et al.
2016). Moreover, analyzing pathogen specific resistance traits using
8K array will be challenging due to possible ascertainment bias. Nev-
ertheless, Lindqvist-Kreuze et al. (2014) have suitably exploited this
array for performing GWAS for late blight resistance in tetraploid
potato. Previous GWAS efforts have identified significant associations
by targeting candidate loci for the traits of interest (Gebhardt et al.
2004; Li et al. 2005a; Malosetti et al. 2007; Pajerowska-Mukhtar et al.
2009; Simko et al. 2004a), by using a varying number of random AFLP
markers (D’hoop et al. 2014; D’hoop et al. 2008) and more recently by
employing a genome-wide SNP array (Rosyara et al. 2016; Schmitz
Carley et al. 2017; Lindqvist-Kreuze et al. 2014). These findings also
imply that the number of markers required for performing GWAS in
potato may not be as high as predicted by Stich et al. (2013), further
suggesting that LD decay rates observed in their study are not typical
for potato. Moreover, recently genotyping platforms with a larger num-
ber of SNPs (Vos et al. 2015; Illumina version 3 SNP array) have been
developed. These marker-dense platforms would provide for a more
accurate correction for different levels of relatedness in GWAS models
and will further aid in identifying genomic regions that have been
influenced by targeted breeding history for developing cultivars with
enhanced traits.

The primary aim of GWAS is to filter real marker-trait associations
that arise fromphysical linkageof loci fromspurious effects that result as
a consequence of potential confounders such as kinship and population
structure. The germplasm examined here shows multiple levels of

relatedness with a prominent kinship and weak population structure,
despite which the nMDS analysis was able to reveal the underlying
patterns of subpopulations in the panel. These subpopulations showed
an apparent structuring according to country of origin and further
provide novel insights into the breeding strategies adopted in Europe.
Evaluationof variousGWASmodels for 20 traits further demonstrated
the importance of applying trait-specific models and exploiting dif-
ferent population structure methods for performing association map-
ping in potato. The main finding reveals kinship, rather than
population structure, as the major factor controlling the level of
spurious associations in cultivated potato.
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