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Protein structure is determined by the amino acid sequence and a

variety of post-translational modifications, and provides the basis for

physiological properties. Not all proteins in the proteome attain a stable

conformation; roughly one third of human proteins are unstructured or

contain intrinsically disordered regions exceeding 40% of their length.

Proteins comprising or containing extensive unstructured regions are termed

intrinsically disordered proteins (IDPs). IDPs are known to be overrepresented

in protein aggregates of diverse neurodegenerative diseases. We evaluated

the importance of disordered proteins in the nematode Caenorhabditis

elegans, by RNAi-mediated knockdown of IDPs in disease-model strains

that mimic aggregation associated with neurodegenerative pathologies.

Not all disordered proteins are sequestered into aggregates, and most of

the tested aggregate-protein IDPs contribute to important physiological

functions such as stress resistance or reproduction. Despite decades of

research, we still do not understand what properties of a disordered protein

determine its entry into aggregates. We have employed machine-learning

models to identify factors that predict whether a disordered protein is

found in sarkosyl-insoluble aggregates isolated from neurodegenerative-

disease brains (both AD and PD). Machine-learning predictions, coupled with

principal component analysis (PCA), enabled us to identify the physiochemical

properties that determine whether a disordered protein will be enriched in

neuropathic aggregates.
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Introduction

Proteins play critical and significant roles in every
regulatory network that governs an organism’s cellular and
physiological functions. Protein folding is a critical step in
achieving a functional state; each protein transitions under
physiological conditions to attain the conformation with the
lowest possible free energy (Rose et al., 2006). Proteins that
never attain a stable folded conformation, and that lack rigid
tertiary or quaternary three-dimensional structures, are termed
intrinsically disordered proteins (IDPs). IDP conformations are
not fixed by the thermodynamics of single native proteins,
but are able to vary due to protein-protein or protein-
ligand interactions, and/or as a result of post-translational
modifications (PTMs). Nearly a third of all proteins in the
human proteome have been classified as unstructured or
intrinsically disordered proteins (Ali and Ivarsson, 2018; Deiana
et al., 2019). These IDPs play important roles in multiple
physiological processes such as vesicular transport and signal
transduction, and are also prominent in neurodegenerative
pathology. Protein folding to attain minimal free energy is
assisted by a variety of chaperone proteins. Any aberration
in the protein folding process may lead to accumulation
of unfolded/misfolded proteins, resulting in “Endoplasmic
Reticulum stress” (ER stress).

Like most proteins, IDPs are susceptible to multiple PTMs;
in neurological diseases, excessive PTMs may alter protein
structure, favor binding to novel partners, and promote
aggregation. Neurons have extensive protein-repair capacity
that helps them to detect and salvage misfolded proteins,
thereby preventing or reducing ER stress and thus ameliorating
neurological damage (Jellinger, 2010; Cristofani et al., 2020).
The accumulation of misfolded or intrinsically disordered
proteins is recognized as a common characteristic of many
neurodegenerative diseases (Uversky, 2015; Ayyadevara et al.,
2021). IDPs have unique plasticity, conformational adaptability,
and ability to bind to multiple partners — conferred by diverse
properties such as structural malleability, low hydrophobicity,
high solvent-accessible surface area, and high abundance of
charged and polar residues (Wright and Dyson, 2015; Salvi et al.,
2019).

Misfolded proteins are also known to cause cytotoxicity
through toxic gain of function (Soto and Pritzkow, 2018).
Many misfolded proteins/peptides such as Aβ1−42, hyper-
phosphorylated tau (hP-tau), α-synuclein, and others, are
involved in synaptic signaling pathways (Ashraf et al.,
2014). For example, α-synuclein is a presynaptic protein
that can relocate to mitochondria where it disrupts protein
import; whereas mutated or hyperphosphorylated tau disrupts
microtubule function (Stefanis, 2012; Melo et al., 2018). Liquid-
liquid phase separation is an early event in the formation of

aggregates featuring key neuropathology-associated proteins
such as α-synuclein in Parkinson’s disease (Ray et al., 2020).
Microtubule-associated protein tau normally stabilizes
neuronal microtubules, but over time, and especially when
hyperphosphorylated, tau can undergo liquid-liquid phase
separation leading to microtubule nucleation and irreversible
aggregation (Wheeler, 2020). Numerous misfolded proteins
appear among the constituents of aggregates associated with
Alzheimer’s disease (AD) (Ayyadevara et al., 2016a). Although
specific aggregate components distinguish among different
neurological diseases, such as AD, Parkinson’s disease (PD),
and Amyotrophic Lateral Sclerosis (ALS), these pathologies all
involve similar processes of protein misfolding and aggregate
accrual. Although disease-associated aggregate proteins exhibit
considerable diversity in sequence, size, structure, and function,
after misfolding most form intermolecular β-sheet-rich
structures ranging from small oligomers to large aggregates.
Since not all disordered proteins end up in aggregates, we sought
to identify properties that distinguish disordered proteins that
are destined for aggregation, from those that are not associated
with neuropathology.

Materials and methods

Selection of proteins from DisProt
database

The DisProt database1 is a manually curated database of
intrinsically disordered proteins. DisProt has been updated
over the last 14 years, including addition of attributes such as
structural/functional aspects of protein domains. DisProt has its
own set of descriptors for each protein, including state(s), state
transitions, and “disorder ontology.” Twenty three disordered
proteins were selected from DisProt to test the effects of their
knockdowns on aggregation and aggregation-dependent traits
in C. elegans models of neuropathogenic aggregation.

Caenorhabditis elegans strains

All C. elegans strains were grown under standard conditions
at 20◦C unless otherwise noted. Four transgenic strains were
used in this study. (i.) CL2355 [pCL45 (snb-1:Aβ1−42: 3’ UTR
(long) + mtl-2:gfp], a strain with pan-neuronal expression of
a human Aβ1−42 transgene, causing deficits in chemotaxis,
associative learning, and thrashing in liquid media. (ii.)
CL4176 [dvIs27; myo-3p:Aβ1−42:let-851 3’ UTR) + rol-
6(su1006)], a strain with muscle expression of human

1 https://disprot.org
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Aβ1−42. CL2355 and CL4176 produce low levels of Aβ1−42 at
20◦C but progress to chemotaxis or paralysis, respectively,
with age or after upshift to 25.5◦C (Balasubramaniam
et al., 2019; Ayyadevara et al., 2021). (iii.) NL5901 [unc-
54p:α-synuclein:yfp + unc-119(+)] expresses YFP-tagged
human α-synuclein in muscle, resulting in progressive paralysis.
(iv.) AM141 [unc-54/q40:yfp] expresses Q40:YFP in muscle,
leading to adult accumulation of YFP-fluorescent foci and late
paralysis. All strains were obtained from the Caenorhabditis
Genetics Center. Escherichia coli strain OP50 was replaced as
the bacterial food source for RNAi exposure by E. coli HT115,
harboring a vector that expresses RNAi constructs as dsRNA;
these substrains were selected from the Ahringer RNAi Library
(Kamath and Ahringer, 2003).

RNA interference

Selected genes, encoding IDPs listed in DisProt that were
also implicated by proteomics showing enrichment in both
Parkinson’s and Alzheimer’s aggregates (Balasubramaniam et al.,
2019), were subjected to RNAi-mediated knockdown by feeding
them target-specific RNAi bacteria from the Ahringer library
(Kamath and Ahringer, 2003). Synchronously harvested eggs
were transferred to plates seeded with selected sublines of
E. coli strain HT115 (DE3) that transcribe double-stranded
RNA corresponding to an exonic segment of each targeted
gene, cloned into the L4440 plasmid multiple-cloning site
(Kamath and Ahringer, 2003). Control worms were fed bacteria
carrying L4440 without an exonic insert (“feeding vector” or
“FV” controls).

Paralysis assay

Synchronous cohorts of the CL4176 strain, expressing
Aβ1−42 in body-wall muscle, were initiated by lysing adult
worms in alkaline sodium hypochlorite solution (Ayyadevara
et al., 2001, 2008). Unlaid eggs recovered from lysed worms
were transferred onto 60-mm agar plates seeded with bacteria
expressing dsRNAs against targeted genes (see preceding
section). Worms in all groups were upshifted from 20◦ to
25.5◦C at the L3/L4 transition (47–49 h after lysis of parental
worms) to induce expression of Aβ1−42 (Ayyadevara et al.,
2016a). Paralysis of worms (defined as loss of touch-response
motility) was scored at 19, 27, and 42 h post-upshift, until
the longest-surviving group exceeded 50% mortality. To slow
development of progeny in synchronized populations, 5-
fluoro-2’-deoxyuridine (FUdR) was added to RNAi plates and
control (FV) plates, at a final concentration of 2 µM, each
containing worms from pre-gravid (L4/adult molt, day 2.5
post-hatch) through post-gravid ages (beyond 6–7 days post-
hatch).

Fluorescence imaging of
polyglutamine and alpha-synuclein
aggregates

Aggregates in strain AM141, expressing Q40:YFP in muscle
which forms punctate aggregates in adult worms, were analyzed
for number and intensity of aggregates using FIJI (ImageJ2)
(Schneider et al., 2012). Parameters and exposure were kept
constant for each experiment to avoid bias. To visualize
GFP aggregates, worms were collected and immobilized using
sodium azide, and their images captured at 10× magnification
using a Keyance fluorescence microscope. Counts of Q40:YFP
aggregates per worm, and total punctate fluorescence per
worm, were calculated for 4–8 worms per field, and 5–6
fields per group.

Alpha synuclein inclusions in body-wall muscle of
strain NL5901 were analyzed for the average intensity of
YFP expression, using FIJI (ImageJ2) while maintaining
uniform conditions. Very similar results were obtained
with strain OW13 (a genetically identical construct created
independently; data not shown). Each experiment was initiated
with synchronized eggs from well-fed worms, lysed with
alkaline hypochlorite; eggs were transferred to NGM plates
seeded with OP50 for maintenance, or HT115 for knockdown
experiments. RNAi KD worms were grown on different
RNAi-expressing HT115 clones, at 20◦C. Images of worms
were captured at adult days 1 and 5 (24 h or 5 days after the
L4/adult molt) to quantify α-synuclein aggregation based on
punctate YFP signal.

Data collection and descriptor retrieval

Parkinson’s disease (PD) aggregates were processed to
separate sarkosyl-soluble from sarkosyl-insoluble aggregates.
Recovered aggregates were digested with trypsin for proteomic
analyses by LC-MS/MS as previously described (Ayyadevara
et al., 2016b). Mass spectrometry data were collected, along
with protein-sequence-based analyses, to compile descriptors
(Table 3), and to calculate physiochemical properties and
disorder scores, etc. using PONDR2, ESpritz Version 1.33,
and Aggrescan4. PONDR derives 5 predictions from the
FASTA sequence of each protein: VLXT, XL1_XT, CAN_XT,
VL3-BA, and VLS2 (Xue et al., 2010). ESpritz produces
protein disorder scores based on a choice of prediction
tools (e.g., X-Ray, NMR, and Disprot) (Walsh et al.,
2012), from which we selected NMR. Both PONDR and
ESpritz were set to thresholds of 40% to predict disorder,

2 http://www.pondr.com/

3 http://old.protein.bio.unipd.it/espritz/

4 http://bioinf.uab.es/aggrescan/
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but numerical output values were used as inputs to NN
and SVM. These packages were augmented with Python
code to calculate hydrophobicity, aromaticity, percent of
individual amino acids, percent basic and acidic amino
acids, etc. PSPredictor5, a second-generation, sequence-based
tool to predict the potential of each protein for liquid-
liquid phase-separation (Chu et al., 2022), was set to ≥ 0.5
threshold; actual numerical output values were used as
inputs to NN and SVM.

Neural network, support vector
machine, and principal component
analyses

Algorithms for Neural Network (NN), Support Vector
Machine (SVM), and Principal Component Analysis
(PCA) were implemented, trained and tested using
OrangeTM software (Demsar et al., 2013) to generate and
visualize the outputs.

For Neural Networks, OrangeTM employs a multilayer
perceptron algorithm with back-propagation, splitting the
dataset randomly 80:20 into training and testing sets. NN was
assessed with a range of input parameters (Supplementary
Table 1). The configuration with highest AUC had 300 hidden
layers and 1350 iterations; activation method was set to “ReLu,”
solver selected as “SGD” and numerical tolerance was set to
0.0005 (Deng et al., 2015).

Support Vector Machine (SVM) is a machine-learning
method used for classification, regression and outlier detection,
in which linear regression is performed in a high-dimension
feature space. Where possible, SVM imputes missing values as
means of existing values; otherwise, SVM removes instances
with unknown target values and empty columns. SVM was
assessed with a variety of input parameters (Supplementary
Table 2), selecting those producing the maximal AUC
(cost = 0.30, regression loss = 0.40, kernel = 0.01, numerical
tolerance = 0.00011, iterations = 100).

Principal component analysis (PCA) is a stepwise,
forward/reverse multivariate linear regression performed
within OrangeTM (Demsar et al., 2013) to identify orthogonal
clusters of input parameters. These clusters collapse highly
correlated predictors into a minimal set of uncorrelated
(“orthogonal”) predictor dimensions computed from network
graphs for the nodes of interest (Jolliffe and Cadima, 2016).
PCA applies linear transformations to fit all 49 predictors into
a coordinate system in which the most significant variance
component is represented by the first component (PC1), and
each successive component is orthogonal to all others and
accounts for a smaller fraction (%) of total variance (Giuseppe

5 http://www.pkumdl.cn:8000/PSPredictor/

et al., 2013). The first six PCs accounted for >88% of total
variance.

Structural dynamics of disordered
proteins

Simulations were performed using the GROMACS
simulation package implemented via the WebGRO server6

developed in-house. Each target protein was immersed in
a triclinic box containing simple point charge (SPC) water.
GROMOS96 43A force field was added evenly to the simulation
system. The simulation system was neutralized by adding
NaCl as counterions, and NaCl was supplemented to 0.15 M
to approximate the physiological salt concentration. The
whole system was energy minimized using Steepest Descent
method for 5000 steps, and then equilibrated using the
NVT/NPT method for 300 picoseconds. Each MD run used
the leap-frog integrator for 200 ns; simulation trajectories were
identified with the GROMACS trajectory analysis package and
plotted using XMGRACE.

Progeny production assay

Equal numbers of synchronized L1 worms (strain AM141,
expressing unc54/q40:yfp in muscle) were placed on 100-mm
agar plates and maintained at 20◦C. Worms matured into gravid
adults in 2.5 days, and the number of progeny produced during
days 5 and 6 post-hatch were counted for triplicate plates,
calculating the average number of progeny per plate per day.
Significance was determined by a 2-tailed heteroscedastic t-test.

Results

Understanding the physiological
effects of known disordered proteins in
Caenorhabditis elegans
neurodegenerative-disease models

A nematode model of neuronal amyloidosis
To investigate the roles of disordered proteins in

aggregation, we assessed 23 high-confidence IDPs from
DisProt, a manually curated IDP database. The selected
IDPs were tested in C. elegans strain CL2355, after induction
of human Aβ1−42 peptide synthesis in all neurons. RNAi-
mediated knockdown of each gene was initiated at hatch,
and day-5 post-hatch worms were assayed for chemotaxis
toward n-butanol, a behavior that deteriorates gradually with

6 https://simlab.uams.edu/
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age and acutely upon induced neuronal expression of the
Aβ1−42 peptide (Balasubramaniam et al., 2019). Of 23 tested
IDP knockdowns, 12 (53%) conferred significant protection
against loss of chemotaxis following Aβ aggregate formation,
relative to controls, whereas 5 knockdowns had no effect or
may have slightly worsened the trait (Figure 1A). For the 12
protective knockdowns, chemotaxis rescued 15–51% of the
deficit attributed to neuronal Aβ1−42 expression, implying that
each protein contributes to neuronal Aβ1−42 aggregation and
the associated loss of chemotaxis. It is of particular interest that
knockdown of 11 other genes encoding disordered proteins
(RPAB3, GRB14, ATP7A, ITF2, PO2F1, CALR, P53, APEX,
ESR1, VAMP, and TNNI3) did not significantly improve
chemotaxis, suggesting that their encoded proteins contribute
little to chemosensory deficit caused by Aβ1−42 aggregation, or
are functionally redundant with other genes or pathways.

A nematode model of muscle amyloidosis
We next evaluated the roles of these disordered proteins

in a C. elegans model of muscle Aβ1−42 aggregation. We
knocked down expression of the same disordered proteins in

C. elegans strain CL4176, which expresses Aβ1−42 peptide in
muscle, leading to Aβ1−42 aggregation and ensuing paralysis.
The fraction of paralyzed worms was assayed in day-4.5 adults
(i.e., 47 hr. after the L4/adult molt; Figure 1B). Sixteen of 23
knockdowns (70%) elicited significant rescue, restoring 23 –
78% of the motility lost due to Aβ1−42-mediated aggregation in
muscle. However, five knockdowns did not cause a significant
shift in paralysis, and two (P53 and APEX) significantly
decreased motility (red asterisks in Figure 1B).

Although the two assays evaluated disparate effects
of Aβ1−42 aggregation in different tissues, the Pearson
correlation between these results is significant (RP = 0.59;
P < 0.0025). We recognize that the efficiency of RNAi
knockdown may be reduced for some neuronal genes. The
23 IDPs listed in the paper include 18 with documented
neuronal expression (see WormBase.org), of which 16
(89%) were successfully suppressed by RNAi, whereas for
the 5 gene targets with no detectable neuronal expression,
only one (20%) impacted the chemotaxis phenotype upon
knockdown. As summarized in Table 1, RNAi knockdown of
neuronally expressed genes was nearly 6-fold more effective

FIGURE 1

Aggregate abatement by knockdown of intrinsically disordered proteins (IDPs) from Disprot. (A) Histogram showing means ± SEM for calculated
average chemotaxis of Caenorhabditis elegans strain CL2355 [Aβ1-42:3’UTR(long)], a model featuring pan-neuronal expression of human Aβ1-42

peptide, which leads to a 50 – 60% deficit in chemotaxis relative to young-adult wild-type worms (N = 100–150 worms per group). (B)
Histogram show mean ± SEM for paralysis of C. elegans strain CL4176, an induced-Aβ1-42 model of AD-like amyloid deposition after muscle
expression of human Aβ1-42 (N = 200–250 worms per group). Significances of differences from controls by heteroscedastic, 2-tailed t tests are
∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.0001; ∗∗∗∗P ≤ 0.00001. Red asterisks indicate values significantly below controls.
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TABLE 1 RNAi knockdowns have far greater effects on a neuronally-mediated trait (chemotaxis) for KD targets with documented neuronal
expression.

N Chemotaxis Paralysis

Mean effect SEM Mean effect SEM

KD of genes with documented neuronal expression 18 17.8% 2.4% 26% 3.0%

KD of genes lacking neuronal expression 5 3.0% 3.0% 11% 5.9%

Fold difference 5.9 2.4

Significance (2-tailed t test) 0.0034 0.056 (N.S.)

in disrupting a behavioral trait (chemotaxis) than was KD
of neuronally silent genes (P < 0.004). In contrast, there
was a 2.4-fold change in KD efficacy (not significant) for
paralysis, a trait mediated by genes expressed in both muscle
cells and neurons (Table 1). Together, these data imply
that disordered proteins play crucial roles in aggregate
formation across diverse neurodegenerative-disease models,
impacting motility and chemosensory behavior, along with
other physiological processes.

Proteins in Parkinson’s aggregates are
enriched for intrinsically disordered
proteins (IDPs)

We observed a substantial number of intrinsically
disordered proteins in AD hippocampal aggregates (Ayyadevara
et al., 2016a), many of which had also been previously identified
in aggregates isolated from other neurodegenerative diseases
(Vaquer-Alicea and Diamond, 2019) and also found in
aging human skeletal muscle, and hearts and brains from
aged or AD-model mice (Ayyadevara et al., 2016b, 2019;
Kakraba et al., 2019). These commonalities suggested that
similar processes may be involved in a diverse array of age-
associated pathologies, possibly involving a conserved set
of IDPs. To pursue that possibility, we asked whether PD
brain aggregates are also enriched for disordered proteins. We
predicted the disordered fraction of each protein identified
by proteomic analysis of Parkinson’s disease tissue, in both
soluble and detergent-insoluble aggregates, using the PONDR
and ESpritz on-line servers (Xue et al., 2010; Walsh et al.,
2012). Results were similar; only PONDR outputs are shown
here.

These servers predicted that 53% of the proteins identified
in Parkinson’s aggregates have at least 40% disorder, an
enrichment >1.7-fold above the 31–32% predicted for human
proteins overall (Ali and Ivarsson, 2018; Deiana et al., 2019)
(Chi-squared P < 10−4). Of 845 IDP proteins enriched in
insoluble aggregates from PD, 632 (75%) were also significantly
enriched in AD aggregates (each relative to similar aggregates
from age-matched controls) (Ayyadevara et al., 2016a). A subset
of 197 aggregate-enriched proteins shared by AD and PD,

selected for a broad range of disorder scores (Table 2),
indicates very little correlation between AGGRESCAN-
predicted aggregation propensity and estimated disorder
(RP = 0.095).

Machine-learning/neural-network
descriptors predict aggregation

The above data on IDPs led us to re-evaluate the relationship
between the disorder level and other properties of a protein,
and its tendency to enter into aggregates. To understand
which physiochemical properties might favor aggregation of
disordered proteins, we selected 400 disordered proteins
enriched in both PD and AD aggregates, and compiled the
numbers of spectral hits for each such protein in the detergent-
soluble and -insoluble fractions. The resulting dataset also
listed 49 distinct physiochemical properties for each protein,
including disorder score, hydrophobicity, aggregation score,
aromaticity, and percentage of several other key amino acids.
Machine-learning software then randomly partitioned the list
80:20, into sets used for training and testing respectively; this
process (partitioning, training and testing) was repeated for
50 permutations. We then categorized the proteins based on
their PD-aggregate spectral hits into four groups: “INSOL,”
where the protein is only found in insoluble aggregates;
“SOL,” where the protein is found only in soluble aggregates;
“BOTH,” where the protein is found in both soluble and
insoluble aggregates; and “NOAGG” for proteins not found
in any aggregates.

We trained Principal Component Analysis (PCA), neural-
network (NN), and support-vector-machine (SVM) algorithms
to predict a protein’s probability of entering aggregates. The
neural-network and SVM predictions resulted in 79.5 and
80% accuracy, respectively, for the testing groups — indicating
equivalent performance. This suggests that, among 49 input
descriptors, there may be a subset of properties that determine
aggregation propensity of disordered proteins, supporting our
hypothesis that disorder alone does not dictate aggregation.
The PCA, NN, and SVM algorithms used physiochemical
properties, including net hydrophobicity, % acidic residues,
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TABLE 2 Selected proteins shared by Alzheimer’s disease (AD) and
Parkinson’s disease (PD) aggregates, with a range of disorder scores.

Protein name Aggregation propensity Percent disorder

LPPRC_HUMAN 137.2 68.4

KIF1A_HUMAN 125.6 44.3

RPN1_HUMAN 84.3 50.3

E41L3_HUMAN 69.6 72.4

MPP6_HUMAN 42.2 100

SYN1_HUMAN 33.5 49.8

CLUS_HUMAN 28.6 59.6

STX1A_HUMAN 27.3 74.3

SYNEM_HUMAN 26.8 46.7

1433F_HUMAN 21.5 45.9

1433Z_HUMAN 21.0 53.8

1433B_HUMAN 20.3 54.4

1433G_HUMAN 20.1 46.1

APOE_HUMAN 15.5 74.7

GFAP_HUMAN 9.8 82.4

SNX3_HUMAN 3.0 13.0

STMN1_HUMAN 2.6 25.3

HSPB1_HUMAN 2.9 15.0

NEUM_HUMAN 1.2 35.9

MARCS_HUMAN 1.8 40.5

H10_HUMAN 5.7 97.6

K1C9_HUMAN 4.2 66.6

BASP1_HUMAN 0 100

Aggregation propensity was predicted by AGGRESCAN; disorder scores were
generated by PONDR.
The Pearson correlation coefficient between these two parameters was 0.095
(not significant).

% basic residues, % charged and uncharged residues, total
aggregation-prone expanse, total hot-spot aggregation expanse,
total number of disordered segments, longest disordered region,
and overall% disorder, augmented by in silico predictors of
protein disorder (Table 3).

To identify a minimal set of descriptors or properties
required for prediction accuracy, we used Principal Component
Analysis (PCA) to compare predictive models. Disorder scores
generated by the PONDR program, which itself uses neural
networks to identify disordered protein regions, was the most
influential predictor of aggregate inclusion (PC1 in Table 3),
followed by spectral counts in α-synuclein insoluble aggregates
(PC2). The first 6 principal components accounted for > 88%
of dataset variance. Limiting descriptor inputs to the top 3
PCA components reduced SVM and NN accuracy (AUC) by
a further 4.6% (see Table 4). A 2-dimensional partitioning
of proteins by aggregation propensity, based on the first
two components, is illustrated in Figure 2A. Predictions
using both PC1 and PC2 show a correlation coefficient R of
0.895, and R2 = 0.80, with actual detection in PD and AD
aggregates. Receiver-Operating Characteristic (ROC) analyses,

plotting sensitivity vs. specificity, are displayed for neural
network and support vector machine predictions for each
of the classes BOTH, INSOL, and NOAGG (Figures 2B–D,
respectively). The SOL category was poorly resolved from other
classes (Supplementary Table 3). We also predicted potential
liquid-liquid phase separation for each protein in the dataset
using PSPredictor. PSPredictor scores correlated fairly well
with NN and SVM predictions, producing linear (Pearson)
correlation coefficients of 0.75 and 0.85 with NN and SVM
predictions, respectively. Spearman rank-order correlations
were slightly higher at 0.81 for NN and 0.90 for SVM predictions
(Supplementary Table 4, last line).

Structural analysis of implicated
disordered proteins

Since the majority of disordered proteins are predicted to be
structurally unstable, and are thus likely to unfold more readily
than other proteins (Uversky, 2019), we analyzed the structural
dynamics of several IDPs that were enriched in both PD and
AD insoluble aggregates. We selected tubulin beta-4A chain
(TUBB4A), a disordered monomer that polymerizes into the
highly ordered and stable microtubule structure; glial fibrillary
acidic protein (GFAP), an intermediate filament protein with a
disorder score of ∼86%; RAP2A, a small GTP-binding protein
related to Ras, which forms a signaling complex with NEDD4
and TNIK regulating neuronal dendrite morphogenesis; and
three 14-3-3 paralogs (α, γ, and σ), members of a small
family of conserved signaling molecules responsive to protein
phosphorylation. Each of these aggregate-enriched proteins
was consistently abundant (50–485 spectral counts) in each
of the immunopurified aggregate types (sarkosyl-insoluble
aggregates isolated by antibody affinity for α-synuclein, Aβ1−42,
or tau), with the exception of RAP2A, which was substantially
less abundant (25 total hits). Spectral counts for individual
proteins in each aggregate class were roughly in proportion to
total sarkosyl-insoluble aggregate protein (see percentages in
Table 5).

We predicted structural dynamics of these six proteins using
atomistic molecular-dynamic simulations of the monomeric
forms, conducted for 200 ns in triplicate (Figure 3). All six
proteins are predicted to show RMSD instability, based on
average tracings of three 200-ns simulations for each protein.
Tubulin β chain 4B is the most stable of these, but nevertheless
undergoes RMSD fluctuations of 10–20% for at least 200
ns (Figure 3A). The RMSD of GFAP continued to expand
throughout the 200-ns simulations, indicative of progressive
unfolding (Figure 3B). RAP2A showed RMSD fluctuations
of > 50%, and beyond ∼70 ns it appeared to oscillate between
two or more metastable conformations (Figure 3C). The three
14-3-3 paralogs (Figures 3D–F) were predicted to expand
progressively over the course of the simulations.
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TABLE 3 Descriptors in top 6 PCs, accounting for 88% of dataset variance.

Criteria for inclusion in insoluble aggregates Criteria for aggregate exclusion

PC1 PONDR disorder score (>0.607) (Deng et al., 2015) PONDR disorder score (<0.607)

PC2 α-synuclein insoluble-aggregate content (spectral hits > 8) α-synuclein soluble-aggregate content (spectral hits < 42)

PC3 Percent amphipathic residues (>5%) Percent acidic residues (>6.7)

PC3 Number of disordered regions > 30 amino acids (>4) Total hot-spot area of aggregation (<0.017)

PC4 AGGRESCAN aggregation propensity per 100 a.a. (Kikis et al.,
2010) (>3.2)

PC5 Percent aromatic residues (≤21.6%)

PC6 Percent basic residues (6.7 < %basic ≤ 10.2) Number of disordered segments (<3)

PC6 Number of disordered residues (<53)

Each successive Principal Component accounts for the maximal fraction of remaining variance. The threshold criterion for classification into “insoluble aggregates” is
shown in parentheses.

TABLE 4 Accuracy of machine-learning algorithms vs. number of PC inputs used.

Machine learning model AUC (top 6 PCs) AUC (top 5 PCs) AUC (top 4 PCs) AUC (top 3 PCs)

Support vector machine (SVM) 0.826 0.798 0.795 0.789

Neural network 0.817 0.789 0.784 0.781

AUC is determined within OrangeTM for all ROC results from 50 data permutations (Demsar et al., 2013).

Intrinsically disordered proteins (IDPs)
in Parkinson’s disease (PD) aggregates
influence stress survival and
reproduction

We previously reported that RNAi knockdowns that
suppress expression of orthologs of AD aggregate-enriched
proteins conferred significant protection from pathology-
associated outcomes in C. elegans models of neurodegenerative
aggregation (Ayyadevara et al., 2015, 2016a, 2017, 2021).
To assess whether knockdowns are similarly protective for
target IDPs implicated by our SVM and NN algorithms, we
quantified aggregate formation and progeny production after
RNAi-mediated knockdown of C. elegans orthologs of six
representative IDP genes with≥ 40% disorder, enriched in both
AD and PD aggregates (DHX9, PLEC, FABPH, TUBB4, GFAP,
and MPPA).

Influential intrinsically disordered protein
(IDPs)’s tested in nematode models of
neuropathic aggregation

We first assessed the effects of knockdowns targeting
orthologs of these IDPs in a C. elegans model of α-synuclein
aggregation, characteristic of PD. To visually monitor the
consequences of each knockdown, we employedC. elegans strain
NL5901, expressing α-synuclein fused to yellow fluorescent
protein [unc-54p:alpha-synuclein:yfp + unc-119 (+)] in body-
wall muscle. We quantified YFP inclusions in muscle of control
worms, vs. worms subjected to RNAi knockdowns targeting
C. elegans orthologs of the 6 IDP genes that encode proteins

enriched in AD and PD aggregates. RNAi exposure extended
from hatch until aggregate assessment 5 days later. Based on
mean YFP intensity per worm, these IDP knockdowns decreased
α-synuclein aggregate load by 15–43% (Figure 4), with GFAP
KD exerting the greatest effect, followed by PLEC.

We next assessed these same six IDPs in a C. elegans model
of age-progressive, huntingtin-like aggregate formation (distinct
fluorescent foci arising from YFP-tagged Q40 expressed in
muscle). RNAi suppression of these IDPs decreased Q40:YFP
punctate fluorescence per worm by 12–73% (Figures 5A,B).
Both the number and intensity of aggregates were reduced by
suppression of these IDPs, with GFAP and PLEC again exerting
the greatest effect, followed closely by TUBB4A (tubulin β

chain 4A) (Figure 5A). We noticed fewer progeny issuing from
these KD groups, leading us to quantify fecundity (Figure 5C).
Intriguingly, each IDP knockdown significantly lowered the
average number of eggs laid on days 5 and 6 post-hatch, by
40–60% relative to progeny of feeding-vector control worms
(P ≤ 0.001 to P ≤ 0.0001). This observation implies that each
IDP contributes to fertility and/or development; that is, each
gene product serves a positive function early in life, although
most become deleterious subsequently.

Discussion

By far the most influential descriptor, for prediction of
aggregate inclusion, was the PONDR disorder score (PC1
in Table 3). This confirms that disorder is the predominant
feature determining protein accretion into aggregates – which
has been widely assumed and was strongly supported by our
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FIGURE 2

Data partitioning based on the first two principal component analysis (PCA) components. (A) Scatter-plot illustrating 2-dimensional sorting of
intrinsically disordered proteins (IDPs) based on the first two components, PC1 and PC2, into categories INSOL (sarkosyl-insoluble aggregates),
NOAGG (not aggregated), and BOTH (included in both soluble and insoluble aggregates). (B–D) Receiver-Operating Characteristic (ROC)
analysis of the 3 classes, INSOL, NOAGG, and BOTH, showing similar curves for NN and SVM, for total positives (TP, y axis) vs. false positives (FP,
x axis) — representing sensitivity and specificity, respectively.

TABLE 5 Spectral hits for proteins in Parkinson’s disease (PD) brain aggregates.

Protein α-synuclein aggregates Aβ1−42 aggregates tau aggregates Total

GFAP 755 (48.1%) 428 (27.3%) 386 (24.6%) 1569

TUBB4A 485 (57.7%) 194 (23.1%) 161 (19.2%) 840

RAP2A 18 (72%) 4 (16%) 3 (12%) 25

14-3-3S 135 (55.8%) 57 (23.6%) 50 (20.7%) 242

14-3-3G 116 (49.6%) 58 (24.8%) 60 (25.6%) 234

14-3-3Z 164 (54.3%) 71 (23.5%) 67 (22.2%) 302

Sark-insol. aggregates 58,813 (55.3%) 27,924 (26.3%) 19,534 (18.4%) 106,271

Sark-sol. aggregates 18,997 (35.7%) 15,984 (30.1%) 18,176 (34.2%) 53,157

Protein spectral counts are totals for each immunopurified, sarkosyl-insoluble aggregate type.

observation of highly significant IDP enrichment in protein
aggregates. PC2 is simply the total insoluble-aggregate content

of α-synuclein, which Table 5 reveals to be a reasonably good
surrogate for the sarkosyl-insoluble protein content of any
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FIGURE 3

RMSD plots of disordered proteins. Intrinsically disordered protein (IDP) structures were simulated for 200 ns: (A) Tubulin 4B; (B) glial fibrillary
acidic protein (GFAP); (C) RAP2A; (D) 14-3-3α (alpha); (E) 14-3-3γ (gamma); (F) 14-3-3σ (sigma). RMSD instability reflects random structural
perturbations over time.

FIGURE 4

Aggregation of human α-synuclein after KD of Alzheimer’s disease (AD)/ Parkinson’s disease (PD)-aggregate Intrinsically disordered proteins
(IDPs). (A) Histograms for worms exposed to RNAis of IDPs at 20◦C, imaged as day-5 post-hatch adults. Six IDP knockdowns were exposed
continuously from hatch, to RNAi targeting IDPs shared by AD and PD aggregates. (B) Images are shown of Caenorhabditis elegans day-5 adults
of strain NL5901 [unc-54p:alpha-synuclein:YFP + unc-119(+)], a model of PD-like α-synuclein aggregation, with YFP fluorescent foci appearing
in body-wall muscle. Experimental groups differ from controls with significance based on heteroscedastic, 1-tailed t tests: ∗P ≤ 0.05;
∗∗P ≤ 0.005. FV-A and other images are shown at 4×magnification; FV-B is shown at 20×magnification.

aggregate class. This supports our hypothesis that common
processes of accrual mediate the formation of all aggregate
varieties. Additional increments, although of ever-diminishing
importance, are provided by PC3–PC6. It is noteworthy that
all PCA dimensions are deemed to be independent of one
another, meaning that there is no discernable correlation
between disorder score (PC1), insoluble aggregate burden
(PC2), the number of extensive disordered regions (PC3) or
the% amphipathic, acidic, aromatic, or basic residues (PC3, PC5,
PC6). AGGRESCAN provides a sequence-based prediction of
aggregation propensity, which appears as PC4. At this level,
we cannot be certain that this descriptor is truly orthogonal

to all other input variables, but it is clear that AGGRESCAN
provides less valuable information than PONDR (PC1) or
aggregate burden (PC2).

Protein folding is obligatory for generation of functional
proteins (Diaz-Villanueva et al., 2015). Most newly synthesized
proteins will reach a native conformation upon completion
of synthesis; proteins that are initially misfolded are assisted
by chaperones to assume stable conformations (Hwang and
Qi, 2018). Multiple mechanisms provide redundancy, and
help to minimize the loss of functionally robust structures
(Hwang and Qi, 2018); nevertheless, it is estimated that
over half of newly synthesized proteins may be degraded
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FIGURE 5

Polyglutamine aggregation and fertility after KD of Alzheimer’s disease (AD)/Parkinson’s disease (PD)-aggregate IDPs. (A) Average aggregate
fluorescence per worm in Caenorhabditis elegans strain AM141 (expressing q40:yfp in body-wall muscle), a model of HD huntingtin-like
aggregation. Six IDPs were assessed following exposure to RNAi for the indicated IDPs, shared by both AD and PD. (B) Images are shown
(10×magnification) of C. elegans AM141 adults, at 5 days post-hatch after 4 days exposure to RNAi targeting β-tubulin or GFAP. (C) Average
number of eggs laid during days 5 and 6 post-hatch following knockdown with the indicated RNAi. Differences from controls are significant by
heteroscedastic, 1-tailed t tests at ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.0001.

FIGURE 6

Scatter plots illustrate Spearman and Pearson correlations. (A,B) PSPredictor scores (Chu et al., 2022) (y axes) are plotted against aggregation
propensities (x axes) predicted for 197 proteins, based on (A) neural network (NN), or (B) support vector machine (SVM). (C,D) Rank orders of
PSPredictor scores (y axes) are plotted against rank orders of aggregation propensities (x axes) predicted for (C) neural network (NN), or (D)
support vector machine (SVM). RP is the Pearson (linear) correlation coefficient; RS is the Spearman rank-order correlation coefficient.

co-translationally (Turner and Varshavsky, 2000). IDPs have
been reported to be involved as key regulators of diverse
and essential physiological processes including transcription,

translation and cell signal transduction (Wright and Dyson,
2015). In a recent study, Cuevas-Velazques et al. demonstrated
that IDPs coupled to fluorescent tags can serve as biosensors
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of osmotic stress (Cuevas-Velazquez et al., 2021). We here
add the novel observation that IDPs contribute to reproductive
potential (Figure 5C).

Multiple proteins, and especially IDPs, coalesce into
aggregates, which also contain specific RNA and DNA sequences
to which many IDPs bind (Shmookler Reis et al., 2021). Disease-
associated aggregate components serve as diagnostic biomarkers
for diverse neurodegenerative pathologies (Balasubramaniam
et al., 2019; Ayyadevara et al., 2021). To evaluate the
importance of these IDPs for aggregate formation and
associated traits, we performed an initial screen in which
IDPs from the DisProt database were individually knocked
down in C. elegans by RNA interference. Most KDs conferred
substantial protection against aggregate formation, and/or
protected against age-progressive traits used as end-points in
C. elegans models of diverse neurodegenerative diseases. We
observed similar protection in studies of the human SERF2
protein (Balasubramaniam et al., 2018) and its C. elegans
ortholog CRAM-1 (Ayyadevara et al., 2015). Each IDP
KD conferred similar protection against aggregate accrual,
a hallmark feature of aging and age-associated diseases
(van Ham et al., 2010).

Numerous IDPs play key functional roles during high
energy-demand states such as reproduction and response to
stresses encountered during development. Nevertheless, the age-
progressive increase in protein aggregation, which is largely
post-reproductive, will be exacerbated by the tendency of
these sticky proteins to interact non-randomly with other
protein partners, or with RNA or DNA (Marcelo et al., 2021;
Shmookler Reis et al., 2021), and in response to stressors in the
cell environment (Balasubramaniam et al., 2019).

Individual IDPs may qualify as instances of “antagonistic
pleiotropy” (Williams, 1957), wherein allele-specific survival
and/or reproductive value drive natural selection early in life,
unhindered by detrimental effects arising later. We found that
6 out of 6 IDP knockdowns reduce C. elegans reproductive
fitness, evidenced by reduced fecundity (Figure 5C), despite
decreasing protein aggregation (Figure 5A) and its deleterious
sequelae that reduce long-term survival (Ayyadevara et al.,
2016a,b). Antagonistic pleiotropy is not an obligatory property
of natural gene variants, but is observed for a subset of
longevity-associated alleles (Ayyadevara et al., 2001). We
expect IDPs to play important roles in reproduction, perhaps
due to their ability to bind multiple partners and thus
coordinate multiple pathways. With aging, however, IDPs
may become increasingly sensitive to progressive changes
arising from oxidation and inflammation, ultimately impairing
proteostasis (Kikis et al., 2010; Bektas et al., 2018). Non-
random interactions of these IDPs with protein and nucleic-
acid partners may contribute to aggregate initiation and
progression (Stefanis, 2012; Ayyadevara et al., 2017, 2021;
Uversky, 2019; Shmookler Reis et al., 2021). Examples of
dysregulated IDPs include tau and Aβ1−42 in AD, TDP-43

in ALS and other diseases, and α-synuclein in PD (Irwin
et al., 2013; Burre et al., 2018). We found many IDPs
enriched in aggregates from human-AD hippocampus and in
diverse C. elegans models of human neuropathic aggregation
(Ayyadevara et al., 2015).

Not all IDPs are enriched in aggregates, and so we
sought to identify properties that determine whether proteins
are incorporated into aggregates or excluded from them.
We utilized tools developed previously to predict protein
disorder and aggregation propensity (Conchillo-Sole et al.,
2007; Xue et al., 2010), but tailored our approach to allow
us to infer which IDP properties favor or disfavor their
entry into PD and AD aggregates. We combined 3 machine-
learning methods and 49 predictors (several of which were
scores from other machine-learning algorithms) to predict
whether an IDP will enter into detergent-insoluble or detergent-
soluble aggregates.

This strategy has the important benefit of providing
insights into the most influential factors used by NN
or SVM algorithms. Our NN predictions suggested that
a combination of crucial physiochemical properties of a
disordered protein are, at least in part, responsible for entry
of a disordered protein into aggregates. Properties such as
the abundance of basic or aromatic residues are predicted
to be among the crucial factors in determining a disordered
protein’s aggregation propensity (Table 3). Some of our
predictions are supported by real-world examples, including
tau, TDP-43 and α-synuclein (Deckert et al., 2016). We
used principal component analysis to reduce the number
of orthogonal inputs (“dimensionality”) for neural-network
and SVM algorithms, and thus to define a minimal set
of non-redundant determinants necessary to predict IDP
aggregation. This approach was successful, in that restricting
inputs to the first 3 PCA components only reduced the
accuracy of SVM and NN by <5% (Table 4), enabling us
to conclude that expected disorder is the most influential
predictor for aggregation of specific proteins, followed by
relative aggregate burden (i.e., the overall protein content
of any of 5 aggregate subtypes). Disorder appears to be,
by far, the most influential factor, enhanced somewhat by
aggregate abundance. These predictions benefited only rather
modestly from a variety of sequence-based determinants of
aggregation propensity.

It is intriguing that the predicted susceptibility of proteins
to liquid-liquid phase separation (Deckert et al., 2016)
correlated fairly well (RP = 0.746) with neural-network
prediction of entry into observed AD and PD aggregates,
and a bit better (RP = 0.853) with SVM predictions
(Figure 6 and Supplementary Table 1). This suggests that
the underlying “logic” employed by NN and SVM to predict
aggregate inclusion, to some extent employs features also
used by PSPredictor to assign likelihood of a liquid-liquid
phase separation.
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