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Abstract: Since late 2019, Coronavirus Disease 2019 (COVID-19) has spread all over the world. The
disease is highly contagious, and it may lead to acute respiratory distress (ARD). Medical imaging can
play an important role in classifying, detecting, and measuring the severity of the virus. This study
aims to provide a novel auto-detection tool that can detect abnormal changes in conventional X-ray
images for confirmed COVID-19 cases. X-ray images from patients diagnosed with COVID-19 were
converted into 19 different colored layers. Each layer represented objects with similar contrast that
could be defined as a specific color. The objects with similar contrasts were formed in a single layer.
All the objects from all the layers were extracted as a single-color image. Based on the differentiation
of colors, the prototype model was able to recognize a wide spectrum of abnormal changes in the
image texture. This was true even if there was minimal variation of the contrast values of the
detected uncleared abnormalities. The results indicate that the proposed novel method can detect
and determine the degree of lung infection from COVID-19 with an accuracy of 91%, compared to
the opinions of three experienced radiologists. The method can also efficiently determine the sites of
infection and the severity of the disease by classifying the X-rays into five levels of severity. Thus, the
proposed COVID-19 autodetection method can identify locations and indicate the degree of severity
of the disease by comparing affected tissue with healthy tissue, and it can predict where the disease
may spread.

Keywords: auto-detection; SARS-COV-2; chest X-ray images; lung infection; disease severity

1. Introduction

Since its discovery in Hubei province, China, Coronavirus disease 2019 (COVID-19)
has become an international emergency [1,2]. To date, quarantine has been the most
significant control intervention for respiratory diseases caused by the virus. Although
isolating infected individuals has had positive effects on the distribution of the disease,
many more preventive measures have yet to be identified [3,4]. There is currently no cure
for COVID-19 that mitigates its global impact on public health and improves the overall
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ability of healthcare systems to provide adequate care. In addition, the disease increases
the need for intensive care, including mechanical ventilation. This has led to the need to
redistribute clinical resources for the provision of appropriate care [5–7].

In addition to the different clinical procedures and treatments currently available,
artificial intelligence (AI) technologies and computer-aided detection and smart diagnostic
methods provide a new paradigm for medical settings [8–10]. Various automated smart
tools that use machine learning algorithms have been used to analyze data sets and
enhance various decision-making processes [11]. Computer-aided detection tools could
help identify outbreaks of COVID-19 and predict the nature of its spread around the
globe [12–14]. However, unlike other health issues, to detect COVID-19, AI-driven tools
are expected to have active cross-population learning/test models that use a multitude of
multimodal data. Testing and isolating positive cases are the most important milestone
in managing COVID-19. Diagnosis is currently achieved by a rapid, real-time reverse
transcription polymerase chain reaction. This method relies on respiratory samples, and
the time to produce results can be two days. As an alternative, the disease can be diagnosed
by radiography, which produces ground-like opacities in chest scans of people infected
with respiratory diseases. Hazy darkened spots in radiographic images from patients
with COVID-19 are different from those of negative subjects. Radiographic analyses have
been shown to be useful in the detection, quantification, and follow-up of 19 patients with
COVID-19 [15].

X-ray detection of COVID-19 could provide more advantages than conventional
polymerase chain reaction (PCR) diagnostic techniques. Moreover, chest X-rays produce
results quickly and with greater availability than the PCR test kits. This method is more
readily available, and it can be used in installations where there is no adequate supply of
PCR test kits [16,17]. As such, radiological diagnostic methods are more convenient given
that healthcare is making rapid progress towards radiological imaging techniques in the
field of medical diagnosis [18].

In addition to the diagnosis of diseases, medical imaging also provides a wealth
of information on the anatomy and physiology of respiratory organs. The integration
of imaging methods into medical imaging and machine learning increases the use of
computerized diagnostics and decision-making tools. In addition, researchers have seen
significant reproducibility and reduced costs from using X-rays for diagnostic purposes
compared to conventional test methods [19–21].

From a lung computed tomography (CT) scan, the AI is designed to quickly detect
lesions of possible coronavirus pneumonia, to measure their volume, shape, and density,
and to compare changes in multiple lung lesions from the image. All of this becomes a
quantitative report to assist physicians with rapid assessment [22]. Chen [23] adds that, in
Wuhan, where there were too many cases to be tested and PCR-based diagnostics took too
long, CT imaging with AI may serve as a surrogate for physicians when prompt judgment
is needed [24].

Another study investigated how Bayesian convolutional neural networks (BCNN)–
based drop-weights can estimate uncertainty in a deep learning solution to improve the
diagnostic performance of a human–machine team. Using a publicly available COVID-19
chest X-ray dataset, the study showed that uncertainty in the forecast was highly correlated
with the accuracy of the prediction [25]. A three-phase approach has been proposed:
the first detects the presence of an X-ray of chest pneumonia; the second distinguishes
between COVID-19 and pneumonia; and the third locates the symptomatic X-ray areas
of the presence of COVID-19 [26]. A method for generating synthetic chest X-ray images
has been introduced by developing a model based on an auxiliary classifier generative
adversarial network—called CovidGAN—to enhance the performance of CNNs for COVID-
19 detection [27].

Specimens were tested using a validated reverse transcription-quantitative poly-
merase chain reaction test to detect SARS-COV-2 and measure cycle threshold values. The
status of the symptoms and the date of onset of symptoms also were recorded for each
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participant [28]. Coronavirus was detected using a deep learning model, a sub-branch
of AI. Efficient features were combined and classified using vector machine support [29].
A quick and effective way is proposed to identify COVID-19 patients with multitasking
deep learning methods. X-ray and CT scan images shall be considered for assessing the
proposed technique [30]. A hybrid COVID-19 detection model based on an improved
marine predator algorithm has been proposed to segment an X-ray image to reveal similar-
ity in small regions with characteristics of COVID-19 [31]. A novel learning architecture
called detail-oriented capsule networks has been proposed for the automatic diagnosis of
COVID-19 from computed tomography scans. The network combines the strength of cap-
sule networks with several architectural improvements designed to increase the accuracy
of classification [32]. If AI-based intelligence were implemented correctly, it would be far
less accurate than that of a human. to precisely, quickly, and rapidly; the missiles could be
enhanced with accuracy, precision, and speed.

Utilizing a smart auto-detection computational model that can provide superior
accuracy for differentiating abnormalities will enable us to easily distinguish between
different cases of COVID-19 X-ray images, and it makes it faster to distinguish features
among them. Furthermore, it is vital to identify the abnormal region within the radiological
image, as such identification informs potential treatment guidelines for the management
of disease symptoms and indicators of acute illness. The aim of this work is to propose
the use of image segmentation based on the distribution of texture and intensity in chest
X-rays for the effective detection of abnormal locations in chest X-rays. Using this method,
the abnormal regions can be identified by texture analysis, depending on the intensity and
gradient of the region following the segmentation of the image, which will enhance the
possibility of detecting lung complications caused by COVID-19 and provide adequate
information to guide quantification and follow-up decisions.

2. Materials and Methods

Pulmonary physicians increasingly rely on chest X-rays for diagnosing. However,
the conventional segmentation of images is not considered a key element for detecting
abnormalities in radiographic images [33]. The viability of disease-based diagnostic meth-
ods is, unfortunately, specific to diseases with significant differences. The medical sector
has recently seen an increase in the applicability of digital imaging for diagnosing disease.
Nevertheless, some techniques used to process medical images are still manually adjusted.
Digital processing techniques offer additional advantages, including accuracy, acceler-
ated disease diagnosis, and enhanced test efficiency [34]. Automatic image processing
techniques through segmentation may, however, compromise the quality of the image,
depending on the type of equipment used and the delivered radiation dose. To address this
discrepancy, the current study used multi-scale texture analysis and advanced segmenta-
tion tools. The recognition and classification of abnormal regions in the X-ray images could
thus be achieved without manual segmentation. Essential features may be retained and
distinguished from irregular patches in automated processed images, based on different
textures, organ shapes, and pathologies of lung tissue biopsies when automated imaging
is used.

This study was approved by the Research Ethics Committee at King Khalid University,
Kingdom of Saudi Arabia (Ethical approval code: [ECM#2020-243]—[HAPO-06-B-001];
Approval date: 18 May 2020). In this retrospective study, the proposed methodology was
built based on a collection of X-ray images for confirmed COVID-19 patients. Six hundred
eighty-nine images were collected from different hospitals in Asir province, Kingdom
of Saudi Arabia, twenty-five of which were excluded from the sample due to incorrect
positioning (i.e., parts of one or both lungs out of the field of view). The analyzed data
included 239 female and 425 male cases. The mean age of these subjects was approximately
55 years, and the standard deviation was ±7.8.
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2.1. The Prototyped Multicolor Thresholding with Segmentation Model

While designing the computational model used in this study, the validated SARS-
COV2 chest X-ray images were chosen as the starting point. Then, the model went through
two paths. The first path shows the availability resources and flexible usage. We used an
extended nineteen-color (multi-color) path that permitted the use of multiple colors, and a
diverse array of representations of the medical images was taken from various patients and
assigned unique layer names. When a combination of different objects was shown in each
of the colored layers, they were defined as having unique characteristics. All the objects of
the same color fit in a single layer. There are many more things to convert, but everything
from all the layers had been successfully converted into a single monochrome image.
Being able to differentiate between different textures by color allowed the prototype to
provide for a large variety of conditions. Since, to the extent that the presence of detectable
abnormalities is negligible, the above holds true, even if they have not been fully cleared,
the finding is still relevant.

In the second path, according to this more sophisticated method, the patient segmen-
tation technique, whether there is lung expansion in the COVID-19 classification and resale
images, is checked. Previously, the image was blurry to enable better detail in color; in this
case, we would break up the chest radiographs by image, segmenting the pictures into
black and white. Instead, the objects in each X-ray image were expanded and extracted,
and then, the dataset was expanded to its optimal size, where it was normalized. To
provide a visual map of the highlights of each area, the information included in the outline
(the information’s visual properties) was investigated and improved. These aspects were
then drawn out in and described as a visual highlight for the area. Thus, the segmented
black and white image was recreated by stitching all the images together to form a single,
seamless black and white image. A measurement of the abundance of COVID-19 was
taken to find the next, by probing possible sources and regions and researching regions and
their capacities. It compares the black and white pixels of both images, then produces an
intermediate black and white version for comparison, thus simulating the effect of going
from one output to the other. X-ray processing in the case of complex object detection can
depict multiple portions of the chest, allowing for the systematic and automated processing
of X-ray images of object detection (Figure 1). Furthermore, the field of view is the extent
of the observable image that is seen at any given moment. Q1 and Qn are the objects in the
image, from object No. 1 to object No. n.

The following section explains the core mathematical model for the proposed autode-
tection method. Using the average method, assume the original image in the grayscale
image is as follows:

Grayscale = ((R + G + B)/19) (1)

Equation (1) shows that each color image will be divided into nineteen sub-grayscale
images. This division will make it more efficient to deal with the grayscale images. In
our proposed methodology, we use 19 colors from wheel 7. This means that the 19 colors
will be derived from the seven basic components of a color, which may contain red, blue,
yellow, white, black, colorless, and light. Thus, they can be easily monitored and detected
using 24-bit color, assuming that the image can be converted to a K × L image histogram
with intensity i. Then, for each pixel p, there is an intensity i. Then, pi refers to a pixel
with its intensity, and the number of pixels is n. The image intensity will be the two image
dimensions’ matrix and relates them to the surface coordinates, excluding the intensity
that fails to be recorded in the image. Then the image intensity (IS) will be defined in terms
of the two image dimensions’ matrix (DM) and the intensity that fails to be recorded in the
image (IF), as follows:

IS = DM − IF (2)

where the two image dimensions’ matrix equals ∑19
i=1 M(x, y), and the intensity that fails

to be recorded equals ( ∂
∂x

∫
M(x, y)dy)∑n

m=1 P(R + G + B)/i)m.
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one background and several other objects. We used a layer divisor to convert the resulting
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Layered images (L) are equal to the sum of all sub-grayscale images, where these
partial images could be expressed, as shown in the following expression:[

19

∑
i=1

P(R + G + B)/i)

]

where i is the number of sub-grayscale images. Now, assume the threshold is TH = m:n and
we have 19 layers. The image intensity will be the two image dimensions, and relates them
to the surface coordinates, excluding the intensities that fail to be recorded in the image.
Then, the probability of the appearance of each layer (pl) is calculated as follows:

The general solution of x =
√

Pl// − Pl
The auxiliary equation is m2 − 1 = 0⇒ m = 1 or m = −1

Pl// =
m
∑

b=0

[[
19
∑

i=1

n
∑

m=1
P(R + G + B)/i)m

]
/s
]

b

//

Pl =
m
∑

b=0

[[
19
∑

i=1

n
∑

m=1
P(R + G + B)/i)m

]
/s
]

b

where the value of s varies from 1 to 19. The complementary function of the differential
equation is

yc = k1.e
√

Pl//−Pl + k2e−
√

Pl//−Pl

Let ci, (i = 1, 2) be functions of x:

yp = c1.e
√

Pl//−Pl + c2 e−
√

Pl//−Pl

Differentiate to obtain y/
p = c1.e

√
Pl//−Pl− c2e−

√
Pl//−Pl + c/

1 e
√

Pl//−Pl + c/
2 e−
√

Pl//−Pl

We have

c2 = −c1e2
√

Pl//−Pl = −1
2

x
√

Pl// − Pl
2

× e
√

Pl//−Pl



Diagnostics 2021, 11, 855 6 of 12

Again, integration by parts yields

c2 = −
(

1−
√

Pl// − Pl +
1
2

(√
Pl// − Pl

)2
)
× e
√

Pl//−Pl

Then, the general solution in terms the pixels of the colored image is, as usual, the
sum of the complementary function and the integral, as follows:

y = k1.e
√

∑m
b=0 [[∑

19
i=1 ∑n

m=1 P(R + G + B) /i)m ]/s]b
//−∑m

b=0 [[∑
19
i=1 ∑n

m=1 P(R + G + B) /i)m ]/s]b

+k2e−
√

∑m
b=0 [[∑

19
i=1 ∑n

m=1 P(R + G + B) /i)m ]/s]b
//−∑m

b=0 [[∑
19
i=1 ∑n

m=1 P(R + G + B) /i)m ]/s]b

−
√

∑m
b=0[[∑

19
i=1 ∑n

m=1 P(R + G + B) /i)m ]/s]b // −∑m
b=0[[∑

19
i=1 ∑n

m=1 P(R + G + B) /i)m ]/s]b
2
− 2

The proposed methodology relies on measuring the impact of COVID-19 on the lungs.
This effect appears in X-ray images as bright pixels in the lungs’ shadow area. Bright pixels
indicate the presence of swelling in the alveoli affected by the virus [35]: the more bright
pixels, the more severe the disease. The number of dark pixels in the original image is
measured in relation to the total number of pixels in both the original X-ray and the multi-
colored X-ray. Then, the difference between them is measured. The proposed methodology
takes this difference as an indicator of the severity of the disease; the smaller this difference,
the more the white pixels increase, as does the severity of the disease. This difference
is classified into five levels, with the fifth level indicating the highest degree of severity.
At this level, there is little difference between the numbers of black pixels in the original
image and the multi-colored image. The first level means that the virus does not control
the lung; in this case, there is a noticeable difference between the numbers of black pixels
in the images.

2.2. Data Analysis

Three independent radiologists (each at least with 4 years of experience reporting
various chest X-ray cases) were heavily involved in the process of assessing the recruited
patients’ medical records and the provided chest X-ray images. The Picture Archiving and
Communication System facilities were used to report the data. A classification of five levels
of severity was based on data obtained from chest X-ray images and the radiologists’
evaluation in comparison to the patient’s history.

Based on the study of the patients’ symptoms and findings from their chest X-rays,
the first level indicates the lung with limited signs of inflammation, as seen in Figure 2.
Patients in this level had symptoms such as a high temperature but no cough or signs
of difficulty breathing. Patients in the second level had mild lung inflammation, a high
temperature, and mild coughing but no signs of difficulty breathing. Patients in the
third level had moderate inflammation in the lungs, moderate coughing, shortness of
breath, and pneumonia. Patients in the fourth level experienced advanced symptoms, such
as critical inflammation in the airways and lungs, a lack of oxygen in the blood, acute
respiratory distress, and complications of the immune system and other organs. Patients
in the fifth level were disabled by life-threatening lung infections, with serious tissue
inflammation, requiring the patient to be placed on artificial ventilation.
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Figure 2. Chest X-ray images for five confirmed SARS-COV2 cases. These images show the levels
of severity of inflammation in three different modes: original image mode (first row), multi-color
thresholding mode (second row), and segmentation mode (third row).

Various quantitative measures were used to analyze the data: the numbers of cumula-
tive ratios of white pixels to black pixels (mean, standard deviation, t-test, p-value, and
Cohen’s Kappa). These statistical parameters were be used to measure the degree of conver-
gence between the results of the proposed methodology and the opinions of experienced
radiologists in classifying X-rays into the above-mentioned severity classification.

3. Results and Discussion

Figure 2 shows examples of the five levels of severity that the methodology suggests.
They are based on chest X-ray images for confirmed COVID-19 patients. As shown in the
figure, the degree of severity classification for each level is shown in three ways. In the first
row, the X-rays are classified according to the volume of the appeared lung. In the original
chest X-ray image, the volume of healthy lung tissue can be determined by calculating the
ratio of dark pixels (which express healthy tissue) to bright pixels (which express tissue
affected by the disease): the higher the percentage, the lower the risk ratio, and vice versa.
Furthermore, since the volume of a healthy lung reflects the extent to which the patient
is affected by the virus, volume directly reflects the degree of severity; decreased lung
volume indicates greater severity. In the second row, the X-ray images have been processed
and converted into a 19-color primary image. This image has the advantage of presenting
the lung and its surroundings in 19 layers, which gives unconventional features to these
images (i.e., when the image is divided into layers, the boundaries of each layer are clearly
visible, which helps accurately define the areas and locations of healthy lung tissue). In the
third row, the segmented X-ray images show the remaining parts of the healthy lung, or
the parts of a patient’s lungs that are inflammation-free.

Figure 3 is a benchmark comparison of the results of the proposed computational
methodology and the classifications by the three radiologists of the collected datasets. The
results of the benchmark comparison between the results of the proposed methodology
and the radiologists’ evaluation converged in their diagnosis of the five levels, with a rate
of 91.5%.
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Figure 5 is a box plot that represents the severity levels of the disease based on the
data retrieved from the X-ray images and the cumulative black pixels to total pixels in the
region of interest (ROI), or the region in a set of samples within a data set that has been
identified for a specific purpose. In the case of this work, the ROI is the shadow of the lungs
in the chest X-ray image. Table 1 presents the quantitative data for the ratio of cumulative
white pixels to black pixels against the gold standard (i.e., radiologists’ evaluation). It is
concluded from the analysis that the central trend of cases is to the first level of severity.
The standard deviation is low, meaning that the data is clustered around the mean. The
p-value is 0.27, which indicates an insignificant statistical difference between the outputs of
the suggested technique and the radiologist outputs. Cohen’s Kappa is between 0.81 and
1.00, implying that there is complete harmony between the performance of the proposed
technique and the radiologists.
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Table 1. Quantitative statistical evaluation for the outcome of the proposed model against radiologists’ readings.

Statistical Parameters Value Conclusion

Standard deviations 1.1428 This value is tiny, indicating that the data are clustered in the center.

t-test 0.9319 Test values < 1 mean that the outputs of the proposed technique and the
radiologists are not substantially different.

p-value 0.2738 A p-value > 0.05 means that the outputs of the proposed auto-detection model is
not significantly different from those of the radiologists.

Cohen’s Kappa 0.9141 This value varies from 0.81 to 1.00. This ensures that the findings of the
proposed technique and the radiologists are perfectly compatible.

The outcome of this study has been compared with comparable published studies
using novel methods for evaluating chest X-ray images; Table 2 provides the details of de-
tection accuracy for these computational models. The proposed novel computational model
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could be used for the quantification of COVID-19 and the critical decision-making process
to provide appropriate follow-up interventions with patients who require it. Although the
proposed model may not eliminate conventional diagnostic techniques, it may be used to
complement such techniques and reduce testing by providing services to patients in need
of emergency care. The method may also be used in situations in which chest X-ray images
require further evaluation by medical specialists.

Table 2. Accuracy comparison for the proposed model and other published models for a similar purpose.

Study Year Accuracy

Cohen et al. [36] 2020 80%

Amer et al. [37] 2020 94%

Afshar et al. [38] 2020 96.24%

Borkowski et al. [39] 2020 89%

Harmon et al. [40] 2020 90.8%

Snider et al. [41] 2020 90.56%

Proposed method 2021 91%

The literature contains different novel methods to detect and evaluate chest X-ray
images for COVID-19 patients with high accuracy levels (i.e., >90%); nevertheless, some of
these methods have been built in small datasets (i.e., <100 chest X-ray images), which may
need bigger sample size to validate its accuracy [37]. Furthermore, some of the recently
published methods were limited in providing information regarding the disease sever-
ity [38], which could require more investigations and advanced computational methods to
comprehensively evaluate patients’ condition in a more specific manner.

4. Conclusions

The aim of this research has been focused on finding an effective and accurate method
for identifying the location of effected regions in the lungs of confirmed COVID-19 patients
and classifying the disease severity using conventional chest X-ray images. The proposed
methodology divides each image into multiple layers, analyses each layer, and then clas-
sifies the disease into five levels of severity. This analysis identifies locations of affected
regions in the lungs and indicates the degree of severity of the disease by comparing
affected regions with healthy tissue. The results of this methodology were compared with
the opinions of experienced radiologists in evaluating X-ray images, and the methodology
matched these opinions at a rate of 91%. Thus, this research provides an accurate method
of identifying inflammation sites caused by COVID-19, which may enable care providers
to quickly implement effective methods of treatment.
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