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Abstract

The estrogen receptors a (ERa) and b (ERb) are located in the nucleus and bind to estrogen to

initiate transcription of estrogen-responsive genes. In a variety of tumor cells, ERb has been

shown to be a tumor suppressor. In particular, ERb has anti-proliferative effects in osteosarcoma

cells. Additionally, ERb has been proven to regulate the apoptosis-related molecules IAP, BAX,

caspase-3, and PARP, and to act on the NF-jB/BCL-2 pathway to induce apoptosis in tumors.

Moreover, ERb can regulate the expression of the autophagy associated markers LC3-I/LC-3II

and p62 and induce autophagy in tumors by inhibiting the PI3K/AKT/mTOR pathway and acti-

vating the AMPK pathway. Here, we review the molecular mechanisms by which ERb induces

apoptosis and autophagy in a variety of tumors to further delineate more specific molecular

mechanisms underlying osteosarcoma tumorigenesis and pathogenesis. Considering the broad

involvement of ERb in apoptosis, autophagy, and their interaction, it is plausible that the critical

role of ERb in inhibiting the proliferation and metastasis of osteosarcoma cells is closely related

to its regulation of apoptosis and autophagy.
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Introduction

Estrogen receptors are ligand-dependent
receptors that are located in the nucleus
and composed of two subtypes: estrogen
receptor a (ERa) and estrogen receptor b
(ERb). These two subtypes have similar
structures, and both consist of a DNA
binding domain, a ligand binding domain,
a ligand-independent transcriptional activa-
tion region (AF-1) at the N-terminus, and a
ligand-dependent transcriptional activation
region at the C-terminus (AF-2).1 Both
estrogen receptor subtypes can initiate tran-
scription of estrogen-responsive genes
either in the form of a homodimer or a het-
erodimer after binding to estrogen. While
the transcriptional activation function of
AF-1 from ERb is weaker compared with
ERa, AF-2 from ERb has comparable func-
tion to ERa.2 Additionally, ERb contains a
repressor domain at the N-terminus. When
hormones are at sub-saturated levels, ERb
can inhibit the transcriptional activity of
ERa, thereby reducing the sensitivity of
cells to estrogen.3

ERb has been proven to be a tumor sup-
pressor in many tumor types. In prostate
cancer cells, ERb promotes apoptosis and
inhibits cell proliferation, invasion, metas-
tasis, and epithelial–mesenchymal transi-
tion (EMT).4,5 In ovarian cancer cells,
ERb inhibits cell growth and potentiates
the antitumor activity of chemotherapy
drugs, including cisplatin and taxol.6,7

ERb overexpression inhibits the growth of
ERa-expressing breast cancer cells and pre-
vents the production of estrogen-induced
breast cancer xenografts in nude mice.8,9

ERb can influence downstream cell cycle
progression by initiating the transcription
of cell cycle-related target genes.10,11 For
example, in breast cancer cells that endog-
enously express ERa, ERb overexpression
prevents proliferation by inhibiting cyclin
D1 expression and activating p21 and p27
expression to induce G2 cell cycle arrest.8

In malignant pleural mesothelioma cells,

ERb functions as a tumor suppressor and

its activation sensitizes tumor cells to cis-

platin.12 Moreover, ERb expression has

been revealed to be regulated by the

AKT1/SIRT1/FOXM1 axis, while activat-

ed ERb can inhibit AKT1 signaling, thus

demonstrating an inhibitory feedback loop

for ERb.13

ERa and ERb have been identified in

both healthy human bone cells and osteo-

sarcoma cells,14–16 and ERa and ERb are

stably expressed at a 1:4 ratio in the osteo-

sarcoma cell line U2-OS.17 However, in the

osteosarcoma cell line 143B, which has high

metastatic ability, only ERb expression was

detected.18 In recent years, estrogen and its

nuclear receptors have attracted widespread

attention as potential targets for treating

osteosarcoma. In the highly metastatic oste-

osarcoma cell line 143B, inhibition of cell

proliferation by the 17-e-diol derivative

2-ME was more prominent when higher

doses were used, and the estrogen inhibitor

fulvestrant inhibited cell growth at high

concentrations. Intriguingly, fulvestrant

down-regulated ERb expression, while

2-ME enhanced ERb expression.18

Therefore, the specific molecular mecha-

nisms by which ERb inhibits tumorigenesis

in osteosarcoma cells are unclear. Recently,

we reported that ERb exerts antitumor

effects in osteosarcoma U2-OS cells that

are reliant on the roles of ERb in regulating

integrin, IAP, and the Nuclear factor-jB
(NF-kB)/BCL-2 and phosphoinositide

3-kinase (PI3K)/AKT (protein kinase B)

signaling pathways.19 Here, we review the

molecular mechanisms by which ERb indu-

ces apoptosis and autophagy in a variety of

tumors to further delineate more specific

molecular mechanisms underlying osteosar-

coma tumorigenesis and pathogenesis, as

this might help pave the way for targeting

ERb to treat osteosarcoma and reduce mor-

tality rates.

Yang et al. 4645



Overview of the molecular

mechanisms by which ERb
inhibits tumor cell proliferation

and metastasis

Generally, cell death is predominantly

induced by apoptosis and autophagy, but

other processes like necrosis, aging, and

karyokinesis also result in cell death.

Studies have confirmed that ERb plays a

role in inducing apoptosis in various tissues.

In estrogen-treated mouse mammary cells,

ERa promotes cell proliferation, whereas

ERb inhibits cell growth and induces apo-

ptosis.20 In human prostate cancer cells,

ERb induces apoptosis by enhancing the

transcription of FOXO3a, which in turn

elevates p53 upregulated modulator of apo-

ptosis (PUMA) expression.21 In nude mice,

the ERb activator diosgenin can inhibit the

growth of prostate cancer xenografts.22

Autophagy is another mechanism by

which cell death occurs. Autophagy is usu-

ally activated in cells under stress condi-

tions.23 During autophagy, redundant

proteins and/or organelles that do not

affect survival are phagocytosed in

double- or multi-layered vesicles to form

autophagosomes. Subsequently, lysosomes

are fused with autophagosomes and release

proteases to degrade the contents of the

autophagosomes.24 Autophagy is a

double-edged sword, such that it can be

both beneficial and detrimental. Under

normal environmental conditions, healthy

cells maintain basal cellular activities and

prevent malignant transformation through

autophagy. In contrast, during stress, such

as hypoxia or starvation, tumor cells can be

controlled by autophagy pathways and are

more likely to survive than healthy cells.25

This also applies to conditions related to

cancer chemotherapy, in which tumor cells

can evade anticancer drugs through

autophagy and become drug resistant.25 It

has been reported that autophagy

suppresses tumors in most breast, uterine,
and prostate cancers.26 Studies have shown
that estrogen receptors also induce autoph-
agy. For instance, in hormone-resistant
breast cancer cells, ERb agonists reduce
Bcl-2 expression and activate autophagy.27

In Hodgkin’s lymphoma, ERb activation
induces autophagy, inhibits proliferation,
and causes cell cycle arrest.28

Recently, complex interactions between
autophagy and apoptosis have been uncov-
ered. Multiple stresses activate both
autophagy and apoptosis, which share mul-
tiple upstream and downstream regulatory
molecules, and thus can be mutually trans-
formed.29 In osteosarcoma cells, lignin DPT
can simultaneously induce apoptosis and
autophagy. DPT induces autophagy by
inhibiting activation of the PI3K/AKT/
mammalian target of rapamycin (mTOR)
pathway and blocking tumor cell apoptosis.
In contrast, the autophagy inhibitor 3-
methyladeine (3-MA) reverses this effect
and promotes apoptosis.30 An in-depth
study of the interactions between autoph-
agy and apoptosis will reveal mechanisms
underlying the pathogenesis of various dis-
eases and tumorigenesis of various cancers,
shedding new light on methods to treat
these cancers and other diseases.

Molecular mechanisms of

ERb-induced apoptosis in

tumor cells

ERb induces apoptosis by regulating
expression of the anti-apoptotic
IAP proteins

The anti-apoptotic proteins inhibitors of
apoptosis proteins (IAP) are a class of func-
tional proteins that bind and inhibit cas-
pases to prevent cell death.31 A mixture of
the anticancer drugs mistletoe and triter-
pene inhibits IAP expression in osteosarco-
ma cells and synergistically induces
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apoptosis.32 Decreased expression of the
IAP family protein X-linked inhibitor of
apoptosis (X-IAP) inhibits proliferation
and induces apoptosis in osteosarcoma
cells.33 Microarray analysis showed that
ERb regulates expression of the IAP
family protein SURVIVIN in human
breast cancer cells.10 Moreover, ERb regu-
lates expression of the IAP family protein
cIAP2 in epithelial colorectal cancer cells.34

ERb induces apoptosis by regulating
the NF-jB/BCL-2 pathway

NF-jB is a pro-inflammatory factor that is
involved in a variety of cellular processes
including proliferation, differentiation,
apoptosis, and inflammation.35 It has been
reported that estrogen receptors are associ-
ated with NF-jB signaling pathways in
tumor cells. In bladder cancer cells, ERb
levels are negatively correlated with nuclear
p65 levels.36 NF-jB directly regulates
transcription of the anti-apoptotic factor
BCL-2; thus, the NF-jB/BCL-2 pathway
is thought to play an important role
in tumorigenesis and apoptosis.37

Immunohistochemical analysis showed
that the occurrence of endometriosis-
associated tumors correlated with high
BCL-2 expression and decreased expression
of estrogen receptors.38 In hormone-
resistant breast cancer cells, ERb agonists
reduce BCL-2 expression and activate
autophagy.27

ERb regulates expression of proapoptotic
factor BAX

The pro-apoptotic protein BAX is a
member of the BCL-2 gene family and
forms a heterodimer with BCL-2 to func-
tion as a pro-apoptotic factor.39 After
opening the mitochondrial voltage-
dependent anion channel, BAX releases
cytochrome C to force cells to enter the
apoptotic program.40 In clinical studies of

non-small cell lung cancer, high ERb2 and

BAX expression were positively correlated

with patient survival.41 Moreover, artificial

introduction of ERb into prostate cancer

cells that do not express estrogen receptors

can upregulate BAX expression and induce

apoptosis.42

ERb regulates caspase-3 expression

Caspase-3 is a key regulator of apoptosis

that specifically catalyzes the cleavage of

many important cellular proteins.43,44 A

biomarker of apoptosis, caspase-3 is essen-

tial for the chromatin condensation and

DNA fragmentation during apoptosis.44

The phytoestrogens genistein and apigenin

inhibit proliferation of prostate cancer and

breast cancer cells by activating caspase-3

and promoting apoptosis. Luciferase

reporter assays and knockdown experi-

ments have indicated that apigenin specifi-

cally activates caspase-3 mRNA

transcription through ERb, while genistein

activates caspase-3 transcription through

both ERa and ERb.45 In prostate cancer

cells, diosgenin induces apoptosis by acti-

vating ERb to regulate caspase-3 expres-

sion.22 Artificial expression of ERb in

prostate cancer cells that do not express

nuclear estrogen receptors promote the

expression of caspase-3 and induce apopto-

sis.42 In colon cancer cells, nitric oxide

inhibits ERb activity and down-regulates

caspase-3 expression, preventing estrogen-

induced apoptosis.46

ERb regulates PARP expression

The primary role of Poly (ADP-ribose)

polymerase 1 (PARP) is to detect breaks

in single-stranded DNA and induce stress

responses to repair DNA in cells.47 PARP

uses nicotinamide adenine dinucleotide

(NAD) as a donor to attach ADP-ribose

to various nuclear proteins.48 As PARP is

activated by binding to the ends of DNA
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strands or strand breaks, it is believed that
PARP causes cell death by depleting NAD
and ATP in cells.49 During apoptosis,
caspase-3 is primarily responsible for cleav-
ing PARP at a highly evolutionarily con-
served cleavage site, indicating that PARP
cleavage plays an important role in apopto-
sis.50 In breast cancer cells that express
estrogen receptors, isoflavones induce apo-
ptosis by increasing ERb expression to ini-
tiate PARP cleavage.51 Furthermore,
artificial expression of ERb in estrogen
receptor-deficient prostate cancer cells pro-
mote PARP expression and accelerate
apoptosis.42

Molecular mechanisms of

ERb-induced autophagy in

tumor cells

ERb induces autophagy by regulating
LC3-I/II expression

LC3 is a microtubule-associated protein
that is constitutively expressed in mamma-
lian tissues. During autophagy, LC3-I, the
cytosolic form of LC3, binds to phosphati-
dylethanolamine to form LC3-II, which is
transported to autophagosome mem-
branes.52 When autophagosomes are fused
to lysosomes to form autophagosomes,
LC3-II in autophagosomes is degraded.52

Thus, the relative ratio of LC3-I/LC3-II
expression can be used to monitor autoph-
agy progression.53 In Hodgkin’s lymphoma
cells that are treated with lysosomal prote-
ase inhibitors, the ERb agonist DPN
enhances LC3-II expression. This suggests
that ERb induces autophagy to promote
autophagosome formation and causes
LC3-II formation even when the lysis func-
tion of lysosomes is inhibited.28

ERb regulates p62 expression

P62 is a cytoskeletal protein with a
ubiquitin-binding domain that has been

found to co-localize with ubiquitinated pro-
tein aggregates in many neuropathic
and liver diseases.54 LC3 and the GABA
type A receptor-associated protein
(GABARAP) family proteins recognize
and bind to specific sequences in p62.
During autophagy, p62 recognizes toxic cel-
lular waste, which is engulfed by autopha-
gosomes and degraded by lysosomes.55

When autophagy is inhibited, p62 and ubiq-
uitinated protein aggregates in the cell accu-
mulate, and when autophagy is activated,
p62 levels continuously decrease.54,55

Thus, p62 is used as a marker to study auto-
phagic flow in cells. In choriocarcinoma
cells, reactive oxygen species regulate the
transition of methotrexate-induced apopto-
sis to autophagy through the JNK/p62
pathway, which results in the resistance of
choriocarcinoma to methotrexate.56 ERa
overexpression in breast cancer cells with
endogenous ERa expression has been
reported to enhance p62 expression and
activate autophagy.57 However, the role of
ERb and p62 in autophagy has not been
reported in the literature so far, and more
extensive investigations are needed to
explore their possible link.

ERb induces autophagy by inhibiting
the PI3K/AKT/mTOR pathway

The protein kinase mTOR is the primary
regulator of autophagy. mTOR receives sig-
nals from various pathways, especially
those related to the cellular energy state
and the initiation or arrest of protein syn-
thesis.58 mTOR forms two complexes,
mammalian target of rapamycin complex
1 (mTORC1) and complex 2 (mTORC2),
which have different protein composi-
tions.59 The PI3K/AKT signaling pathway
is a major upstream regulator of mTORC1
and is normally activated by cell growth
factors to promote cell survival and inhibit
apoptosis in various cell types.60,61

mTORC2 is involved in AKT

4648 Journal of International Medical Research 47(10)



phosphorylation.59,60 Activation of AKT

can lead to the phosphorylation of

BAD,62 inactivation of caspase-9,63 inhibi-

tion of the nuclear transfer of the transcrip-

tion factor FKHRL1 (which regulates the

transcription of cell death genes),64 and

enhancement of mTOR activity,65 thereby

inhibiting apoptosis. In the case of starva-

tion or environmental stress, inhibition of

mTOR activity leads to the activation of

the autophagy-activated kinase ULK1 and

autophagosome formation.66 Additionally,

immunosuppressive drugs and rapamycin,

which inhibits mTOR, initiates autophagy

and autophagosome formation.66 Overall,

activation of the PI3K/AKT/mTOR path-

way increases cell viability and prevents cell

death caused by excessive autophagy, while

inhibition of mTORC1 activity induces

autophagy to clean up toxic waste in cells.

Meanwhile, mTORC2 regulates AKT activ-

ity to increase cell viability.67 The PI3K/

AKT/mTOR pathway is associated with

the estrogen receptor signaling pathway,

and the downstream target gene p70S6K

of mTORC1 negatively regulates AKT

and activates estrogen receptors through

phosphorylation. Moreover, in breast

cancer cells, p70S6K overexpression has

been reported to activate estrogen recep-

tors.68,69 In ERa-positive breast cancer, arc-
tigenin, a member of the Asteraceae family,

has been shown to inhibit mTOR pathway

activation, resulting in decreased ER

expression and increased autophagic cell

death.69 Additionally, arctigenin has also

been reported to function as a selective ago-

nist of ERb to restrict mTORC1 activation

in T cell lines;70 thus, it is plausible that

agonist-mediated activation of ERb can

inhibit mTORC1 to induce autophagic cell

death in tumors.

ERb induces autophagy by activating

the AMPK pathway

In mammalian cells, the protein kinase

AMPK senses ATP levels, thereby sensing

Figure 1. Possible mechanisms of ERb-induced apoptosis in tumor cells. Estrogen/ERb signaling has been
shown to regulate the apoptosis-related proteins IAP, BAX, caspase-3, and PARP, and to act on the NF-jB/
BCL-2 signaling pathway to induce apoptosis in tumor cells. ERb, estrogen receptor b; IAP, inhibitors of
apoptosis proteins; PARP, Poly (ADP-ribose) polymerase 1.
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the cellular energy status.24,71 When the ATP/

AMP ratio in cells decreases, AMPK is acti-

vated by the upstream protein kinase

LKB1.71 Activated AMPK phosphorylates

and activates the TSC1/2 complex, which

inhibits mTOR activity via Rheb, thereby ini-

tiating autophagy.72 Autophagy leads to the

reuse of nutrients in cells, which enhances

ATP production and restores a normal

ATP/AMP ratio.71 Conversely, the LKB1–

AMPK pathway leads to the phosphoryla-

tion and activation of the cyclin-dependent

kinase inhibitor p27kip1.73 Under conditions

of growth factor withdrawal and nutrient

deprival, p27kip1 responds to stress by induc-

ing autophagy to prevent cells from entering

the apoptotic process, allowing survival.73

Several studies have shown that estradiol

activates AMPK by enhancing phosphoryla-

tion of the alpha catalytic subunit (AMPKa)
of AMPK.74–76 In breast cancer and cardio-

myocytes, ERa directly binds to AMPKa,
and both ERa and ERb interact with

LKB1, which is upstream of AMPK.77 In

castrated male mice, testosterone activates

the expression of the autophagosome-

forming marker ALP and induces TSC2

expression to activate AMPKa, while ERa
is downregulated and ERb expression is

enhanced in muscle cells.78 These findings

demonstrate that ERb induces autophagy

by activating the AMPK pathway.

Figure 2. Possible mechanisms of ERb-induced autophagy in tumor cells. Estrogen/ERb signaling regulates
expression of the autophagy-associated markers LC3-I/LC-3II and p62, and is involved in autophagy
induction in tumors cells by inhibiting the PI3K/AKT/mTOR pathway and activating the AMPK pathway. ERb,
estrogen receptor b; AMPK, 5’ AMP-activated protein kinase; PI3K, phosphoinositide 3-kinase; AKT, protein
kinase B; mTOR, mammalian target of rapamycin; NF-jB, nuclear factor j-light-chain-enhancer of activated B
cells; BCL-2, B-cell lymphoma 2.
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Conclusions

ERb exhibits antitumor effects in different

tumor types. ERb regulates the apoptosis-

related proteins IAP, BAX, caspase-3, and

PARP, and influences NF-jB/BCL-2 sig-

naling to induce apoptosis (Figure 1).

ERb is also involved in the induction of

autophagy by inhibiting the PI3K/AKT/

mTOR pathway and activating the

AMPK pathway (Figure 2). Our previous

report revealed that ERb exerts antitumor

effects in osteosarcoma U2-OS cells

through the NF-jB/BCL-2 and PI3K/

AKT/mTOR pathways.19 Considering the

broad involvement of ERb in the linked

processes of apoptosis, autophagy, it is

plausible that the critical role of ERb in

inhibiting the proliferation and metastasis

of osteosarcoma cells is closely related to

its regulation of apoptosis and autophagy.
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