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Bacillus subtilis (B. subtilis) as in-feed probiotics is a potential alternative for antibiotic

growth promoters (AGP) in the poultry industry. The current study investigated the effects

of B. subtilis on the performance, immunity, gut microbiota, and intestinal barrier function

of broiler chickens. A 42-day feeding trial was conducted with a total of 600 1-day-old

Arbor Acres broilers with similar initial body weight, which was randomly divided into

one of five dietary treatments: the basal diet (Ctrl), Ctrl + virginiamycin (AGP), Ctrl + B.

subtilis A (BSA), Ctrl + B. subtilis B (BSB), and Ctrl + B. subtilis A + B (1:1, BSAB). The

results showed significantly increased average daily gain in a step-wise manner from the

control, B. subtilis, and to the AGP groups. The mortality rate of the B. subtilis group was

significantly lower than the AGP group. The concentrations of serum immunoglobulin

(Ig) G (IgG), IgA, and IgM in the B. subtilis and AGP groups were higher than the

control group, and the B. subtilis groups had the highest content of serum lysozyme

and relative weight of thymus. Dietary B. subtilis increased the relative length of ileum

and the relative weight of jejunum compared with the AGP group. The villus height (V),

crypt depth (C), V/C, and intestinal wall thickness of the jejunum in the B. subtilis and

AGP groups were increased relative to the control group. Dietary B. subtilis increased

the messenger RNA (mRNA) expression of ZO-1, Occludin, and Claudin-1, the same

as AGP. The contents of lactic acid, succinic acid, and butyric acid in the ileum and

cecum were increased by dietary B. subtilis. Dietary B. subtilis significantly increased

the lactobacillus and bifidobacteria in the ileum and cecum and decreased the coliforms

and Clostridium perfringens in the cecum. The improved performance and decreased

mortality rate observed in the feeding trial could be accrued to the positive effects of B.

subtilis on the immune response capacity, gut health, and gut microflora balance, and the

combination of two strains showed additional benefits on the intestinal morphology and

tight junction protein expressions. Therefore, it can be concluded that dietary B. subtilis

A and B could be used as alternatives to synthetic antibiotics in the promotion of gut

health and productivity index in broiler production.
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INTRODUCTION

Antibiotics have been widely used as a growth promoter
and also to enhance the immunocompetence of birds against
infectious diseases (1). Currently, the global trend in animal
production is toward a reduction or ban on the use of feed
antibiotics for growth [antibiotic growth promoter (AGP)] and
an increase in the application of non-antibiotic approaches
that can provide similar benefits. This is accrued to the fact
that the widespread use of antibiotics over 50 years has led
to the emergence of resistant bacteria and drug residues in
animal products (2–4). In the context of growing consumer
preference for antibiotic-free meat products, researchers in
livestock production and poultry sectors have focused on
finding alternatives to replace synthetic antibiotics used in most
ongoing therapeutic regimes. There is an interest to characterize
probiotics as a kind of viable alternatives that can promote
the growth and health status of poultry through multiple
ways/mechanisms(5–7).

Despite the large amount of microorganisms serving as
probiotics in poultry production, the form of supplemental
probiotics through the hostile environment such as low pH value
and high concentration of bile salt within the gastrointestinal
tract is a severe challenge for their survival (8). As a
result, spore-forming bacteria such as Bacillus subtilis (B.
subtilis) are gaining interest in animal health-related functional
additive research due to their high tolerance and survivability
under hostile environments in the gastrointestinal tract (9–
11). Obviously, B. subtilis when applied in feed does not
lose its viability due to its high stability and extended shelf
life, hence a comparative advantage (10). Supplemental B.
subtilis in poultry diets has many beneficial claims, including
immune-modulation, enhanced nutrient digestibility, along with
improvements in gut health, immunity, and growth performance
in animals (12–14). However, many properties of probiotic
bacteria vary as a function of strain (15). With respect to
B. subtilis, its probiotic effects are highly strain-specific, and
the underlying mechanisms of action remain largely elusive
(16). It has been reported that the effects of dietary B.
subtilis supplementation on growth performance and intestinal
physiology in broilers were markedly strain-dependent (17, 18),
hence the need for continuous studies on the various strains
of B. subtilis to understand their mechanisms of action in
these animals.

Bacillus subtilis A and B were selected as two potential
probiotic strains through a multi-parameter selection
process for their ability to remain viable in feed and
through the harsh conditions of the upper gastrointestinal
tract. However, far less is known about the effects of
these two strains on broilers and their potential roles
to be AGP substitutes. Therefore, this study aimed to
evaluate the individual or combined effect of two strains
of B. subtilis A and B on the growth performance, serum
immunity, gut microbiota, and intestinal barrier function of
broiler chickens.

MATERIALS AND METHODS

Experimental Design and Bird
Management
A total of 600 newly hatched male Arbor Acres (AA) broiler
chicks with an average body weight (BW) of 40.09 g were
obtained from a local hatchery and assigned into five dietary
treatments in a randomized complete block design with 10
replicates per treatment. Each replicate contained 12 chicks (half
male and half female) housed in two cages with male and female
apart. The 42-day trial spanned three phases including the starter
period (day 0–14), grower period (day 15–28), and finisher period
(day 29–42). Three basal diets (cold pellet form) were formulated
according to the nutrient requirements of AMINOChick R©2.0
and the Chinese Feeding Standard of Chicken (NY/T, 33-2018),
and their ingredient composition and nutrient levels are shown in
Table 1. The control group was fed basal diets. The AGP group
was fed basal diets supplemented with 15 mg/kg virginiamycin.
Three probiotics groups were fed basal diets supplemented with
500 mg/kg B. subtilis A (BSA) (2E9 CFU/g), 500 mg/kg B. subtilis
B (BSB) (2E9 CFU/g), or 500mg/kgmixture of BSA and BSB (1:1,
named as BSAB), respectively. Diet samples collected from all the
treatments and phases were sent to Evonik Operations GmbH
for the proximate and spore count analysis. The pre-products are
both generally recognized as safe (GRAS) under the Association
of American Feed Control Officials (AAFCO) definition 36.14
and contain a guaranteed minimum of 2× 109 CFU/g.

All the birds were raised in wire floor cages (cage
size, 110 × 100 × 55 cm) in a three-level battery under
environmentally controlled room conditions in the Nankou
CAAS experimental base (Beijing, China). All the management
was in accordance with the AA broiler management guide. A
continuous incandescent white light was provided for the first
3 days, and then a 23L:1D lighting regime was maintained
throughout the rest feeding trial. The room temperature was
maintained at 33◦C for the first week and then reduced by
3◦C per week until it reached 24◦C. Fresh feed and water on a
daily basis were available ad libitum through individual feeders
and drinkers in each cage. The chicks were vaccinated with
inactivated Newcastle disease vaccine on days 7 and 21 and
inactivated infectious bursal disease vaccine on days 14 and 28.
The vaccines were purchased from Shanghai Haili Biotechnology
Co., LTD (Shanghai, China). During the trial, the mortality
of birds was recorded daily, and the feed consumption of the
corresponding replicate was adjusted with their body weight
accordingly. The feed intake (FI), BW, and mortality of each
replicate were recorded every 2 weeks. The average daily feed
intake (ADFI), average daily gain (ADG), and feed conversion
ratio (FCR) were calculated based on FI and BW.

Data and Sample Collection
On days 28 and 42, one chick weighing close to the average
weight of the replicate was selected for sample collection after
12 h fasting. About 5ml of blood was collected from the wing
vein using a vacutainer tube, kept in a slanting position for
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TABLE 1 | Ingredient and calculated nutrient compositions of basal diet.

Items Day 1–14 Day 15–28 Day 29–42

Ingredients, %

Corn 58.20 58.70 61.00

Soybean meal 34.85 33.02 30.85

Soybean oil 2.54 4.48 4.72

CaHPO4 2.27 2.00 1.82

Limestone 0.82 0.72 0.70

Salt 0.35 0.35 0.35

DL-Methionine 0.34 0.26 0.2

L-Lysine·HCl 0.31 0.15 0.04

Vitamin premixa 0.02 0.02 0.02

Mineral premixb 0.20 0.20 0.20

Choline chloride (50%) 0.10 0.10 0.10

Total 100.00 100.00 100.00

Nutrient levelsc

AME (MJ/kg) 12.35 12.97 13.18

Crude protein, % 22.00 21.00 20.00

Calcium, % 1.00 1.00 0.90

Available phosphorus, % 0.50 0.45 0.40

Lysine, % 1.29 1.15 1.09

Methionine, % 0.55 0.52 0.48

Methionine + cystine, % 0.94 0.84 0.84

Threonine, % 0.82 0.77 0.69

Tryptophan, % 0.24 0.18 0.22

aVitamin premix provided the following per kg of diets: VA, 12.500 IU; VD3, 2.500 IU; VK3,

2.65mg; VB1, 2mg; VB2, 6mg; VB12, 0.025mg; VE, 30 IU; biotin 0.0325mg; folic acid,

1.25mg; pantothenic acid, 12mg; nicotinic acid, 50 mg.
bMineral premix provided the following per kg of diets: Cu 8mg, Zn 75mg, Fe 80mg, Mn

100mg, Se 0.15mg, I 0.35 mg.
cNutritient levels were calculated values.

AME, apparent metabolizable energy.

30min, and then centrifuged at 3,000 rpm/min for 15min at 4◦C.
The obtained serum samples were stored in 2ml plastic vials at
−20◦C, pending for ELISA analysis.

Subsequently, the selected birds were euthanized and then
dissected under aseptic conditions. Immune organs including the
spleen, thymus, and bursa of Fabricius of the birds were weighed
and their relative weight was calculated as the ratio of organ
weight (g) to BW (kg). The whole duodenum, jejunum, ileum,
and ceca were moved free of the mesentery and immediately
placed on ice for sampling. About 4 g of digesta sample from
the ileum and cecum were collected and immediately snap-
frozen in liquid nitrogen followed by storage in −80◦C until the
short-chain fatty acids (SCFA) and microbiota analysis. Then,
the relative index of the intestinal length (length/BW × 100%,
cm/g) and weight (weight/BW × 100%, g/g) of the duodenum,
jejunum, ileum, and cecum were calculated, respectively. About
3 cm of tissues from the duodenum (medial portion), jejunum
(medial portion posterior to the bile ducts and anterior to
Meckel’s diverticulum), and ileum (medial portion posterior to
Meckel’s diverticulum and anterior to the ileocecal junction)
were cut off gently in duplicate, one fixed in 10% formalin for

histomorphology, the other immediately snap-frozen in liquid
nitrogen and stored in−80◦C until mRNA extraction.

Histology and Histomorphology Analysis of
the Intestine
The fixed intestinal samples were dehydrated, embedded in
paraffin wax, cut into serial 5µm sections, and stained by
hematoxylin and eosin. Histological sections were examined
by a microscope coupled with a Microcomp integrated digital
imaging analysis system (Nikon Eclipse 80i, Nikon Co., Tokyo,
Japan). Three orientated sections cutting vertically from the villus
enterocytes to the muscularis mucosa were selected from each
sample and the measurements were carried out as follows (19).
The vertical distance from the villus tip to villus–crypt junction
level was taken as the intestinal villus height (VH), and the
vertical distance from the villus-crypt junction to the lower limit
of the crypt as the crypt depth (CD). Ten loci per section were
selected for the measurement of the VH, CD, and intestinal wall
thickness (IWT). The ratio of VH/CD was calculated as V/C.

RNA Extraction and Quantitative Real
Time-PCR
The total DNA of the microbe from the intestinal digesta and
the total RNA from the intestinal tissues were extracted using
TRIZOL reagent (Invitrogen, Carlsbad, CA, USA) according to
the instructions of the manufacturer. Samples of DNA and RNA
were determined for integrity by 1% agarose gel electrophoresis
and for concentration and purity using a NanoDrop ND-
1000 spectrophotometer (Thermo Fisher Scientific, DE, USA).
Then the RNA samples were treated with DNase I (Cwbio
IT Group, Beijing, China) and converted into complementary
DNA (cDNA) using a reverse transcription kit (Vazyme
Biotech, Nanjing, China). An iCycler iQ5 multicolor RT-PCR
detection system (Bio-Rad Laboratories, Hercules, CA, USA)
and a RealMasterMix-SYBR Green kit [ChamQ SYBR Color
qPCR Master Mix (2×), Vazyme, Nanjing] were used for the
determination of gene expression according to the instructions
of the manufacturer. The primers used in this study are listed
in Table 2. The thermal cycling conditions of qRT-PCR were as
follows: 95◦C for 5min; 40 cycles of 95◦C for 10 s, 60◦C for 30 s.
The results of the absolute qRT-PCR of the microbe DNA were
expressed as copies/g. The relative gene expression of the tissue
samples was calculated using the 2−11Ct method.

Chemical Analysis
The serum lysozyme activity was measured using Micrococcus
lysodeikticus cells as a substrate. The serum immunoglobulin
(Ig) A (IgA), IgG, and IgM were analyzed by colorimetric
method using commercial kits (H108, H106, H109, Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) according to
the instructions of the manufacturer. The concentrations of lactic
acid, succinic acid, and SCFA (formic acid, acetic acid, propionic
acid, butyric acid, iso-butyric acid, valeric acid, isovaleric acid) in
the ileal and cecal digesta were measured as previously described
(20) using the Dionex ICS-3000 Ion Chromatography System
(ThermoFisher Scientific Inc., Waltham, MA, USA).
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TABLE 2 | Primers used for quantitative reverse transcription PCR.

Gene Primer Sequences (5′-3′) AT (◦C) Product size (bp)

Bacteria

Lactobacillus F: AGCAGTAGGGAATCTTCCA 62 336

R: CACCGCTACACATGGAG

Bifidobacteria F: TCGCGTC(C/T)GGTGTGAAAG 61 299

R: CCACATCCAGC(A/G)TCCAC

Coliforms F: GTTAATACCTTTGCTCATTGA 62 341

R: ACCAGGGTATCTTAATCCTGTT

Clostridium perfringens F:TGCACTATTTTGGAGATATAGATAC 60 287

R:CTGCTGTGTTTATTTTATACTGTTC

Tight junction genes

ZO-1 F: CTTCAGGTGTTTCTCTTCCTCCTC 59 131

R: CTGTGGTTTCATGGCTGGATC

ZO-2 F: CGGCAGCTATCAGACCACTC 58 87

R: CACAGACCAGCAAGCCTACAG

Occludin F: ACGGCAGCACCTACCTCAA 59 123

R: GGGCGAAGAAGCAGATGAG

Claudin-1 F:CATACTCCTGGGTCTGGTTGGT 59 100

R:GACAGCCATCCGCATCTTCT

Claudin-5 F: CATCACTTCTCCTTCGTCAGC 59 111

R: GCACAAAGATCTCCCAGGTC

β-actin F:GAGAAATTGTGCGTGACATCA 60 152

R: CCTGAACCTCTCATTGCCA

AT, annealing temperature.

Statistical Analysis
The data of the B. subtilis group were generated from the data
of the three groups, BSA, BAB, and BSAB, where six replicates
in each treatment were averagely divided as two replicates of
the B. subtilis group. All the data were subjected to a one-way
ANOVA procedure for a completely randomized design using
the General Linear Mode (GLM) procedures of SAS 9.2 (SAS
Inst. Inc., Cary, NC, USA). The differences among the treatments
were separated by Duncan’s multiple range tests. P ≤ 0.05 was
considered significant.

RESULTS

Growth Performance
The growth performance of broiler chickens is shown in Table 3.
On days 14 and 28, the BW of the birds fed with AGP was
significantly higher (P ≤ 0.05) than those fed with the control
and B. subtilis diets. At the end of the trial, the birds in the AGP
group showed higher (P ≤ 0.05) BW than the B. subtilis groups
whose BW was higher (P ≤ 0.05) than the control group. During
the trial, the BW of the broiler chickens was similar among the
three B. subtilis treatments on days 14, 28, and 42. During the
starter phase (day 1–14), the broiler chickens in the AGP group
showed increased (P ≤ 0.05) ADG, ADFI, and mortality rate
and decreased FCR relative to the B. subtilis group which is not
different from the control group, and all of these indexes were
similar among the three B. subtilis groups. During the grower
phase (day 15–28), the ADG and ADFI of the AGP and B. subtilis
groups were significantly higher (P ≤ 0.05) than the control

group. Among the B. subtilis groups, the BSB group showed
higher (P ≤ 0.05) FCR than the BSAB group, and both of them
did not vary with that of the BSA group. In the finisher phase (day
29–42), the ADG of the broiler chickens in the AGP group was
higher (P ≤ 0.05) than those in the B. subtilis and control groups.
The FCR of the AGP groupwas decreased (P≤ 0.05) as compared
with the control and B. subtilis groups. No differences in ADG,
ADFI, FCR, and mortality rate were observed among the three B.
subtilis groups. During the whole trial period, day 1–42, the ADG
of the broiler chickens showed a significant increase (P ≤ 0.05)
in a stepwise manner from the control, B. subtilis, to the AGP
groups. The birds in the B. subtilis group had higher (P ≤ 0.05)
ADFI than the control group. The FCR of the AGP group was
improved (P≤ 0.05) relative to the control and B. subtilis groups.
The mortality rate of the B. subtilis group was significantly (P ≤

0.05) decreased as compared with the AGP group. There was no
variation in growth performance indices among the broilers fed
with diets supplemented with the three B. subtilis groups during
the entire feeding phase.

The Relative Weight of Immune Organ and
Serum Immunity
As shown in Figure 1, at day 28, all the three B. subtilis groups
had higher (P ≤ 0.05) relative weight of thymus compared with
the control and AGP groups. On day 42, the relative weights
of the immune organs including the thymus, spleen, and bursa
of fabricius were not influenced by the dietary treatments. The
effects of the dietary treatments on the concentration of IgA, IgG,
IgM, and lysozyme in the serum are shown in Table 4. On day
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TABLE 3 | Effects of dietary Bacillus subtilis on growth performance of broiler chickens.

Items1 ADD BS SEM p-value

Ctrl AGP BS BSA BSB BSAB ADD BS

BW, g

Day 0 40.09 40.09 40.09 40.09 40.09 40.09 0.00 1.00 1.00

Day 14 484.5b 510.5a 478.9b 475.8 477.9 482.8 6.20 <0.01 0.79

Day 28 1,379.3b 1,458.5a 1,416.4b 1,404.6 1,398.5 1,446.0 17.52 0.01 0.19

Day 42 2,403.6c 2,564.4a 2,474.6b 2,440.6 2,454.5 2,528.6 29.23 <0.01 0.16

Day 1–14

ADG, g 31.74b 33.60a 31.34b 31.12 31.27 31.62 0.44 <0.01 0.79

ADFI, g 35.40ab 36.13a 34.99b 34.75 34.9 35.33 0.50 0.15 0.74

FCR, g/g 1.12a 1.07b 1.12a 1.12 1.12 1.12 0.01 <0.01 1.00

Mortality, % 0.00b 1.67a 0.00b 0.00 0.00 0.00 0.50 0.01 1.00

Day 15–28

ADG, g 63.92b 67.72a 66.97a 66.34 65.76 68.8 1.07 0.03 0.16

ADFI, g 96.75b 101.88a 102.99a 102.64 103.38 102.94 1.52 <0.01 0.96

FCR, g/g 1.52 1.51 1.54 1.55xy 1.57x 1.50y 0.02 0.32 0.06

Mortality, % 0.00 0.83 0.55 0.83 0.00 0.83 0.65 0.64 0.61

Day 29–42

ADG, g 73.16b 78.99a 75.59b 74 75.43 77.33 1.45 0.02 0.36

ADFI, g 144.88 147.63 148.22 146.25 146.19 152.21 2.21 0.45 0.17

FCR, g/g 1.98a 1.87b 1.96a 1.98 1.94 1.97 0.03 0.01 0.59

Mortality, % 0.00 1.91 0.91 0.00 1.82 0.91 0.89 0.32 0.35

Day 1–42

ADG, g 56.27c 60.10a 57.97b 57.16 57.49 59.25 0.70 <0.01 0.16

ADFI, g 92.34b 95.21ab 95.40a 94.55 94.82 96.83 1.17 0.08 0.47

FCR, g/g 1.64a 1.56b 1.64a 1.65 1.65 1.63 0.01 <0.01 0.50

Mortality, % 0.00b 4.17a 1.39b 0.83 1.67 1.67 1.15 0.04 0.80

a,b,c,x,yMean within a row in ADD or BS with no common superscripts differ significantly (P < 0.05).
1Data were the mean of 10 replicates with 12 birds each.

BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; FCR, feed conversion ratio (feed intake/weight gain, g:g); ADD, additives; Ctrl, the control group; AGP,

antibiotic growth promoter; BS, B. subtilis; BSA, B. subtilis A; BSB, B. subtilis B; BSAB, the mixture of BSA and BSB (1:1).

FIGURE 1 | Effects of dietary Bacillus subtilis on the immune organ index of broiler chickens (n = 10, g/kg). ADD, additives; Ctrl, the control group; AGP, antibiotic

growth promoter; BS, B. subtilis; BSA, B. subtilis A; BSB, B. subtilis B; BSAB, the mixture of BSA and BSB (1:1). *Means significant different (P < 0.05).
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TABLE 4 | Effects of dietary B. subtilis on serum immunity of broiler chickens.

Items1 ADD BS SEM p-value

Ctrl AGP BS BSA BSB BSAB ADD BS

Day 28

IgG, g/L 4.15b 4.26a 4.23a 4.26 4.21 4.23 0.03 0.07 0.59

IgA, g/L 2.14b 2.27a 2.22a 2.22 2.20 2.25 0.03 <0.01 0.54

IgM, g/L 1.60b 1.65ab 1.66a 1.65 1.66 1.68 0.02 0.02 0.64

Lysozyme, mg/L 4.65b 4.33b 5.34a 5.07 5.36 5.59 0.29 <0.01 0.31

Day 42

IgG, g/L 4.14 4.16 4.21 4.18 4.21 4.24 0.04 0.20 0.50

IgA, g/L 2.19b 2.29a 2.26a 2.24 2.25 2.30 0.03 0.03 0.33

IgM, g/L 1.64 1.65 1.66 1.65 1.67 1.67 0.02 0.54 0.67

Lysozyme, mg/L 3.97b 3.85b 4.75a 4.71xy 4.48y 5.07x 0.21 <0.01 0.10

a,b,x,yMean within a row in ADD or BS with no common superscripts differ significantly (P < 0.05).
1Data are the mean of 10 replicates.

ADD, additives; Ctrl, the control group; AGP, antibiotic growth promoter; BS, B. subtilis; BSA, B. subtilis A; BSB, B. subtilis B; BSAB, the mixture of BSA and BSB (1:1).

TABLE 5 | Effects of dietary B. subtilis on the intestinal index in broiler chickens.

Items1 ADD BS SEM p-value

Ctrl AGP BS BSA BSB BSAB ADD BS

Relative length, cm/kg BW

Day 28

Duodenum 9.89ab 9.54b 10.22a 10.21 10.17 10.28 0.27 0.09 0.94

Jejunum 56.07 54.10 56.24 56.94 55.84 55.95 1.35 0.37 0.83

Ileum 55.32a 51.71b 56.02a 56.09 54.95 57.02 1.23 0.01 0.47

Cecum 4.11b 4.41ab 4.66a 4.68 4.75 4.54 0.17 0.03 0.64

Day 42

Duodenum 5.96 5.99 6.01 6.07 5.87 6.09 0.19 0.97 0.65

Jejunum 33.61 31.60 32.40 32.33 31.23 33.63 1.08 0.42 0.31

Ileum 32.78a 29.81b 33.47a 32.78 33.04 34.59 1.04 0.01 0.41

Cecum 8.34 8.16 8.58 8.72 8.33 8.68 0.25 0.30 0.46

Relative weight, g/kg BW

Day 28

Duodenum 10.11 10.16 10.75 10.89 10.72 10.64 0.47 0.35 0.92

Jejunum 16.11ab 15.08b 16.94a 16.91 16.70 17.21 0.52 <0.01 0.78

Ileum 13.74 13.38 14.24 14.18 13.99 14.56 0.61 0.44 0.76

Cecum 3.40 3.54 3.73 3.71 3.58 3.90 0.16 0.18 0.29

Day 42

Duodenum 7.32 7.58 7.60 7.57 7.77 7.45 0.35 0.78 0.80

Jejunum 12.05 11.72 12.17 12.29 11.90 12.33 0.47 0.70 0.77

Ileum 11.00 10.49 10.33 10.64 10.13 10.21 0.44 0.43 0.69

Cecum 4.64 4.54 4.40 4.58 4.21 4.40 0.34 0.81 0.66

a,bMeans within a row in ADD with no common superscripts differ significantly (P < 0.05).
1Data were the mean of 10 replicates.

BW, body weight; ADD, additives; Ctrl, the control group; AGP, antibiotic growth promoter; BS, B. subtilis; BSA, B. subtilis A, named as Gutcare; BSB, B. subtilis B, named as Gutplus;

BSAB, the mixture of BSA and BSB (1:1).

28, the level of serum IgG and IgA was higher (P ≤ 0.05) in the
AGP and B. subtilis groups as compared with the control group,
while no differences were observed among the B. subtilis groups.
On day 42, the concentration of serum IgA in the B. subtilis and
AGP groups was higher (P ≤ 0.05) compared with the control

group. TheB. subtilis group showed a higher (P≤ 0.05) content of
serum lysozyme than the control and AGP groups. The contents
of serum IgA, IgG, and IgM did not differ among the three B.
subtilis groups at day 42, but the concentration of serum lysozyme
was higher (P ≤ 0.05) in the BSAB group than in the BSB group.

Frontiers in Nutrition | www.frontiersin.org 6 November 2021 | Volume 8 | Article 786878

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Qiu et al. Bacillus subtilis and Broiler Chicken

TABLE 6 | Effects of dietary B. subtilis on the intestinal morphology of broiler chickens.

Items1 ADD BS SEM p-Value

Ctrl AGP BS BSA BSB BSAB ADD BS

Duodenum

Day 28

Villus height, µm 1,357.91b 1,473.48ab 1,532.00a 1,494.21 1,553.94 1,547.86 28.05 0.05 0.74

Crypt depth, µm 361.03a 315.18b 340.75ab 320.88y 380.00x 321.38y 6.64 0.09 <0.01

V/C 3.76b 4.72a 4.57a 4.68 4.16 4.86 0.12 0.01 0.18

Intestinal wall thickness, µm 1,931.55b 2,016.86ab 2,097.42a 2,066.56 2,106.48 2,119.21 0.09 0.06 0.82

Day 42

Villus height, µm 1,630.94 1,784.70 1,716.55 1,766.66 1,646.54 1,736.44 33.62 0.36 0.46

Crypt depth, µm 390.30 400.70 375.31 390.05 373.63 362.25 7.29 0.37 0.43

V/C 4.22 4.53 4.63 4.58 4.47 4.82 0.12 0.42 0.60

Intestinal wall thickness, µm 2,362.98b 2,596.56a 2,469.63ab 2,532.55 2,384.14 2,492.20 36.78 0.13 0.36

Jejunum

Day 28

Villus height, µm 962.50b 1,113.40a 1,177.42a 1,115.36 1,193.50 1,223.39 23.41 <0.01 0.27

Crypt depth, µm 260.60 283.20 286.15 275.89 289.53 293.03 6.29 0.29 0.62

V/C 3.76b 3.98ab 4.14a 4.05 4.18 4.19 0.07 0.13 0.78

Intestinal wall thickness, µm 1,388.21b 1,640.52a 1,717.33a 1,627.51 1,752.99 1,771.50 73.82 <0.01 0.27

Day 42

Villus height, µm 1,343.50 1,535.00 1,557.92 1,507.43y 1,408.04y 1,758.29x 46.73 0.20 0.02

Crypt depth, µm 295.61b 346.66a 373.53a 351.54y 401.03x 368.03xy 8.64 <0.01 0.10

V/C 4.54 4.44 4.21 4.34x 3.51y 4.77x 0.12 0.50 <0.01

Intestinal wall thickness, µm 1,922.39b 2,302.98a 2,308.46a 2,207.90y 2,201.85y 2,515.64x 59.15 0.03 0.07

Ileum

Day 28

Villus height, µm 700.84 742.28 708.80 687.63 702.75 736.01 16.12 0.68 0.65

Crypt depth, µm 219.64 248.53 226.55 230.84 231.79 217.04 6.03 0.27 0.59

V/C 3.23 3.07 3.15 2.98y 3.04xy 3.43x 0.07 0.78 0.07

Intestinal wall thickness, µm 1,162.04 1,272.2 1,123.51 1,032.69 1,157.81 1,180.04 18.98 0.21 0.27

Day 42

Villus height, µm 834.34 1,069.24 1,036.99 1,114.95x 771.98y 1,224.05x 48.07 0.21 0.02

Crypt depth, µm 222.26 259.4 251.98 243.56 249.53 262.86 8.04 0.28 0.72

V/C 3.81 4.17 4.11 4.46x 3.10y 4.77x 0.15 0.72 0.01

Intestinal wall thickness, µm 1,396.92 1,720.41 1,621.81 1,618.35xy 1,388.10y 1,858.98x 59.32 0.20 0.07

a,b,x,yMean within a row in ADD or BS with no common superscripts differ significantly (P < 0.05).
1Data are the mean of 10 replicates.

ADD, additives; Ctrl, the control group; AGP, antibiotic growth promoter; BS, B. subtilis; BSA, B. subtilis A; BSB, B. subtilis B; BSAB, the mixture of BSA and BSB (1:1); V/C, the ratio

of Villus height to Crypt depth.

Intestinal Development
The relative length and weight of the duodenum, jejunum, ileum,
and cecum are presented inTable 5. On day 28, the relative length
of the duodenum and ileum of the B. subtilis group was longer (P
≤ 0.05) than those of the AGP group, while similar to the control
group. The B. subtilis group showed increased (P ≤ 0.05) relative
length of the cecum as compared with the control group. On day
42, the relative length of the ileum was significantly longer (P
≤ 0.05) in the B. subtilis and control groups than in the AGP
group. As for the relative weight of the duodenum, jejunum,
ileum, and cecum at days 28 and 42, only the relative weight of
the jejunum in the B. subtilis group was greater (P ≤ 0.05) than

the AGP group at day 28. The relative length and weight of the
duodenum, jejunum, ileum, and cecum at days 28 and 42 did not
differ between the three B. subtilis groups.

The results of the intestinal morphology are shown in Table 6.
With respect to the duodenum, at day 28, the VH, V/C, and
IWT were higher (P ≤ 0.05) in the B. subtilis group than in
the control group. The CD of the AGP group increased (P ≤

0.05) relative to the control group, while both of them were
similar to the B. subtilis group. The CD of the BSB group was
significantly deeper (P ≤ 0.05) than the BSA and BSAB groups.
On day 42, the IWT of the AGP group was thicker (P ≤ 0.05)
than the control group, while both of them were not different
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from the B. subtilis group. The VH, CD, V/C, and IWT did not
differ between the three B. subtilis groups. As for jejunum, at
day 28, the B. subtilis group showed increased (P ≤ 0.05) VH,
V/C, and IWT relative to the control group, while it was similar
with the AGP group. No differences in intestinal morphology
were found between the three B. subtilis groups. On day 42, the
CD and IWT of the B. subtilis and AGP groups were increased
(P ≤ 0.05) relative to the control group. The VH and IWT
of the BSAB group were higher (P ≤ 0.05) than the BSA and
BSB groups. The CD of the BSB group was deeper (P ≤ 0.05)
than the control group, but not different from the BSAB group.
The V/C of the BSAB and control groups was bigger (P ≤

0.05) than the BSB group. Regarding the ileum, no differences
between the control, AGP, and B. subtilis groups were found
for VH, CD, V/C, and IWT at days 28 and 42. The V/C of
the BSAB group was greater (P ≤ 0.05) than the BSA group
on day 28, and both of them were not significantly different
from the BSB group. On day 42, the BSA and BSAB groups
showed bigger (P ≤ 0.05) VH and V/C than the BSB group.
The IWT of the BSAB group was thicker (P ≤ 0.05) than the
BSB group.

The mRNA expressions of the genes encoding intestinal tight
junction proteins in the jejunum including ZO1, ZO2, Occludin,
Claudin 1, and Claudin 5 are shown in Figure 2. There were no
differences between the three B. subtilis groups for these gene
expressions. The B. subtilis and AGP groups showed higher (P ≤

0.05) mRNA expression of ZO-1, Occludin, Claudin-1 than the
control group.

Composition of Organic Acid and
Microbiota in Digesta
As shown in Table 7, the concentration of lactic acid and succinic
acid in the ileal digesta of the B. subtilis group was higher (P ≤

0.05) than the control and AGP groups. The B. subtilis group was
found to have higher (P ≤ 0.05) content of propionic acid and
butyric acid in the ileal digesta than the AGP group, while it is
not different from the control group. The content of formic acid,
acetic acid, and total SCFA did not differ between the control,
AGP, and B. subtilis groups. Except that the BSB group showed
higher (P ≤ 0.05) content of total SCFA than the BSA group,
the concentration of other organic acids in the ileal digesta was
similar between the three B. subtilis groups. With regard to the
cecum, the concentration of lactic acid, succinic acid, formic
acid, butyric acid, and isovaleric acid in the digesta of the B.
subtilis group was higher (P ≤ 0.05) than the control and AGP
groups. The B. subtilis group showed higher (P ≤ 0.05) content
of isobutyric acid in the digesta than the AGP group, but similar
with the control group. There are no differences in organic acids
content in the digesta among the three B. subtilis groups.

The effects of experimental treatments on intestinal
microflora including Lactobacillus, Bifidobacteria, Coliforms, and
Clostridium perfringens are presented in Table 8. For the ileum
microflora, the amount of Lactobacillus in the B. subtilis group
was higher (P ≤ 0.05) than the control and AGP groups, and the
amount of Bifidobacteria in the B. subtilis group was higher (P ≤

0.05) than the AGP group, and similar with the control group.

No differences existed between the three B. subtilis groups about
the content of microflora. For the cecum microflora, the amount
of Lactobacillus and Bifidobacteria in the B. subtilis group was
higher (P ≤ 0.05) than the AGP group, but no difference was
found in the control group. The amounts of coliforms and
Clostridium perfringens in the AGP and B. subtilis group were
increased (P ≤ 0.05) than the control group. The number of
coliforms in the BSAB group was higher (P ≤ 0.05) than the BSA
group, and did not differ from the BSB group.

DISCUSSION

Over the past decades, therapeutic regimes in animal production
globally entail about 70% use of synthetic antibiotics, probably
due to their ability to improve gut health, hence health status
and production index. However, the wide use of antibiotics as
growth promoters in food animals has raised a lot of public health
concerns (21). Along with the increasing consumer awareness
of antimicrobial resistance and food safety, the use of AGP in
animal agriculture was successively banned or restricted by the
European Union, South Korea, the United States, and China.
Such a scenario may reduce the livestock productivity index and
the health status of animals due to impaired gut health, but
natural alternatives such as supplemental B. subtilis in diets could
ameliorate these effects (14). The probiotic effects of B. subtilis
for different animals are highly strain-specific because of the
different characteristics of the gastrointestinal environment (16).
Therefore, it becomes imperative to discover which strains of B.
subtilis are effective for broiler production concerning growth
performance and health response.

Virginiamycin, a well-established AGP, has been widely used
in the poultry industry and its growth-promoting effects have
already been demonstrated in various studies (22, 23). In the
present study, virginiamycin was taken as a positive control to
evaluate the effects of two strains of B. subtilis A and B, and their
combination (1:1) on the growth performance, serum immunity,
and intestinal health of broiler chickens. The significant growth-
promoting effects of virginiamycin in broiler chickens were
validated again in this study. Numerous reports showed that
broiler chickens direct-fed with B. subtilis showed enhanced
growth performance than those fed a basal diet and comparably
with the AGP group (14, 17, 18, 24, 25). However, in this study,
although dietary B. subtilis significantly increased the ADG of
broiler chickens, the improvement on both ADG and FCR was
not comparable to AGP. The group fed the combination of BSA
and BSB showed similar improvement on the ADG of broiler
chickens relative to the AGP group. It may be due to the different
strains and doses of B. subtilis used (18, 26). Remarkably, it is
worthy to note that dietary B. subtilis in our study significantly
decreased the mortality rate of broiler chickens relative to
the AGP group. It is consistent with previous reports that
the strain of B. subtilis reduced the pathology and improved
the performance of broilers with necrotic enteritis induced by
Clostridium perfringens challenge (27–29), and BSB alleviated
diarrhea severity and systemic inflammation and improved gut
health and growth performance of weaned pigs infected with
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FIGURE 2 | Effects of dietary B. subtilis on intestinal tight junction protein genes expressions in the jejunum of broiler chickens (n = 10). ADD, additives; Ctrl, the

control group; AGP, antibiotic growth promoter; BS, B. subtilis; BSA, B. subtilis A; BSB, B. subtilis B; BSAB, the mixture of BSA and BSB (1:1). *Means significant

difference between the groups (P < 0.05).

TABLE 7 | Effects of dietary B. subtilis on short-chain fatty acid content in the ileum and cecum digesta of broiler chickens.

Digesta1, mg/kg ADD BS SEM p-value

Ctrl AGP BS BSA BSB BSAB ADD BS

Ileum

Lactic acid 4,700b 4,514b 5,773a 5,528 5,933 5,858 435 0.02 0.81

Succinic acid 26.59b 29.89b 40.58a 38.09 41.20 42.46 4.42 0.01 0.81

Total SCFA 319.3 310.4 332.7 263.6y 407.5x 326.8xy 43.9 0.83 0.12

Formic acid 21.79 25.41 24.72 21.47 26.89 25.79 3.14 0.64 0.55

Acetic acid 286.9 269.6 311.1 322.2 321.7 289.3 46.1 0.69 0.88

Propionic acid 6.45ab 5.58b 7.62a 6.96 7.05 8.86 0.85 0.11 0.17

Butyric acid 4.15ab 3.41b 4.71a 4.46 4.41 5.26 0.39 0.02 0.17

Cecum

Lactic acid 3.88b 3.75b 5.21a 5.13 4.88 5.63 0.48 0.01 0.59

Succinic acid 65.58b 79.10b 107.66a 95.30 113.96 113.71 11.14 <0.01 0.52

Total SCFA 6,218 6,437 6,779 6,668 6,667 7,001 416 0.45 0.80

Formic acid 29.94b 32.01b 43.96a 39.31 44.64 47.93 4.04 <0.01 0.41

Acetic acid 3,725 3,892 3,952 3,887 3,893 4,075 326 0.83 0.90

Propionic acid 1,597 1,659 1,732 1,723 1,682 1,790 145 0.69 0.82

Butyric acid 617.1b 603.3b 742.8a 721.4 741.0 765.9 40.2 <0.01 0.71

Isobutyric acid 87.14ab 79.30b 99.02a 96.69 95.83 104.53 7.67 0.07 0.62

Valeric acid 94.0 104.9 108.8 106.7 112.1 107.7 10.3 0.44 0.94

Isovaleric acid 67.69b 66.21b 97.16a 93.80 98.23 99.45 7.14 <0.01 0.73

a,b,x,yMean within a row in ADD or BS with no common superscripts differ significantly (P < 0.05).
1Data were the mean of 10 replicates.

ADD, additives; Ctrl, the control group; AGP, antibiotic growth promoter; BS, B. subtilis; BSA, B. subtilis A, named as Gutcare; BSB, B. subtilis B, named as Gutplus; BSAB, the mixture

of BSA and BSB (1:1).

enterotoxigenic Escherichia coli F18 (30). Therefore, it can be
deduced that B. subtilisA and B probably decreasedmortality and
enhanced performance via enhanced gut health.

The immunoglobulin levels (IgG, IgA, and IgM) and lysozyme
activity in the serum are important indicators to evaluate the
non-specific immunity status of the animal (31, 32). Probiotics
have been demonstrated to be beneficial immunomodulators
of mammals at both phenotypic and molecular levels (33, 34).

In the present study, dietary B. subtilis A and B significantly
increased the contents of immunoglobulins IgG, IgA, and IgM in
the serum to be comparable to AGP, and increased the lysozyme
activity relatively higher than AGP. Also, for immune organ
development, dietary B. subtilis A and B increased the weight of
the thymus. The positive effects of these two strains of B. subtilis
on immunity indices are consistent with previous reports that
B. subtilis A and B significantly reduced the enteritis index of
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TABLE 8 | Effects of dietary B. subtilis on ileum and cecum microbial populations of broiler chickens.

Items1, copies/g ADD BS SEM p-value

Ctrl AGP BS BSA BSB BSAB ADD BS

Ileum

Lactobacillus (×109) 2.44b 2.03b 3.22a 3.08 3.10 3.49 0.30 <0.01 0.63

Bifidobacteria (×106) 0.39ab 0.29b 0.45a 0.42 0.47 0.47 0.06 0.04 0.79

Coliforms (×107) 2.86 2.19 2.55 2.63 2.35 2.68 0.29 0.27 0.67

Clostridium perfringens (×105) 4.12 3.58 3.76 3.66 3.86 3.76 0.38 0.58 0.94

Cecum

Lactobacillus (×109) 4.03ab 3.25b 4.78a 4.56 4.50 5.27 0.46 0.02 0.34

Bifidobacteria (×106) 3.78ab 2.56b 4.68a 4.26 4.41 5.37 0.54 <0.01 0.13

Coliforms (×107) 5.29a 2.86b 3.80b 4.40x 3.95xy 3.04y 0.46 <0.01 0.82

Clostridium perfringens (×105) 7.51a 5.14b 5.47b 5.48 5.73 5.19 0.60 <0.01 0.49

a,b,x,yMean within a row in ADD or BS with no common superscripts differ significantly (P < 0.05).
1Data were the mean of 10 replicates.

ADD, additives; Ctrl, the control group; AGP, antibiotic growth promoter; BS, B. subtilis; BSA, B. subtilis A; BSB, B. subtilis B; BSAB, the mixture of BSA and BSB (1:1).

broiler chickens and the pathogenic bacteria-induced systemic
inflammation of weaned pigs (30, 35). Other strains of B. subtilis
were also reported to have auxo-actions on the immunity of
broiler chickens, such as B. subtilis 1781, 747, DSM 29784, CPB
011, CPB 029, HP 1.6, and D 014 (14, 17, 36, 37). Therefore, the
results of this study reveal that dietary B. subtilis could enhance
the immunity of broiler chickens.

Intestinal barrier integrity is a prerequisite for the homeostasis
of mucosal function to maximize the absorptive capacity and
defense against chemical and microbial challenges (38). Gut
commensals, referred to as probiotics, were discovered to
reinforce intestinal health by impacting the intestinal barrier
function (39, 40). Supplemental probiotics in diets can positively
alter the intestinal micro-environment and promote early
intestinal development (41, 42). In the present study, the dietary
addition of B. subtilis significantly increased the relative weight
and length of the small intestine relative to AGP, and the effects of
dietary B. subtilis and AGP on intestinal morphology and barrier
integrity were similar, both better than that of the control group.
The results are consistent with the previous reports that birds fed
BSA showed a high-efficient intestine with shallower crypt depth
and higher villus height to crypt depth ratio, and pigs fed with
BSB had enhanced gut health (11, 30, 35). Besides, the effects
of the improvement on the epithelial barrier integrity and gut
health were also reported with C. butyricum, E. faecalis, and other
strains of B. subtilis (14, 17, 36, 37, 43). Therefore, we deduced
that dietary B. subtilisA and B improved the intestinal barrier and
enhanced the gut health of broiler chickens for better nutrient
digestibility and utilization.

Gut microbes play vital roles in many aspects of animal health
including immune, metabolic, and developmental traits (44, 45).
Microbial fermentation results in the generation of SCFA, such
as acetate, propionate, and butyrate, which can indirectly affect
various physiological processes and may contribute to enhancing
health or create a diseased state in the animal (46–48). SCFA
can stimulate specific membrane-bound receptors to regulate
aspects of intestinal motility, hormone secretion, maintenance
of the epithelial barrier, and immune cell function (49). In

the present study, dietary B. subtilis significantly increased the
contents of lactic acids, succinic acid, and butyric acid in the
ileum and cecum, and the contents of formic acid, isobutyric
acid, and isovaleric acid in the cecum relative to the control and
AGP groups. Butyrate is the main energy source for intestinal
epithelial cells, propionate transferred to the liver regulates
gluconeogenesis and satiety signaling, and other fatty acids
produced also have been implicated directly in animal health
outcomes (44). Therefore, it indicated that dietary B. subtilis A
and B improved gut health of broiler chickens probably through
increasing intestinal fatty acids production.

Probiotics and prebiotics are microbiota-management tools
for improving host health (50). Probiotics have been used
to prevent a wide range of diseases for decades, and studies
have suggested positive effects of certain probiotics on gut
microbiota balance (51). In the current study, dietary B.
subtilis significantly increased the amount of Lactobacillus and
Bifidobacteria in ileum and cecum and decreased the amount
of coliforms and Clostridium perfringens in the cecum. Lactic
acid bacteria and Bifidobacteria are well-known probiotics and
are widely introduced into the food chain (52). Birds infected
with pathogenic strains of E. coli show low performance because
of high diarrhea and mortality rates (53). Acute necrotic
enteritis caused by Clostridium perfringens infections results in
severe losses in broiler production (37). The increased Lactic
acid bacteria and Bifidobacteria and the reduced Coliforms
and Clostridium perfringens induced by the dietary B. subtilis
in the current study imply an improved intestinal micro-
ecological balance. Therefore, these results showed that dietary
B. subtilis A and B increased intestinal fatty acids production
and gut health, probably through improving the balance of the
intestinal microflora.

CONCLUSION

Supplementation of BSA and BSB in broiler diets decreased
mortality and enhanced growth performance. These positive
effects could be accrued to efficient immune response capacity,
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intestinal microbial flora balance, the abundance of Lactobacillus
and Bifidobacteria, and decreased coliforms and Clostridium
perfringens, enhanced production of intestinal SCFA, and
enhanced gut health. Also, the combination of two strains,
BSA and BSB, synergistically enhanced intestinal morphology
and integrity functions. Conspicuously, the results of the
present study have provided strong evidence that supports
supplementation of BSA and BSB in diets of broiler chickens as
alternatives to synthetic antibiotics in the promotion of gut health
and productivity index.
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