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The implementation of decisions affecting cell viability and proliferation is based on

prompt detection of the issue to be addressed, formulation and transmission of a correct

set of instructions and fidelity in the execution of orders. While the first and the last

are purely mechanical processes relying on the faithful functioning of single proteins

or macromolecular complexes (sensors and effectors), information is the real cue, with

signal amplitude, duration, and frequency ultimately determining the type of response.

The cellular response to DNA damage is no exception to the rule. In this review article we

focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing

mitosis and the machineries in charge of assembling the apparatus responsible for

chromosome alignment and segregation as well as the inputs that control its function

(checkpoints). Next, we examine the type of issues that a cell approaching mitosis might

face, presenting the impact of post-translational modifications (PTMs) on the correct

and timely functioning of pathways correcting errors or damage before chromosome

segregation. We conclude this essay with a perspective on the current status of mitotic

signaling pathway inhibitors and their potential use in cancer therapy.
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INTRODUCTION

Signaling pathways have been initially depicted as linear cascades, with elements organized in a
hierarchical manner and unidirectional arrows connecting a stimulus to the final response through
a defined number of intermediates (Rodbell, 1980). The advent of systems biology, following
completion of animal and plant genome sequencing, has changed this view. The amount of
information available today allows to more realistically depict signaling pathways as networks,
where the arrangement of components (nodes) is such that some are more connected than others
in a so-called scale-free topology, and where sets of components are organized in modular fashion,
with a clear hierarchy among modules (Barabási and Oltvai, 2004). Such architecture has been
shown to ensure fault tolerance (robustness) in response to challenges (Barabási and Oltvai, 2004;
Zhu et al., 2007). Corollary to system-level approaches has been the development of mathematical
models where the fluctuation of variables as it actually occurs in defined biological systems can be
computed, hence realistically representing the dynamic flow of information in signaling networks
(Samaga and Klamt, 2013; Gerard et al., 2015).

The descriptive power of systems biology and its ability to predict scenarios do not, however,
dwarf the contribution of reductionism when it comes to identification of network components
and to dissection of their molecular mechanism of action, including elucidation of the inputs
that affect their sub-cellular localization, the interaction with partner proteins and biochemical
properties such as stability and enzymatic activity. It is only thanks to the wealth of information
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provided by reductionist approaches that rational design of small
molecule inhibitors able to interfere with the correct functioning
of networks could be successfully guided (Asghar et al., 2015).
Since the constitutive elements of networkmodules hierarchically
relate to each other, modification of structural or enzymatic
traits of one or more elements in a network will necessary
affect network properties and result in outputs that are directly
observable. Protein post-translational modification (PTM), in
form of covalent addition of chemical groups or entire peptidyl
moieties to one or more amino acids of a protein target, is
the means to rapidly and, in most cases, reversibly affect such
traits. The hierarchical, synergistic or antagonistic combination
of PTMs defines a code that translates into distinct outputs,
hence contributing to shape the emergent properties of complex
systems like living organisms (Lorenz et al., 2011).

In this review, we focus on mitosis and examine how DNA
damage occurring during transition through mitosis is addressed
to avoid genome instability. Special emphasis will be set on the
impact of PTMs on mechanisms of genome surveillance. We
conclude with an up-to-date perspective on drugs designed for
therapeutic purposes and that entered clinical trials.

MITOSIS AND CHECKPOINTS

Transition through the cell cycle sets the conditions for cell
division. This results in the generation of two daughter cells
genetically identical to the mother, according to a principle
originally formulated by Rudolf Virchow who first made such
observation in 1858 and stated that every cell derives from a
pre-exiting cell, “omnis cellula e cellula” (Mazzarello, 1999). The
major events characterizing transition through the cell cycle are
cell growth, by which means cells increase their size and the
number of organelles, and duplication of genetic material in S-
phase. If not perturbed, upon completion of DNA replication
cells enter mitosis, a term that originally described nuclear
division (Mazzarello, 1999). Perturbations of this program
may be caused by external agents such as ionizing radiation
or certain chemotherapeutic drugs as well as by endogenous
metabolic processes, leading to the formation of double-
strand breaks (DSBs). Inappropriate repair of DSBs may cause
gross chromosomal aberrations, the activation of oncogenes
or the inactivation of tumor suppressor genes resulting in
carcinogenesis. Direct demonstration of the importance of
surveillance pathways in the maintenance of genome stability
(Hanahan andWeinberg, 2011) is provided by genetic conditions
characterized by dysfunction of the machinery that signals DNA
damage and/or addresses its repair, which are associated with a
predisposition to the development of cancer (Curtin, 2012).

Mitosis
Mitosis is probably the most spectacular event a cell undergoes
to during its lifetime and it is essentially the process by which
the duplicated genetic information is equally distributed to the
daughter cells. Morphological changes that are easily observable
with a microscope allow distinguishing sub-phases of mitosis
consisting of prophase, metaphase, anaphase and telophase.
These are followed by cytokinesis, ultimately causing physical

separation of the daughter cells. The use of suitable model
organisms and the support provided by modern technology
has led us to a deep understanding of mechanistic aspects
and regulatory pathways controlling the onset, execution and
completion of mitosis. Briefly, in S-phase newly synthesized
DNA emerging behind replication complexes that processively
move on template DNA is maintained catenated throughout its
length by ring-shaped cohesins and sister chromatids are held
together at the centromeric region where kinetochores have been
assembled (Kenney and Heald, 2006; Walczak et al., 2010). As
cells move to prophase, chromatin condensation takes place,
leading to the formation of visible rod-shaped structures, with
a reduction of the length of DNA to an extent compatible with
the distance that chromatids cover when moving to the opposite
poles of the mitotic spindle (Walczak et al., 2010). Chromatin
condensation results from the action of a multi-subunit protein
complex called condensin, whose recruitment and activity
are positively controlled by phosphorylation through CDK1,
Aurora-B and PLKs and opposed by phosphorylation through
CK2 (Hirano, 2012). Topoisomerase II, which undergoes
phosphorylation and sumoylation in mitosis (Dephoure et al.,
2008; Hendriks et al., 2014), ensures decatenation of sister
chromatids prior to condensation (Hirano, 2015). Segregation
of compacted chromosomes is initially prevented by cohesins
(Peters et al., 2008) that are controlled by a combination of PTMs
at lysine residues involving acetylation and sumoylation (Rudra
and Skibbens, 2013) and are first removed at chromosome arms
during prophase through PLK1-mediated phosphorylation (Hauf
et al., 2005). At this time centromeric regions are protected by the
protein shugoshin that, through recruitment of the phosphatase
PP2A, counteracts PLK1 activity (Kitajima et al., 2006; Liu et al.,
2013b). Construction of the mitotic spindle is the necessary step
for physical separation of chromatids, with different strategies
employed in distinct organisms to promote microtubule-to-
kinetochore contacts (Boettcher and Barral, 2013). Microtubules
forming the cell’s cytoskeleton are disassembled in late prophase
and highly dynamic microtubules radiate at this point from
mature centrosomes or self-organize around chromosomes
(Heald et al., 1996, 1997; Karsenti and Vernos, 2001), driving
migration of centrosomes to opposite poles of the cell (inter-polar
microtubules), anchoring centrosomes to the plasma membrane
and positioning the spindle (astral microtubules) and initiating
the capture of chromosomes (kinetochore microtubules). All
these events are controlled by mitotic kinases (Nigg, 2001;
Walczak et al., 2010).

In prophase, more than 100 proteins assemble around each
centromeric region forming the kinetochore, while in the
cytoplasm pairs of centrioles that have duplicated during S phase
remain linked together at the proximal ends by a proteinaceous
link containing C-Nap1 and rootletin, which is removed at
mitotic entry through NEK2-mediated phosphorylation (Bahe
et al., 2005; Hardy et al., 2014). Microtubule-chromosome
interactions are characterized by the dynamic process of capture
and release of erroneous attachments, as for instance merotelic
attachments, which defines the condition of a single kinetochore
being attached to microtubules nucleated from opposite
spindle poles. Such interactions are principally regulated by

Frontiers in Genetics | www.frontiersin.org 2 July 2016 | Volume 7 | Article 128

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Ferrari and Gentili PTMs and Mitotic DNA Damage

Aurora-B-mediated phosphorylation of kinetochore components
(Cheeseman, 2014), occur in prometaphase and metaphase, and
largely affect the duration of these sub-phases (Pereira and
Maiato, 2012). The subsequent chromosome congression to the
spindle equator (metaphase plate) is coordinated by the action
of motor proteins such as dynein and CENP-E, the latter being
controlled by an Aurora-A/PP1-dependent phosphorylation
switch (Kim et al., 2010), and is followed by a process called
bi-orientation, where kinetochores of sister chromatids attach
to microtubule bundles that have nucleated from opposite
centrosomes (Tanaka et al., 2005). Upon congression of all sister
pairs to the metaphase plate, licensing of a multimeric E3-
ligase, the anaphase promoting complex/cyclosome (APC/C),
ensues and leads to ubiquitylation and degradation of proteins
such as Cyclin B, switching off CDK1 activity, and securin,
freeing the enzyme separase that is now able to cleave and
remove centromeric cohesins (Sivakumar and Gorbsky, 2015).
This point marks the metaphase-to-anaphase transition where
mechanical processes, consisting of inter-polar microtubule
elongation and kinetochore microtubule shortening, as well as
biochemical events mediated by the action of APC/C, determine
the movement of chromatids to spindle poles (Castro et al., 2005;
Goshima and Scholey, 2010). The process is completed by re-
establishment of the nuclear membrane around decondensing
chromosomes at telophase and is followed by physical separation
of daughter cells, or cytokinesis (Pines and Rieder, 2001), assisted
by the action of an acto-myosin contractile ring (D’Avino,
2009).

G2/M Checkpoint
Entry and transition through mitosis is highly controlled by
molecular constrains (checkpoints) that have evolved to prevent
genomic instability and consist of the G2/M and the spindle
assembly checkpoints. The G2/M checkpoint prevents mitotic
entry to cells that have suffered DNA damage during G2 or
that have progressed into G2 with unrepaired DNA lesions
from previous cell cycle phases. Final target of the G2/M
DNA damage checkpoint is CDK1, the master regulator of
mitosis. The cascade of phosphorylation events impinging on
CDK1 is briefly sketched below. Signals from unfinished DNA
replication (through ATR/CHK1), damaged DNA (through
ATM/CHK2) or DNA resected at sites of damage (through
ATR/CHK1), activate the kinases WEE1/MYT1 that, in turn,
phosphorylate T14 and Y15 in the Gly-rich P-loop of CDK1,
causing inhibition of enzymatic activity (Heald et al., 1993;
Figure 1). Phosphorylation at these sites does not impair ATP
binding, neither sterically nor by electrostatic repulsion (Gould
and Nurse, 1989), but rather hampers catalysis (Atherton-Fessler
et al., 1993). Additionally, WEE1 enforces the signal of “NO-
entry” into mitosis by inactivating CDC25 (Donzelli and Draetta,
2003), the phosphatase responsible for CDK1 dephosphorylation.
Specifically, CHK1-dependent phosphorylation of CDC25A at
Ser124/Thr507 and of CDC25C at Ser216 mediates interaction with
14-3-3 proteins that, in turn, displace the phosphatases from
the nucleus, a mechanism that appears to be the primary way
to inhibit the function of these two phosphatases during G2

and mitosis (Uto et al., 2004). On the other hand, inhibition of

CDC25B, the phosphatase mediating activation of CDK1/Cyclin
B at centrosomes during prophase, has been extensively studied
in relation to its mitotic role (Gabrielli et al., 1996) but is
less characterized in the context of the DNA damage response.
Factors upstream of CDC25 or Cyclin B/CDK1, such as the Polo-
like kinases PLK1 and PLK3 (Nyberg et al., 2002; Bahassi el et al.,
2006), Aurora-A (Ferrari et al., 2005; Krystyniak et al., 2006;
Bhatia et al., 2010) and protein phosphatase PP2A (Yan et al.,
2010) are also part of the G2/M checkpoint signaling network.
Maintenance of the G2/M checkpoint activation partly relies on
transcriptional regulation by p53 that induces transcription of
the cell-cycle inhibitor p21CIP1/WAF1, and on expressions of 14-
3-3s (a scaffold and signaling protein), PUMA (BCL2 binding
component 3), BAX (BCL2 partner and apoptotic activator)
and GADD45 (growth arrest and DNA-damage-inducible gene)
(Nyberg et al., 2002; Riley et al., 2008). Upon completion of DNA
synthesis or repair of damage, signals fromWEE1 cease, resulting
in progressive dephosphorylation and reactivation of CDC25C.
The latter, in turn, initiates selective dephosphorylation of the
inhibiting sites in CDK1 (Izumi and Maller, 1993), creating an
auto-catalytic loop in which CDK1- (Hoffmann et al., 1993;
Strausfeld et al., 1994) and Polo-like kinase 1 (PLK1)-dependent
CDC25C phosphorylation (Strausfeld et al., 1994; Toyoshima-
Morimoto et al., 2002) increase phosphatase activity leading to
full dephosphorylation and activation of CDK1. As a result, the
checkpoint is silenced and cell cycle progression ensues.

Spindle Assembly Checkpoint
The spindle assembly checkpoint (SAC) ensures that
chromosomes are properly bi-oriented, preventing
missegregation that would otherwise result in aneuploidy
(Musacchio and Salmon, 2007). Target of the SAC is the APC/C,
an E3 ubiquitin ligase composed of approximately 15 subunits,
which binds its substrates by recognizing so-called degron
sequences (Pines, 2011). APC/C is activated in mitosis by its
co-activators CDC20 and CDH1 in a Cyclin B/CDK1-dependent
manner (Wieser and Pines, 2015) and works in tandem with
two distinct E2 conjugating enzymes: UBCH5 or UBCH10
that add the first ubiquitin moiety to APC/C substrates, and
UBE2S that extends the chain (Rodrigo-Brenni and Morgan,
2007; Garnett et al., 2009) mediating preferentially the formation
of K11-linked ubiquitin chains (Wu et al., 2010; Bremm and
Komander, 2012). K11-chains show a distinct fold with respect
to K48- or K63-linked ubiquitin (Matsumoto et al., 2010). A
phosphorylation-dependent switch controls timely activation of
the E2 UBE2S by the APC/C complex, whereby phosphorylation
of Ser92 in CDC20 prevents delivery of UBE2S to the APC/C,
and its dephosphorylation by PP2AB56 allows UBE2S to bind
the APC/C, catalyzing ubiquitin chain elongation (Craney et al.,
2016).

Major players of the SAC are Mad1, Mad2, Bub1,
BubR1/Mad3, Bub3, and Mps1, proteins that essentially
monitor kinetochore—microtubule attachments and convert
this to signals that inhibit metaphase-to-anaphase transition
(Cheeseman, 2014). The main trigger of signals from SAC is
Mad2, a protein that can assume an “open” (inactive) or a “close”
(active) conformation. Mechanistically, the closed conformation
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FIGURE 1 | DNA damage response in G2. Upon generation of double strand breaks (DSBs), ATM is recruited to DNA ends in a MRN-dependent manner.

Phosphorylation of H2AX creates epitopes facilitating the recruitment of DNA damage signaling and repair factors in a manner that depends on PTMs such as

ubiquitylation and sumoylation (see text for details and Bologna and Ferrari, 2013). Successful activation of ATM-dependent signals causes controlled resection of

DNA ends that, in turn, trigger ATR-dependent pathways. The latter converge with the former on the master regulator of mitosis, CDK1, blocking its activity.

into which Mad2 folds once bound to kinetochores that are
improperly attached to spindlemicrotubules is induced in further
neighboringMad2molecules that diffuse away from kinetochores
and associate with BubR1 and Bub3 forming the so-called mitotic
checkpoint complex (MCC). The latter binds and sequesters
the first co-activator of APC/C, Cdc20, in an MPS1-dependent
manner (Wieser and Pines, 2015), blocking degradation of
securin and effectively arresting cells in metaphase (Cheeseman,
2014; Sivakumar and Gorbsky, 2015). The kinases Aurora-B,
CDK1 and PLK1 participate in regulating kinetochore function,
with Aurora-B-dependent phosphorylation of Ndc80 N-
terminus reducing the microtubule-binding affinity of the Ndc80
complex and eliminating incorrect kinetochore-microtubule
attachments (Cheeseman et al., 2006). PLK1 associates and
regulates several kinetochore proteins, including those localized
in the inner centromere like CENP-U, phosphorylation of
which facilitates PLK1 recruitment to the kinetochore (Kang
et al., 2006), and PLK1-interacting checkpoint helicase (PICH)
that binds the kinase through its Polo-box domain (Baumann
et al., 2007). Once appropriate attachment is established (i.e.,
bi-orientation) such that sufficient tension is created and the

kinase is spatially separated from its substrates (Liu et al., 2009),
PP1 dephosphorylates Aurora-B targets (Cheeseman, 2014), with
additional support from PP2A (Foley et al., 2011). Satisfaction of
the checkpoint upon appropriate bi-orientation of chromosomes
triggers the metaphase to anaphase transition.

CHALLENGES TO THE GENOME AND
RESPONSES IN MITOSIS

In order to preserve the integrity of information contained
in the genome, DNA is continuously monitored by proteins
that recognize distinct types of damage. Such proteins or
protein complexes—so called sensors—inform signal transducers
that, in turn, prompt effectors to orchestrate repair of the
damage (Bologna and Ferrari, 2013; Jackson and Durocher, 2013;
Dantuma and van Attikum, 2016). In parallel, transducers trigger
checkpoint pathways impinging on key cell cycle controllers
(see above) that ultimately slow down or arrests transition
through the cell cycle (Kastan and Bartek, 2004). Inappropriate
detection or untimely repair of DNA damage before the onset
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of mitosis may lead to chromosome breaks, rearrangements or
fusions—comprehensively know as “structural abnormalities”—
that facilitate the development of cancer (Branzei and Foiani,
2010; Curtin, 2012) and have been focus of intense research in
the last decades (Aguilera and García-Muse, 2013).

DNA repair involves chromatin remodeling that, in turn,
facilitates binding of repair factors to the region(s) where the
lesion occurred (Aydin et al., 2014). This sequence of events has
been observed during transition through the cell cycle, when
the DNA repair machinery called to action faces simple or
more challenging tasks, depending on whether damage is in
euchromatin or in heterochromatin (Lemaître and Soutoglou,
2014). It appears, however, that DNAdamage responses operative
till completion of G2 and mediated through checkpoint kinases
converging on WEE1 and CDK1 (Boddy et al., 1998; Smith et al.,
2010; Figure 1), must be blocked at the time of chromosome
condensation and segregation. In cells carrying a wild type
complement of checkpoint genes, entry into prometaphase
with ensuing chromosome condensation and nuclear envelope
breakdown defines a point of non-return and puts an end to the
checkpoint that was operative in G2.

Termination of activities on DNA in mitosis is exemplified
by the repression of transcriptional activity (Martínez-Bálbas
et al., 1995) that occurs through a passive process, consisting
in limited access of transcription machinery to compacted
chromatin, and an activemechanism, entailing CDK1-dependent
phosphorylation of its components (Gottesfeld and Forbes,
1997). Similar mechanisms control DNA repair proteins, to
avoid that active DSB repair during mitosis may result in
telomere fusions, aneuploidy (Cesare, 2014; Orthwein et al.,
2014) and whole chromosome missegregation through collateral
stabilization of kinetochore-microtubules interactions (Bakhoum
et al., 2014). Indeed, it was observed that in the absence of
genotoxic stress, DNA repair proteins are phosphorylated in
mitosis in a CDK- or PLK1-dependent manner to exclude them
from chromatin (Figure 2). This is the case for BRCA2 (Lee
et al., 2004), RAP80 (Cho et al., 2013), 53BP1 (Orthwein et al.,
2014; Benada et al., 2015), RNF8 (Orthwein et al., 2014) and
XRCC4 (Terasawa et al., 2014), to mention just few examples.
RNF8, a well-characterized E3 ubiquitin ligase recruited to sites
of damage through interaction of its N-terminal FHA domain
with phosphorylated MDC1 and HERC2 (Bologna and Ferrari,
2013), the latter acting as coordinator of ubiquitin-dependent
assembly of DNA repair factors (Bekker-Jensen et al., 2010), is
phosphorylated by mitotic kinases to suppress its interaction
with MDC1 (Orthwein et al., 2014). In the case of 53BP1,
phosphorylation of two residues within the ubiquitylation-
dependent recruitment (UDR) motif of 53BP1 in mitosis blocks
binding to K15-ubiquitylated histone H2A, thus impairing its
recruitment to foci (Benada et al., 2015). On the other hand,
PP4C/R3β-mediated dephosphorylation of these sites in G1
re-establishes 53BP1 binding to chromatin (Lee et al., 2014).
In the case of BRCA2, PLK1-dependent phosphorylation at
S193,205,206 and T203,207 causes dissociation from the histone
acetyltransferase protein p300/CBP-associated factor (P/CAF)
(Lin et al., 2003), and CDK-dependent S3291 phosphorylation at
the onset of mitosis inhibits BRCA2-mediated stabilization of

RAD51 nucleofilaments that are normally generated at sites of
recombination (Esashi et al., 2005).

Shutting off repair in mitosis, however, does not imply
that DNA damage is ignored if it occurs in this phase of
the cell cycle. Evidence obtained in early studies conducted in
vertebrate somatic cells showed that chromosome fragmentation
caused by irradiation at the beginning of mitosis persisted till
anaphase (Zirkle and Bloom, 1953), possibly indicating that
repair pathways were not activated in this period of time. On
the other hand, recent studies on the outcome of laser irradiation
of mitotic chromosomes indicated that DNA damage response
is triggered within 30 s from the treatment (Gomez-Godinez
et al., 2010). Studies in the budding yeast S. cerevisiae, where
activation of a dicentric chromosome was used to introduce a
double strand DNA break into a chromosome at mitosis, showed
that cells paused in mid-anaphase, triggering RAD9-dependent
events that were reminiscent of a DNA damage response (Yang
et al., 1997). Subsequent work conducted in yeast, where cells
were irradiated in mitosis, showed that stabilization of Pds1,
an anaphase inhibitor and APC/Cdc20 target, led to delay of
anaphase and mitotic exit, facilitating repair of damage (Tinker-
Kulberg andMorgan, 1999). Delay of the metaphase-to-anaphase
transition was also reported for Drosophila embryos undergoing
irradiation or being treated with methly metane sulfonate (MMS)
and it was shown to depend on the stabilization of Cyclin A (Su
and Jaklevic, 2001). Mitotic DNA damage in X. laevis and DT40
cells was shown to prevent spindle assembly in an ATM/ATR-
dependent manner (Smith et al., 2009), and proposed to be
an additional means to monitor chromosome breaks that have
escaped the G2/M checkpoint.

It has been reported that eukaryotic cells are able to delay the
execution of mitosis or, in some instances, reverse progression
through mitosis, in response to DNA damage (Rieder and
Cole, 1998) or microtubule poisons (Rieder and Cole, 2000)
administered in antephase, a time when microscopic changes
in the cell are not yet detectable and that physically spans
from the conclusion of G2 to the initiation of chromosome
condensation (Chin and Yeong, 2010). The same response was
observed upon damage caused in early prophase (Rieder and
Cole, 1998). In antephase, cells activate a checkpoint that is not
mediated by PI-3K-like kinases such as ATM but rather depends
on two proteins, the CHFR E3-ubiquitin ligase (Matsusaka and
Pines, 2004; Shinde et al., 2013) that principally catalyzes poly-
ubiquitylation of its substrates via K48 and K63 (Kang et al.,
2002; Bothos et al., 2003; Oh et al., 2009) and is involved
in the first wave of ubiquitylation at DNA damage sites (Liu
et al., 2013a), and the Pro-directed p38 MAPK (Mikhailov
et al., 2004; Figure 2). Cells containing a wild-type antephase
checkpoint undergo chromosome decondensation and revert to a
G2-like state (Rieder and Cole, 1998; Matsusaka and Pines, 2004),
whereas cells lacking a functional CHFR progress into mitosis
(Scolnick and Halazonetis, 2000). Extensive damage occurring
upon completion of antephase does not normally cause reversion
to an early stage of the cell cycle but rather triggers mitotic arrest
through activation of SAC (Mikhailov et al., 2002, 2004; Choi
and Lee, 2008), the only mechanism left in the arsenal of cells at
this point of the cell cycle. SAC, however, does not orchestrate
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FIGURE 2 | DNA damage response in mitosis. Irradiation of cells in antephase or in early prophase triggers a response that is independent of PI-3K-like kinases

such as ATM but rather depends on the E3-ubiquitin ligase CHFR and the stress-response kinase p38MAPK. On the other hand, irradiation of cells in late prophase or

in metaphase leads to a curtailed DNA damage response. Ultrafine anaphase bridges, caused by improper resolution of replication or recombination intermediates,

are addressed by the coordinated action of the helicases PICH and BLM supported by RIF1 (see text for details).

repair of damaged DNA but monitors that distribution of
chromosomes to daughter cells occurs equally, hence avoiding
aneuploidy. As mentioned above, SAC is active at kinetochores
where the state of microtubule attachment is monitored, and
signaling pathways preventing anaphase remain active as long
as mono-oriented or incorrectly attached kinetochores are
detected (Mikhailov et al., 2002; Cheeseman and Desai, 2008).
Observations made in yeast (Pangilinan and Spencer, 1996) and
in mammalian cells (Mikhailov et al., 2002) indicate that altering
the topology of chromatin, particularly at regions that affect
kinetochore structure, prevents satisfaction of SAC and delays
transition through mitosis. These studies showed that ATM-
dependent pathways (Mikhailov et al., 2002) or DDR genes
(Pangilinan and Spencer, 1996) are not involved in the response
to chromosome damage and that the metaphase block can be
rapidly overridden by dominant-negativeMad2 (Mikhailov et al.,
2002). However, a study addressing the effect of decatenation
inhibitors (topoisomerase-II inhibitors) on nocodazole-arrested
cells described a number of ATM-dependent events in response
to these drugs, including H2AX phosphorylation, CDK1
inactivation, histone H3 dephosphorylation and chromosome

decondensation, paralleled by stabilization of Cyclins A and
B1, with cells apparently unable to exit mitosis (Chow et al.,
2003). Studies conducted in our laboratory on cells that
were synchronized in mitosis without disturbing microtubule
dynamics, hence without “pre-sensitizing” cells by activation
of stress responses that are known to increase levels of
γH2AX (Giunta et al., 2010), and that we treated with
ionizing radiation at metaphase, showed CHK2 activation,
rapid inhibition of CDK1 and Aurora-A activities accompanied
by reactivation of PP1, increased APC/CDH1 E3-ubiquitin
ligase activity and chromosome decondensation (Bhatia et al.,
2010). Our data clearly showed that metaphase-irradiated cells
completed mitosis at the expenses of genome stability, displaying
increased chromosome segregation defects and the formation of
micronuclei (Bhatia et al., 2010).

A comprehensive study that assessed entity and amplitude
of the DDR in mitosis by scoring formation of IR-induced
foci (IRIF) and comparing mitotic to interphase cells concluded
that only a subset of IRIF could form in mitosis, namely
those comprising γ-H2AX, NBS1 and MDC1, but not RNF8,
RNF168, BRCA1 or 53BP1 (Giunta et al., 2010) as also
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confirmed by others (Nelson et al., 2009). Exclusion of
RNF8 and 53BP1 from chromatin was shown to be the
consequence of phosphorylation by mitotic kinases (see above)
(Orthwein et al., 2014) and association of 53BP1 to IRIF
was observed only upon nuclear envelope reformation around
decompacting chromosomes in telophase (Giunta et al., 2010;
Figure 2).

Specifically regarding ATM, its activation has been examined
in mammalian cells both during undisturbed transition through
mitosis or upon stress. In the absence of DNA damage, the
kinase Aurora-B phosphorylates ATM on S1403 in mitosis,
and abrogation of this event was shown to impair signaling
through the spindle assembly checkpoint (Yang et al., 2011).
Administration of taxol, a drug suppressing microtubule
dynamics and causing mitotic stress, was reported to trigger
ATM activity, though none of the known ATM targets in DDR
such as SMC-1, NBS-1 or CHK-2 was phosphorylated under
these conditions (Shen et al., 2006). DNA damage response-
related roles for ATM in mitosis were inferred from early
observations made in lymphoblastoid cells derived from A-T
patients, which displayed a defective SAC upon treatment with
radiation (Takagi et al., 1998; Shigeta et al., 1999). Another report
described the activation of ATM in response to chromosomal
breaks generated during mitotic catastrophe (Imreh et al.,
2011). ATM activation was also examined upon irradiation of
cells synchronized in mitosis with drugs that interfere with
microtubule polymerization. Under these conditions, ionizing
radiation triggered ATM activity, though CHK2 failed to fire and
cells remained inmitosis with elevated phosphorylation atMPM-
2 epitopes, indicative of high CDK1 activity. Mechanistically, the
absence of a productive DDR signal following ATM activation
was proposed to result from PLK1-dependent phosphorylation of
CHK2, with 53BP1 acting as platform to bring PLK1 and CHK2
in close proximity (van Vugt et al., 2010; Figure 2).

As a whole, these studies confirm that ATM can fire when
the minimal requirement for its activation is satisfied, namely
the presence of exposed double-stranded ends (You et al., 2007),
independently on the cell cycle position, though a productive
DDR downstream of ATM seems not to be triggered in early
mitosis.

In addition to DNA damage occurring during transition
through mitosis, cells reaching mitosis are confronted with
other problems: these are the structures resulting from
incomplete DNA replication, improper resolution of replication
intermediates or unresolved intermediates of homology-directed
repair carried over from S-phase (Liu et al., 2014). Such structures
become a threat at the time of chromosome segregation
since they can cause sister chromatid entanglement and non-
disjunction (Gelot et al., 2015). Incomplete DNA replication
occurs at regions encompassing so-called “replication barriers.”
Predominant among those are common-fragile sites (CFSs)
(Durkin and Glover, 2007), cytologically defined as segments in
metaphase chromosomes displaying brakes at runs of flexible AT-
rich repeats (Aguilera and García-Muse, 2013). CFSs constitute
up to 80% of the breakpoints that lead to the gross chromosomal
rearrangements (GCRs) observed in precancerous cells (Bartkova
et al., 2006). Part of under-replicated CFSs observed in cells

at anaphase remain connected through thin threads of DNA
called ultrafine bridges (UFBs) (Liu et al., 2014). To avoid DNA
breaks resulting from segregation of incompletely replicated
chromosomes, these structures are addressed before cell division.
It has been observed that BLM, along with topoisomerase IIIα,
RMI1, RMI2 (BTRR complex) and PICH (PLK1-Interacting
Checkpoint Helicase), coat anaphase UFBs (Baumann et al.,
2007; Chan and Hickson, 2009; Chan et al., 2009; Naim
and Rosselli, 2009; Figure 2). An earlier report on BLM
phosphorylation by MPS1, facilitating accurate chromosome
segregation (Leng et al., 2006), anticipated the important role
played by this DNA helicase in mitosis. BLM recruitment to
UBFs is facilitated by FANCD2, a key component of the Fanconi
Anemia pathway, which was shown to form sister foci in mitosis
(Naim and Rosselli, 2009; Harrigan et al., 2011; Lukas et al.,
2011; Figure 2) and be necessary to prevent the generation
of micronuclei (Naim and Rosselli, 2009). The SNF2 ATPase
family member PICH plays an essential role at kinetochores
and the inner centromere, as demonstrated by studies in which
PICH depletion caused loss of Mad2 from kinetochores and
abrogated the spindle checkpoint, events that were followed
by chromosome missegregation (Baumann et al., 2007). Also
PICH was proposed to help recruiting the BTRR complex at
UFBs, cooperating to the resolution of DNA bridges by the end
of anaphase (Liu et al., 2014; Figure 2). A recent addition to
the pool of proteins present at UFBs is RIF1, ortholog of a
yeast telomeric protein. RIF1 is recruited to UFBs in a PICH-
dependent manner but independently of 53BP1, ATM or BLM,
and phosphorylation by CDK1 restricts its ability to bind DNA
at anaphase (Hengeveld et al., 2015). In addition to the BTRR
complex, the Holliday Junction resolvases SLX1–SLX4–MUS81–
EME1 (SLX–MUS complex) and GEN1 (Wyatt et al., 2013;
Chan andWest, 2014) contribute to process structures caused by
under-replication at CFSs (Naim et al., 2013; Ying et al., 2013).
The SLX–MUS complex cooperates with TopBP1, a scaffold
protein composed of nine BRCT domains and recruited at sites
of DNA damage in a 9-1-1-dependent manner (Delacroix et al.,
2007; Lee et al., 2007; Wardlaw et al., 2014). TopBP1 is necessary
for ATR activation (Kumagai et al., 2006), colocalizes with RPA
and FANCD2 (Pedersen et al., 2015) forming foci on condensing
chromatin through its BRCT5 domain, and recruits TOP2A to
help resolving DNA entanglements between sister chromatids
(Broderick et al., 2015). CDK1-dependent phosphorylation of
EME1 in the MUS81-EME1 structure-specific endonuclease,
promoting interaction with SLX1-SLX4, controls the resolution
of DNA recombination intermediates in mitosis (Matos et al.,
2011; Matos and West, 2014). Proteome-wide studies have
identified a number of ubiquitylation sites in GEN1, MUS81,
EME1, TopBP1 (Kim et al., 2011; Wagner et al., 2011; Mertins
et al., 2013), though the biological function of such PTM and its
eventual connection with mitotic functions of these proteins has
not been addressed to date. Finally, human GEN1 acts as back up
to the above-mentioned machinery at anaphase, moving in place
and gaining access to DNA after nuclear envelope breakdown
(NEB) (Wechsler et al., 2011; Chan and West, 2014; Sarbajna
et al., 2014). For the yeast homolog of GEN1, Yen1, it was shown
that activity and access to the nucleus depend on a reversible
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CDK1/Cdc14 phosphorylation switch (Eissler et al., 2014; Matos
and West, 2014).

In addition to the role of the above mentioned scaffold
proteins in tethering nucleases to UFBs to the end of resolving
DNA bridges in anaphase, unscheduled DNA synthesis at
UFBs marked by TopBP1 (Pedersen et al., 2015) or SLX4
(Minocherhomji et al., 2015) has been reported and interpreted
as an attempt to fill-in unreplicated regions, hence restoring
genome integrity before cell division.

In case lesions generated by replication stress remain
unrepaired, they are passed to daughter cells in a manner that
shelters them from further damage through sequestration in
53BP1 nuclear bodies, thus allowing repair in the next cell cycle
(Lukas et al., 2011). In the presence of extensive damage that
remains unaddressed, cells experience sudden mitotic death also
known as mitotic catastrophe (Morrison and Rieder, 2004; Vitale
et al., 2011).

We have mentioned above that the DNA damage checkpoint
is in place to facilitate DNA repair by blocking transition from
G2 to M (Figure 1). A non-trivial consequence of prolonged
arrest before mitosis is centrosome amplification, an event
that is observed with high incidence in cancer cells carrying
mutations of DNA repair genes. This event, which is alleviated
upon bypass of the checkpoint in a manner that is only
partially dependent on ATM, was postulated to be a mechanism
ensuring death of cells that manage to evade the G2/M
checkpoint or the SAC (Dodson et al., 2004). The metaphase-
to-anaphase transition is a critical cell cycle stage during
which chromosome missegregation may occur. Loss or gain
of entire chromosomes—known as “numerical abnormalities”—
resulting from chromosome missegregation during mitosis, is a
characteristic of tumors known from more than a century and
described as “aneuploidy” (Pellman, 2007). Mechanisms leading
to aneuploidy have been amply reviewed elsewhere (Holland and
Cleveland, 2009) and comprise (i) defective attachment of sister
chromatids to spindle microtubules (merotelic attachment),
often linked to centrosome amplification, (ii) malfunction of the
spindle assembly checkpoint and (iii) defects in chromosome
cohesion.

Key to a fully-fledged response to DNA damage is the
network of signals that orchestrate assembly of DNA repair
proteins at sites of damage and informs the cell cycle machinery.
Ultimate target of G2/M checkpoint pathways is CDK1, the
master regulator of mitosis (see “Mitosis and Checkpoints”)
that is maintained in an “OFF” status by direct negative inputs
(WEE1) and inactivation of its positive regulators (CDC25),
in conjunction with modulation of other enzymatic activities
such as those of the kinases PLK1 (Smits et al., 2000),
Aurora-A (Krystyniak et al., 2006) and protein phosphatase
PP2A (Yan et al., 2010; Figure 1). The budding yeast S.
cerevisiae represents a notable exception in this respect.
Whereas in high eukaryotes CDKs have acquired specific
functions throughout evolution, with CDK1 being the master
controller of mitosis and undergoing immediate inhibition
in an ATM/ATR-CHK1/CHK2-dependent manner upon DNA
damage, S. cerevisiae possesses only one Cyclin-dependent
kinase, Cdc28, controlling pathways and transitions in all phases

of the cell cycle and whose activity depends on interaction with
different Cyclins (Enserink and Kolodner, 2010). As opposed to
CDK1, budding yeast Cdc28 is not inhibited by DNA damage
response pathways, since the status of Tyr19 phosphorylation
in the P-loop of Cdc28 is not a determinant for entry into
mitosis (Amon et al., 1992). The key control of budding yeast
mitosis is operative at the metaphase-to-anaphase transition,
where degradation of the Esp1 (separase) inhibitor Pds1 (securin)
allows cleavage of the Scc1 subunit in the cohesin complex and
separation of the sisters (Ciosk et al., 1998; Sanchez et al., 1999).
Hence, in yeast, mitotic arrest in response to DNA damage occurs
in metaphase and depends on the abundance of Pds1 (Sanchez
et al., 1999). This mechanism liberates Cdc28 of the control
that CDK1 undergoes to in higher eukaryotes. Contrary to rapid
inhibition upon DNA damage, Cdc28 is absolutely required
in DDR and participates to the control of genome stability
(Enserink et al., 2009). Cdc28 triggers homologous directed
repair of DSBs through phosphorylation of Sae2 (Huertas et al.,
2008), prompting initial resection of DNA ends (Ira et al., 2004),
and other components of error-free repair pathways such as Dna2
(Ubersax et al., 2003) and Srs2 (Chiolo et al., 2005; Saponaro
et al., 2010). Interestingly, Cdc28 targets such as Sae2 are also
phosphorylated by classic DDR kinases, whereby mutation of
phosphorylation sites for either set of kinases hampers repair
and recombination functions of the protein (Baroni et al.,
2004).

Hence, the rapid inactivation of vertebrate CDK1 in response
to damage is difficult to reconcile with claims on its involvement
in DNA damage responses at G2/M. Although it has been
suggested that the gap between checkpoint triggering and CDK1
shutoff in vertebrate cells may be sufficient for CDK1 to
orchestrate initial phases of repair, a much wiser interpretation
of the experimental evidence is that repair of DNA damage
in checkpoint-arrested cells depends on CDK2 (Wohlbold and
Fisher, 2009) and other Proline-directed kinases involved in
stress responses (Bulavin et al., 2001). As a matter of fact,
high CDK1 activity, along with the activity of other mitotic
kinases (Benada et al., 2015), is sufficient to suppress responses
to DNA damage occurring during transition through mitosis
in mammalian cells (Zhang et al., 2011). A further layer of
regulation is imposed by phosphatases such as WIP1, a CDK1
target that undergoes ubiquitin-mediated degradation in mitosis,
which sets the threshold for DDR signaling in mitosis by
controlling the phosphorylation state of DDR proteins (Macurek
et al., 2013).

MITOTIC PTMs AND CANCER THERAPY

Mitosis is the cell cycle phase that is most vulnerable to injury,
regardless on whether damage is caused by radiation, heat-shock
or chemicals (Westra and Dewey, 1971; Stobbe et al., 2002; Chan
et al., 2012). Based on this indication, targeting mitotic cells has
been largely exploited in the clinic as means to contain tumor
growth (Doménech and Malumbres, 2013; Marzo and Naval,
2013). Molecular studies have highlighted the role of PTMs, and
the enzymes that mediate them, in mechanisms controlling the
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mitotic responses to stress (Pearce and Humphrey, 2001). This
comes as no surprise, considering that essentially all mechanistic
aspects of normal transition through mitosis are controlled
by PTMs of mitotic machinery components, with reversible
PTMs allowing a certain degree of flexibility in the decisions
implemented and irreversible PTMs conferring directionality to
the process (Nigg, 2001; Ma and Poon, 2011; Teixeira and Reed,
2013). Hence, mitotic protein kinases and E3-ubiquitin ligases
with established role in cancer have become the focus of interest
for chemists and pharmacologists designing and testing novel
therapeutics that target cells in mitosis (Dominguez-Brauer et al.,
2015). Such interest was also motivated by considerations on
the side effects of classic anti-mitotic drugs like taxanes and
vinca alkaloids that are currently deployed to the treatment
of a variety of solid tumors such as breast, ovarian and lung
cancer. Anti-mitotic drugs, due to their mode of action that alters
microtubules’ dynamic instability, result in neurotoxicity and
neutropenia (Marzo and Naval, 2013). Furthermore, their lack
of efficiency when used as single agents has evidenced another
important limitation of these anti-mitotics (Doménech and
Malumbres, 2013; Marzo and Naval, 2013). Shifting the focus to
the discovery of drugs that target mitotic kinases or E3-ubiquitin
ligases, however, did not solve the major caveat for cell cycle—
andmitotic—inhibitors, namely the fact that the efficacy of a drug
depends on the tumor proliferative rate: fast proliferation makes
leukemia and myeloma relatively favorable conditions to treat,
whereas a mitotic index (i.e., the percentage of mitotic cells in
the whole populations) as little as 1% and doubling time of more
than 1 year, as observed in some solid tumors, are negative factors
to be taken into account when planning a treatment and its
length.

Here below we provide a report on the current status of drug
discovery and clinical trials for compounds targeting mitotic
kinases and phosphatases as well as ubiquitin-proteasome system
components (Table 1 and Figure 3).

Inhibition of Mitotic Kinases
CDK1 Inhibitors

CDK1 is the master regulator of mitosis (Nigg, 2001).
Flavopiridol is the first CDK1 inhibitor that underwent >60
clinical trials to date (www.clinicaltrials.gov). The poor efficacy
of the compound, however, prevented its approval as anti-
tumor drug (Shapiro, 2006; Stone et al., 2012; Galons et al.,
2013). Other CDK1 inhibitors displaying high potency on
cancer cell lines are currently in Phase I or II (with none
of them being yet available for patients, see Table 1 and
references therein). So far, only the CDK1 inhibitor Dinaciclib
was tested in a phase III study that was concluded in 2015
and aimed at treating refractory chronic lymphocytic leukemia
patients (NCT01580228). In general, however, inhibition of
CDK1 in healthy cells and the poor selectivity of CDK1
inhibitors, possibly due to the high degree of sequence
conservation in the catalytic domain of CDK members,
often result in major side effects when deployed in the
clinic. For such reason, CDK1 inhibitors are currently used
in combination therapies with other mitotic inhibitors (see
below).

Aurora Kinases Inhibitors

Aurora kinase family members, Aurora-A, -B and -C exert
different roles in the cell. Early studies showed that Aurora-A
controls centrosomes maturation and separation, bipolar spindle
formation and chromosomes segregation, while Aurora-B, as
member of the Chromosome Passenger Complex, participates
in the control of chromosome condensation and orientation on
the mitotic spindle, ensuring correct kinetochore-microtubule
attachments (Nigg, 2001). Both Aurora-A and -B were shown
to stabilize midzone microtubules and regulate cytokinesis
(Carmena et al., 2009). Aurora-C has a role in gametogenesis, it
is expressed in testis, thyroid, and placenta and its contribution
to cancer development was shown in mouse models (Khan
et al., 2011). Several inhibitors against Aurora-A and Aurora-
B have been developed during the last decade (Doménech and
Malumbres, 2013; Bavetsias and Linardopoulos, 2015; D’Assoro
et al., 2015; Falchook et al., 2015). As for CDKs, most Aurora
kinases inhibitors target all family members and a major
effort has been done to develop drugs that are more selective
for individual Aurora kinases (Table 1 and Figure 3). Among
them, two reversible ATP competitive inhibitors, MLN8054
(Manfredi et al., 2007) and its derivative MLN8237 (Manfredi
et al., 2011) have shown to be potent and selective Aurora-
A inhibitors (Sells et al., 2015). Both were deployed in
several studies and since MLN8237 has shown to be safer,
it is currently under evaluation in Phase III clinical trials
(NCT01482962).

Polo-Like Kinases Inhibitors

Polo-like family members constitute another class of
Serine/Threonine (Ser/Thr) kinases with key roles in mitosis
(Nigg, 2001). Five PLKs are expressed in human cells, PLK1-5,
with PLK1 and PLK4 being the major representatives of this
family (Zitouni et al., 2014). Distinguishing feature of PLKs
is the polo-box domain that flanks the catalytic domain and
allows docking to substrates primed by CDKs to carry on their
phosphorylation (Zitouni et al., 2014).

Mechanistically, PLK1 is activated by Aurora-A (Ferrari et al.,
2005; Macurek et al., 2008) at the onset of mitosis and functions
to promote centrosome maturation and separation, assembly
and elongation of the mitotic spindle as well as cytokinesis
(Barr et al., 2004; Degenhardt and Lampkin, 2010). PLK1 is
overexpressed in various malignancies (Holtrich et al., 1994;
Eckerdt et al., 2005; Mito et al., 2005; Takai et al., 2005;
Strebhardt and Ullrich, 2006; Renner et al., 2009; Weiß and
Efferth, 2012). PLK1 inhibition in cancer patients has been
pursued with some success using two ATP-competitive kinase
inhibitors: BI-2536 and BI-6727 (see Table 1). The potency,
pharmacokinetic and pharmacodynamic properties of BI-6727
as well as its antitumor activity in a number of cancer models
(Rudolph et al., 2009) has promoted the drug to a phase III trial
for acute myeloid leukemia patients where BI-6727 was tested in
combination with the DNA-synthesis blocking agent cytarabine
(NCT01721876).

PLK4 has a fundamental role in centriole duplication
(Bettencourt-Dias et al., 2005; Habedanck et al., 2005). PLK4
overexpression leads to the formation of extra centrosomes
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TABLE 1 | List of drugs, their mitotic targets and current clinical trial phase.

Drug Target Status References

MITOTIC KINASE INHIBITORS

Roscovitine (Cyclacel) CDK2, CDK7, CDK9 Phase I-II De Azevedo et al., 1997

AT7519 (Astex) pan-CDKs Phase I-II Wyatt et al., 2008

Dinaciclib (Merck) pan-CDKs Phase I-II-III Parry et al., 2010

Flavopiridol (Sanofi-Aventis) pan-CDKs Phase I-II De Azevedo et al., 1996

P276-00 (Piramal) pan-CDKs Phase I-II Joshi et al., 2007

RGB 286638 (Agennix) pan-CDKs and others Phase I-II Cirstea et al., 2013

Terameprocol (Erimos) CDK1 and Survivin Phase I-II Heller et al., 2001; Chang et al., 2004

TG02 (Tragara) pan-CDKs, JAK2, FLT3 Phase I Goh et al., 2012

MK-1775 (Merk) Wee1 Phase I-II Hirai et al., 2009

BI-2536 (Boehringer Ingelheim) Plk1 Phase I-II Lenart et al., 2007

Volasertib/BI-6727 (Boehringer Ingelheim) Plk1 Phase I-II-III Rudolph et al., 2009

CFI-400945 (Campbell Family Institute, CAN) Plk4 Phase I Mason et al., 2014

AMG-900 (Amgen) Aurora-kinases Phase I Payton et al., 2010

AT-9283 (Astex) Aurora-kinases Phase I-II Howard et al., 2009

CYC-116 (Cyclacel) Aurora-kinases Phase I Wang et al., 2010

PHA-680632 (Pfizer/Nerviano MS) Aurora-kinases Phase II-III Soncini et al., 2006

GSK1070916 (GlaxoSmithKline) Aurora-kinases Phase I Hardwicke et al., 2009

PF-03814735 (Pfizer) Aurora-kinases Phase I Jani et al., 2010

Danusertib/PHA-739358 (Pfizer/Nerviano MS) Aurora-kinases Phase II Carpinelli et al., 2007

R763/AS703569 (Rigel) Aurora-kinases Pre-Clinical McLaughlin et al., 2010

SNS-314 (Sunesis) Aurora-kinases Phase I Oslob et al., 2008

MK-0457 (VX-680) (Vertex/Merck) Tozasertib Aurora-kinases Phase I-II Harrington et al., 2004

ENMD-2076 (EntreMed) Aurora-A Phase I-II Tentler et al., 2010

Alisertib/MLN8237 (Millennium) Aurora-A Phase I-II Görgün et al., 2010

Barasertib/AZD1152 (AstraZeneca) Aurora B Phase I-II-III Mortlock et al., 2007; Wilkinson et al., 2007

2OH-BNPP1 Bub1 Pre-Clinical Kang et al., 2008; Nyati et al., 2015

BAY-320/BAY-524 (Bayer) Bub1 Pre-Clinical Baron et al., 2016

Cycloalkenepyrazoles Bub1 Pre-Clinical Brazeau and Rosse, 2014

BAY 1161909/BAY 1217389 (Bayer) Mps1 Phase I Wengner et al., 2016

CFI-402257 (Campbell Family Institute, CAN) Mps1 Pre-Clinical Dominguez-Brauer et al., 2015

S81694 (Nerviano MS) Mps1 Pre-Clinical Colombo et al., 2015

CRT0105446 LIMK1 and LIMK2 Pre-Clinical Mardilovich et al., 2015

CRT0105950 LIMK1 and LIMK2 Pre-Clinical Mardilovich et al., 2015

MITOTIC PHOSPHATASE INHIBITORS

IRC 083864/Debio 0931 (Ipsen -DebioPharma) CDC25 Phase II (*) Lavecchia et al., 2010

LB100 (Lixte biotechnology) PP2A Pre-clinical/Phase I Lu et al., 2009

UBIQUITIN-PROTEASOME SYSTEM INHIBITORS

Bortezomib (Millennium) Proteasome Phase I-II Hideshima et al., 2001

Carfilzomib (Onyx Pharmaceuticals) Proteasome Phase I-II Kortuem and Stewart, 2013

MLN9708 (Millennium) Proteasome Phase I-II Chauhan et al., 2011

CEP-18770 (Cephalon) Proteasome Phase I-II Seavey et al., 2012

TAK-243 (MLN7243, Millennium - Takeda) E1 (UBA1) Pre-clinical/Phase I Milhollen et al., 2015

Nutlins (Roche) E3 (MDM2) Pre-clinical Vassilev, 2007

TAME E3 (APC/C - Cdc20) Pre-clinical Zeng et al., 2010

Apcin (Harvard U - Boston Biochem) E3 (APC/C - Cdc20) Pre-clinical Sackton et al., 2014

MLN4924 (Millennium) NEDD8 activating enzyme (NAE) Phase I-II Soucy et al., 2009

*Since launch in Phase II, no additional information has been rendered available at ClinicalTrials.gov.

resulting in aberrant mitotic spindles and aneuploid daughter
cells (Basto et al., 2008; Ganem et al., 2009; Holland et al., 2010).
Evidence on PLK4 overexpression in tumors (Macmillan et al.,

2001; van de Vijver et al., 2002; Miller et al., 2005; Hu et al.,
2006; Salvatore et al., 2007; Chng et al., 2008) raised the interest
to develop small molecule inhibitors of this kinase. CFI-400945
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FIGURE 3 | Mitosis and its control by kinases, phosphatases and E3-ubiquitin ligases. Schematic representation of key controllers of the onset, transition and

exit from mitosis with indication of the major drugs inhibiting their function. Kinases: blue; Phosphatases: green; E3-ubiquitin ligases: purple; Drugs: red.

was shown to be a potent and selective PLK4 inhibitor exerting
a dose-dependent effect on centriole biogenesis (Mason et al.,
2014). At high concentration, CFI-400945 inhibits centriole
duplication, while at low concentration it causes the generation
of supernumerary centrosomes. Interestingly, in both cases, cells
arrest or die (Mason et al., 2014). In the same study, the anti-
cancer potential of CFI-400945 was also shown in mice and the
drug is currently under evaluation in advanced cancer patients
(NCT01954316).

Supernumerary centrosomes occur at high frequency in
cancer cells but not in non-transformed cells and were
originally proposed by Theodor Boveri to be linked to cancer
development (Brinkley and Goepfert, 1998; Brinkley, 2001).
Supernumerary centrosomes tend to cluster at mitosis forming
pseudo-bipolar spindles to avoid multipolar mitoses that would
result in the generation of unviable progeny (Ganem et al.,
2009). Formation of pseudo-bipolar spindles where merotelic
chromosome attachments is frequent, is among the major
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causes of aneuploidy (Ganem et al., 2009). The anti-fungal drug
griseofulvin was shown to freeze the process of centrosome
clustering (Raab et al., 2012) and since then a number of
small molecule inhibitors of this process have been synthesized
and examined (Kawamura et al., 2013; Ogden et al., 2014;
Bhakta-Guha et al., 2015). Centrosome declustering drugs are,
however, still in pre-clinical studies (Krämer et al., 2011;
Pannu et al., 2014) given two main considerations: The first
is that eliminating the subpopulation of cancer cells carrying
centrosome amplifications in the heterogeneous collection of
cells making up a tumor is yet to be proven beneficial
in anticancer therapy. The second is that identification of
individuals suitable to treatment with centrosome declustering
drugs still awaits routine screening methods to define the
genetic makeup of patients with centrosome amplification
who would benefit of such treatment (Godinho and Pellman,
2014).

Mitotic Phosphatase Inhibitors

Members of the CDC25 family of protein phosphatases act
as positive regulators of CDKs that are their unique targets
(see above). The only report on CDC25 targeting drugs is for
phase II clinical trials initiated in 2010 with IRC 083864 under
the name Debio-0931 (Lavecchia et al., 2010), a drug that has
previously shown activity against pancreatic and cervical cancer
xenografts (Brezak et al., 2009). To date, LB-100 is the only
know drug targeting the Ser/Thr phosphatase PP2A to have
entered phase I trials in combination with cytotoxic drugs or
irradiation for the indication “solid tumors” (NCT01837667)
(Hong et al., 2015). Inhibition of enzymes with multiple
functions such as PP2A, by many considered unfeasible due
to the associated high toxicity of such treatments, was shown
to be well-tolerated if the drug is administered intermittently
(http://www.lixte.com/Product_Development.php). LB-100 has
been granted licensing in Asia for treatment of Hepatocellular
Carcinoma in December 2015 (http://adisinsight.springer.com/
drugs/800037966).

Ubiquitin-Proteasome Inhibitors

The established role of ubiquitin-dependent pathways in the
degradation of mitotic apparatus components has made them
an ideal site of intervention in cancer therapy and possible
applications of proteasome inhibitors to the treatment of cancer,
their mode of action and mechanisms of resistance have been
amply reviewed (Crawford et al., 2011; Zhang et al., 2013).
Approval of Bortezomid over a decade ago for the indications
multiple myeloma and multiple cell lymphoma paved the way
to the discovery of candidates with reduced side effects and
improved efficacy that are currently in clinical trial (Zhang
et al., 2013). Specifically to mitosis, a new perspective was
provided in a report describing the use of spindle poisons
in conjunction with inhibition of the ATPase activity of
components of the proteasome to increase apoptosis in cancer
cells (Yamada and Gorbsky, 2006), offering further possibilities of
intervention.

The majority of drugs that we discussed above halt cells before
mitosis or in early mitosis. Prolonged treatment with drugs
interfering with microtubules dynamics has been described to
lead to mitotic exit—operationally defined mitotic slippage—
(Brito and Rieder, 2006), a condition that leads to the acquisition
of further aneuploidy and aggressiveness (Kuukasjarvi et al.,
1997; McClelland et al., 2009). Hence, significant effort has been
devoted in recent years to block mitotic exit. Inhibiting the
interaction of CDC20 with APC/C by TAME (tosyl-L-arginine
methyl ester) has shown to effectively halt cells in mitosis and
channel them to death (Zeng et al., 2010; Zeng and King, 2012).
The more recently developed APC/C inhibitor Apcin, showing
the ability to bind CDC20 and to prevent ubiquitylation of D-
box containing APC/C targets, has provided an additional means
to block mitotic exit (Sackton et al., 2014). The combined use
of Apcin and TAME was reported to synergistically halt mitotic
exit, hence opening new therapeutic perspectives (Sackton et al.,
2014).

In a similar fashion Nutlins were described to impair physical
interaction between p53 and the E3 ubiquitin ligase MDM2,
promoting p53 stabilization and enhancing its tumor suppressor
activity (Vassilev et al., 2004; Vassilev, 2007). Enthusiasm for
these drugs, however, was mitigated by two major drawbacks:
first the observation that MDM2 interacts preferentially with
wild-type p53 (Lukashchuk and Vousden, 2007) and, second,
the report that Nutlins exert a cytostatic effects in p53-deficient
cells, indicating that they do not solely inhibit the p53/MDM2
interaction (VanderBorght et al., 2006).

In conclusion, it is foreseeable that the development of novel
and specific drugs targeting components of pathways that control
mitosis and/or interfere with signals that fine-tune their function,
in conjunction with stratification of patients based on their
genetic background, will allow to better determine combination
therapies for each individual patient, taking us a step closer to
personalized medicine.
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