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INTRODUCTION

The use of animal models has greatly facilitated biomedical discoveries to better understand human
physiology and diseases (Baldini, 2010). For example, mice are widely used in biomedical research
with advantages in fast breeding, easy feeding, and genetic engineering (Gurumurthy et al., 2020).
Multi-omics datasets in mouse models [e.g., RNA-seq (Koh et al., 2016; Söllner et al., 2017; Han
et al., 2018), ChIP-seq (Dahl et al., 2016; Liu et al., 2016; Zhang et al., 2016), and ATAC-seq (Assay
for Transposase-Accessible Chromatin coupled with next-generation sequencing) (Wu et al., 2016;
Cusanovich et al., 2018a; Liu et al., 2019)] are largely accumulating, at either tissue or single-cell
levels, in both developmental (Dahl et al., 2016; Liu et al., 2016; Wu et al., 2016; Zhang et al.,
2016) and pathological (Park et al., 2018) studies, further advancing our understanding of complex
diseases. In contrast, while the Norway rat allows more precise modeling of complex human
disorders [such as cardiovascular and psychiatric disease (Abbott, 2009; Jacob, 2010)], very few
multi-omics studies have been performed on this model since the completion of the full genome
sequencing of Brown Norway (BN) rat strain in 2004 (Gibbs and Pachter, 2004). In 2017, Söllner
et al. (2017) were the first to conduct a comprehensive tissue-level transcriptome study on 13
tissues of rat and mouse tissues and found that, while the majority of genes are highly conserved,
there are also few hundreds of genes that displayed opposite expression patterns in rats and mice.
Hence, additional transcriptome and chromatin openness profilings would be of great importance
to further unravel regulatory complexities of the rat genome.

In neuroscience, social behaviors such as grooming, sniffing, and chasing and their relationships
with disease phenotypes have been assessed in great details in rat models (Meaney and Stewart,
1981; Schweinfurth, 2020). For example, a recent study has focused on both proteomic and
transcriptomic profiling of the rat amygdala following a social play experiment and reported that
the GABAergic, glutamatergic, and G-protein–coupled receptor signaling can be altered by social
contexts (Alugubelly et al., 2019). By using rat as a model, future studies along this line would
further illustrate mechanistic relationship between brain regions and social play behaviors.

Comprehensive omics datasets have paved the way for important discoveries in physiology,
diseases, social behaviors, and many other areas. In this regard, previous studies have generated
a collection of omics references (including genome, transcriptome, epigenome, and proteome)
for model organisms such as human (Collins et al., 2003; Cao et al., 2020; Domcke et al., 2020),
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mouse (Cusanovich et al., 2018a; Han et al., 2018), worm
(Gerstein et al., 2010; Li et al., 2014; Daugherty et al., 2017),
and fly (Adams et al., 2000; Graveley et al., 2011; Cusanovich
et al., 2018b). However, rat multi-omics data resources are
still lacking. In this study, we comprehensively profiled the
chromatin accessibility of 10 body organs (pancreas, adrenal
gland, spleen, ovary, heart, ileum, lung, kidney, liver, thymus) and
12 different brain regions in female andmale rats (somatosensory
cortex, motor cortex, primary visual cortex, auditory cortex,
prefrontal cortex, thalamus, cerebellum, striatum, hypothalamus,
amygdala, hippocampus, olfactory bulb), by applying ATAC-
seq (Buenrostro et al., 2013, 2015; Corces et al., 2017). This
approach led to the identification of 397,691 chromatin accessible
elements, with 34,219 body organ–specific peaks and 38,502
brain-specific peaks that were further characterized as tissue-
specific regulatory elements. Interestingly, many of the enriched
tissue-specific transcription factors were validated by previous
studies (Liu et al., 2019). Here we provide a comprehensive rat
tissue–specific chromatin accessibility landscape that would serve
as an invaluable resource for future rat-related studies.

MATERIALS AND METHODS

Sample Collection
Sprague–Dawley female and male rats, ∼7–8 months old, were
obtained from Jiangsu ALF Biotechnology Co., Ltd. (http://
jsalfei.com) and used in the study. Experimental protocols
related to the use of laboratory animals were approved by the
Institutional Review Board on Ethics Committee of BGI (permit
no. BGI-IRB A20020). Briefly, two female rats were sacrificed
by carbon dioxide asphyxiation, and tissues were harvested and
quickly frozen in liquid nitrogen and stored in liquid nitrogen,
which include body organ tissues (e.g., pancreas, adrenal gland,
spleen, ovary, heart, ileum, lung, kidney, liver, thymus) and
brain regions (e.g., somatosensory cortex, motor cortex, primary
visual cortex, auditory cortex, prefrontal cortex, thalamus,
cerebellum, striatum, hypothalamus, amygdala, hippocampus,
olfactory bulb). To assess gender-related variation, two male rats
were also sacrificed, and the following organs were collected:
pancreas, spleen, heart, lung, kidney, liver, thymus, cerebellum,
epididymis, spermaduct, testis, hypothalamus, hippocampus,
and olfactory bulb (Supplementary Table 1).

Nuclei Isolation From Frozen Tissues
Nuclei were isolated from flash frozen rat tissues according to a
standard nuclei extraction method (Corces et al., 2017). Briefly,
shredded tissue sample was transferred to a prechilled 2mL tissue
Dounce homogenizer (Sigma, D8938-1SET) containing 2mL of
cold homogenization buffer [10mM Tris-HCl, pH 8.0 (Sigma,
T2694-1L), 25mM KCl (Thermo, AM9640G), 5mM MgCl2
(Ambion, AM9530G), 250mM sucrose (BBI, SB0498), 0.1%
NP40 (Roche, 11332473001), 0.1% Tween-20 (Sigma, P9416),
0.01% digitonin (Sigma, D141-100MG), 1× protease inhibitor
cocktail (Roche, 4693116001), and 0.1mMDTT (Sigma, 646563)
in nuclease-free water (Ambion, AM9932)]. At this stage,
samples were incubated on ice for 5–10min. Tissues were
then homogenized with 10–15 strokes using pestle A (loose),
followed by 20 strokes with pestle B (tight). The grinding and

filtering parameters were adjusted, depending on the tissue type.
Considering the possibility that density gradient centrifugation
would specifically enrich certain types of nuclei, we skipped this
step to avoid any sampling bias. After tissue grinding, nuclei
suspensions were collected and centrifuged for 5min at 500 × g
in a 4◦C prechilled swinging-bucket centrifuge. After removing
the supernatant, nuclei pellets were washed twice with chilled
wash buffer (10mM Tris-HCl pH 8.0, 25mM KCl, 5mMMgCl2,
250mM sucrose, 0.1% Tween-20, 1× protease inhibitor cocktail,
and 0.1mM DTT in nuclease-free water). Then nuclei were
counted by DAPI (Beyotime, C1006) staining.

ATAC-Seq Library Construction
For the transposition step, we used 50,000 nuclei per each
reaction. The transposition reaction mix contains 10mM TAPS-
NaOH (pH 8.5), 5mMMgCl2, 10% DMF, 2.5µL of in-house Tn5
transposase (0.8 U/µL) and phosphate-buffered saline (Gibco,
10010-031) (Buenrostro et al., 2015; Liu et al., 2019). Those
reactions were incubated at 37◦C for 30min in a thermomixer
shaking at 500 RPM. After transposition, the transposed DNA
was purified with QiagenMinElute PCR Purification Kit (Qiagen,
28006), and purified products were amplified with barcoded
primers, NEBnext High-Fidelity PCRmastermix (NEB,M0541S)
as previously described. Libraries were quality controlled using
Agilent High Sensitivity Assay (Agilent, 5067-4626). The library
construction was considered successful upon confirmation of the
correct average fragment size.

Sequencing
All sequencing data were generated from MGISEQ-2000
platform (MGI). After size selection, libraries were quantified
by Qubit dsDNA HS Assay Kit 3.0 (Invitrogen, Q32854). The
polymerase chain reaction product from eight pooled libraries
was heat-denatured and ligated into single-strand circular DNA.
After DNB generation, libraries were then loaded on sequencing
chip and sequenced with paired-end 50-bp reads (Huang et al.,
2017).

Preprocessing of the ATAC-Seq Datasets
After configuring the rat genome (rn6) and annotation files,
the ATAC-seq raw data were processed by trimming, aligning,
filtering, and quality controlling following an ATAC-seq pipeline
from Kundaje lab (Koh et al., 2016). We used MACS2 (Zhang
et al., 2008) (version 2.1.2) to identify peaks with options -B, -q
0.01, -nomodel, -f BAM. To evaluate the reproducibility between
biological replicates of each tissue, we used the Irreproducible
Discovery Rate method (Li et al., 2011) to identify overlapping
peaks between replicates. Only the peaks present in both
biological replicates were retained for subsequent analysis. We
established the standard peak by merging overlapping peaks
from all tissues, and we calculated the distance from nearest
transcription start site (TSS) by using distanceToNearest function
in GenomicRanges package (Lawrence et al., 2013). Then, we
obtained the raw count matrix by using BedTools (Quinlan and
Hall, 2010) (version 2.26.0) intersect function to count the reads
mapped to each standard peak. We normalized the raw count
matrix by reads per million mapped reads (RPM) and calculated
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Pearson correlation coefficients based on the log10 transformed
RPMmatrix.

Identification of Tissue-Specific Chromatin
Accessible Regions
Previously described strategy based on Shannon entropy (Schug
et al., 2005; Barrera et al., 2008; Shen et al., 2012) was
used to compute tissue-specific index. We defined the relative
accessibility of each peak in a tissue type i as Ri= Ei / ΣE, where
Ei is the RPM value of the peak in the tissue i, ΣE is the sum of
RPM values in all tissues, and N is the total number of tissues.
For each peak, the entropy score across tissues can be defined
as H = −1 ∗ sum(Ri ∗ log2Ri) (1 < i < N), where the value of
H ranges between 0 and log2(N). A highly tissue-specific peak
owned an entropy score close to zero, while if a peak is conserved
between different tissues, its entropy score close to log2(N) (Xie
et al., 2013). Based on the distribution of entropy scores in our
datasets, peaks with score <3 were identified as body organ–
specific peaks, and peaks with score <2 were identified as brain
region–specific peaks.

We searched TF motifs with the findMotifsGenome.pl script
of the HOMER (Heinz et al., 2010) version 4.9.1 software and
generated a motif enrichment matrix, where each row represents
the P-value of a motif, and each column represents a tissue. We
displayed the top 15 motifs of each tissue.

RESULTS

ATAC-Seq Data Quality Control
A total of 72 frozen samples from 32 tissues were collected
from two female and two male rats and used for bulk ATAC-
seq profiling (Figure 1A). In total, we obtained an average
of 77 million reads per sample and identified 34,219 body
organ–specific and 38,502 brain-specific chromatin accessible
elements from a total of 397,691 peaks (Supplementary Table 2).
First, we systematically evaluated the quality of ATAC-seq
datasets on several parameters including total raw read
number, clean read number, mapping rate, and peak number
(Supplementary Table 2). The enrichment score of reads at
the TSS indicated our ATAC-seq datasets to be of high
quality (Figure 1B). By calculating the proportions of ATAC-
seq peaks annotated to different genomic regions, we observed
the largest proportion of ATAC-seq peaks was annotated to
distal peaks (Figure 1C), in agreement with the knowledge of
distal regulatory elements being more abundant and important
in ATAC-seq data (Buenrostro et al., 2013). Second, we evaluated
the correlations between biological replicates obtained from
either the same or opposite gender with Pearson correlation
coefficients and observed high correlation. Specifically, the
correlation between those of the same gender was subtly
higher than that of the opposite gender (Figure 1D). As
expected, heatmap clustering showed that tissue samples from
the same organ were highly correlated, further demonstrating
the reproducibility between biological replicates (Figure 1E).
Furthermore, our analysis showed high correlations among five
distinct cerebral cortex regions (motor, prefrontal, auditory,
primary visual, and somatosensory cortex), whereas it showed
lower correlations between brain regions of cerebellum, olfactory

bulb, cerebral cortex, hippocampus, and other tissue types. In
summary, our data survey reveals our rat ATAC-seq dataset to be
of high quality and thus can be used to reliably detect chromatin
accessible regions throughout the rat genome.

Identification of Tissue-Specific Chromatin
Accessible Peaks and Transcription
Factors
We next identified all genome-wide tissue-specific chromatin
accessible regions as illustrated in Figures 2A,B. For tissue-
specific genes, we provide integrative genomics viewer
results showing higher ATAC-seq enrichment at annotated
or putative promoters and enhancers (Figure 2C and
Supplementary Figure 1A). For example, in spleen, ATAC-
seq peaks are enriched around Ms4a1, which is a specific
membrane protein gene expressed in B lymphocytes (Zuccolo
et al., 2013) (Figure 2C). Similarly, analysis of the olfactory bulb
revealed the enrichment of peaks near the Cpa6 promoter, which
is consistent with previous finding that Cpa6 is highly expressed
in the mitral and granular cell layers of olfactory bulb of adult
mice as revealed by in situ hybridization (Fontenele-Neto et al.,
2005) (Supplementary Figure 1A).

To verify the putative tissue-specific regulatory regions
identified in our rat ATAC-seq data, we systematically compared
those with existing studies from other species. By doing so,
we found that tissue-specific transcription factors identified in
rats are also highly consistent with those in other species.
For example, previous studies have shown that HNF1b is an
important transcriptional regulator of renal epithelial tissue
(Ferrè and Igarashi, 2019), whereas HNF4a and HNF6a are key
regulators during cellular differentiation in liver (Nagaki and
Moriwaki, 2008). Our rat ATAC-seq atlas further confirmed that
motifs of HNF1, HNF1b, HNF4a, HNF6, and HNF (hepatocyte
nuclear factor) family transcription factors are enriched in liver,
pancreas, ileum, and kidney in both rat and mice (Figure 2D).
In addition, it has been reported that RUNX1 interplays with
FOXL2 to maintain the identity of fetal ovary and secure
the identity of ovarian-supporting cells (Nicol et al., 2019).
Consistent with this, we found that RUNX1 motif is highly
specific in rat ovary (Figure 2D). Furthermore, the MEF2
(myocyte enhancer factor 2, including MEF2a, MEF2b, MEF2c,
MEF2d) family of transcription factors is a key regulator of
cardiac muscle differentiation and development, as shown by the
knockout of Mef2a gene, leading to dramatic changes of gene
expression in the heart chamber (Medrano and Naya, 2017).
MEF2a also plays a role in neuronal survival involved in memory
and learning (Dietrich, 2013). Consistently, we also validated the
enrichment of MEF2a in both heart and central neuron system in
our rat atlas (Figure 2D and Supplementary Figure 1B).

In order to better understand the relationship between
brain regions and social play behaviors, we also analyzed brain
datasets to identify region-specific transcription factors. We
first merged the datasets across different cerebral cortex for
downstream region-specific peak analysis, as we did not observe
significant differences in enriched transcription factors within
cerebral cortex areas. A collection of brain region–specific
peaks was identified among amygdala, cerebellum, cerebral
cortex, hippocampus, and other regions (Figure 2B). In line
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FIGURE 1 | ATAC-seq data quality control and evaluation of reproducibility. (A) Thirty-six different tissues from adult female and male rats were collected for ATAC-seq

profiling. (B) The ATAC-seq signal enrichment around TSSs for spleen samples (Rat1 and Rat2 represent female rats; Rat3 and Rat4 represent male rats).

(C) Proportions of ATAC-seq peaks annotated to different genomic regions. (D) Scatter plots showing the Pearson correlations between biological replicates for two

representative samples (lung and cerebellum of female and male rats). (E) Heatmap clustering across all 71 tissue ATAC-seq profiles.
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FIGURE 2 | The landscape of tissue-specific chromatin accessibility and transcription factors. (A) Heatmap clustering showing the body organ–specific accessible

elements. (B) Heatmap clustering showing the brain-specific accessible elements. (C) The integrative genomics viewer shows enrichment of ATAC-seq signal for the

indicated housekeeping gene (Gapdh) and body organ–specific genes. (D) Enrichment of the indicated TF motifs in each tissue. The size and color of each point

represent the motif enrichment P-value (–log10 P-value).
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with previous studies, we observed significant enrichments of
NEUROG2, ATOH1, OLIG2, and NEUROD1 transcription
factors in amygdala, cerebellum, cerebral cortex, and
hippocampus (Supplementary Figure 1B). These transcription
factors belong to the basic-helix–loop-helix (bHLH) family, and
their function is crucial to determine the fate and differentiation
of neural cells to ensure that different brain regions are supplied
with the appropriate number of neuronal and glial cells (Dennis
et al., 2019). Furthermore, transcription factor EGR1 has been
shown to be related to the long-term fear memory and anxiety
(Ko et al., 2005); our brain datasets unbiasedly identified EGR1
enrichment in the amygdala and hippocampus (the main brain
areas for memory formation and storage), thus further validated
previous findings.

CONCLUSIONS

In summary, we have profiled the chromatin accessibility using
ATAC-seq for 10 body tissues and 12 brain regions from
adult rats and produced a large dataset with replicates. This
comprehensive chromatin accessibility atlas contains 397,691
accessible elements. In addition, by comparing the open
chromatin landscapes among rat tissues, a total of 34,219 body
organ–specific peaks, 38,502 brain-specific peaks and a list of
putative tissue-specific transcription factors were unbiasedly
identified. We further showed that many known tissue-specific
transcriptional characteristics can be recapitulated in this study,
indicating that our data resource is of high quality and will
be useful for future mechanistic discoveries in diseases and
social behaviors.
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