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Transplantation of stem cell-derived retinal pigment epithelium (RPE) cells is a promising
potential therapy for currently incurable retinal degenerative diseases like advanced dry
age-related macular degeneration. In this study, we designed a set of clinically applicable
devices for subretinal implantation of RPE grafts, towards the overarching goal of
establishing enabling technologies for cell-based therapeutic approaches to regenerate
RPE cells. This RPE transplant kit includes a custom-designed trephine for the production
of RPE transplants, a carrier for storage and transportation, and a surgical device for
subretinal delivery of RPE transplants. Cell viability assay confirmed biocompatibility of the
transplant carrier and high preservation of RPE transplants upon storage and
transportation. The transplant surgical device combines foldable technology that
minimizes incision size, controlled delivery speed, no fluid reflux, curved translucent tip,
usability of loading and in vivo reloading, and ergonomic handle. Furthermore, the
complementary design of the transplant carrier and the delivery device resulted in
proper grasping, loading, and orientation of the RPE transplants into the delivery
device. Proof-of-concept transplantation studies in a porcine model demonstrated no
damage or structural change in RPE transplants during surgical manipulation and
subretinal deployment. Post-operative assessment confirmed that RPE transplants
were delivered precisely, with no damage to the host retina or choroid, and no
significant structural change to the RPE transplants. Our novel surgical kit provides a
comprehensive set of tools encompassing RPE graft manufacturing to surgical
implantation rendering key enabling technologies for pre-clinical and clinical phases of
stem cell-derived RPE regenerative therapies.
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INTRODUCTION

Retinal pigment epithelium (RPE) plays an important role in
supporting normal photoreceptor function (Strauss, 2005). RPE
damage leads to secondary dysfunction and degeneration of
photoreceptor cells, which in turn causes severe, irreversible
vision impairment in patients affected by conditions such as
age-related macular degeneration (AMD) and Stargardt’s disease
(Mehat et al., 2018; Flaxel et al., 2020). Recently, clinical trials
involving transplantation of embryonic stem cell-derived RPE in
patients with AMD showed promising safety and efficacy
outcomes (Da Cruz et al., 2018; Kashani et al., 2018; Mehat
et al., 2018). Moreover, RPE derived from human-induced
pluripotent stem cells (hiPSC), which could be utilized for
autologous therapies, is also being evaluated in clinical trials
(ClinicalTrials.gov Identifier: NCT04339764; UMIN-CTR
number: UMIN000011929) (Mandai et al., 2017).

The above-mentioned clinical trials have used two different
cell delivery modalities: an RPE cell suspension or RPE
monolayers. When transplanting RPE cell suspensions,
commercial injectors are widely used in both pre-clinical and
clinical studies (e.g., Hamilton syringe, MedOne PolyTip
cannula) (Durlu and Tamai, 1997; Saigo et al., 2004; Carr
et al., 2009; Schwartz et al., 2012; Wu et al., 2016; Chao JR
et al., 2017; Zhu et al., 2020). In the case of transplantation of RPE
monolayers, several groups have developed specific devices
customized to fit their needs. Kamao et al. designed a surgical
device consisting of a 20G catheter, and a medical 1-ml syringe
that can load and eject the RPE sheet through pressure from the
plunger by moving a circular metal of the plunger back and forth;
the transparent catheter enables RPE sheet delivery under direct
visualization (Kamao et al., 2017). Fernandes et al. developed a
tissue injector with a lumen and jaws; the jaws allow grasping and
loading the RPE graft into the lumen of the injector and
minimizes trauma to the graft and host tissue (Fernandes
et al., 2017). da Cruz et al. built an apparatus to introduce the
RPE patch by advancing a flexible rod through the shaft, while the
purpose-built tip protects the RPEmonolayer during delivery (Da
Cruz et al., 2018). Sharma et al. established a transplantation tool
to load and release the RPE transplant utilizing the viscous fluid
injector device of the vitrectomy system; the curve of the tool
allows the surgeon to deliver the RPE transplants precisely
(Sharma et al., 2019). Stanzel et al. invented a shooter
instrument for safe delivery of the RPE graft into the
subretinal space; by squeezing the actuator, its connected
plunger enabled RPE graft loading and delivering conveniently
(Stanzel et al., 2012; Liu et al., 2021). In our experience, an
optimal subretinal delivery device would minimize incision size
within the retina and sclera, provide atraumatic delivery of the
RPE graft to the subretinal space, and allow adequate
manipulation and visualization of the transplant during
delivery. To our knowledge, there is no optimal device that
has combined all of these features.

Besides the transplant delivery device, attention should be also
drawn to the preservation of the RPE transplants during
transportation and surgical manipulation. Previous studies
have shown acceptable outcomes in RPE transplants stored for

up to 5 and 8 h (Kamao et al., 2017; Da Cruz et al., 2018). A longer
preservation time could be helpful for domestic or international
express delivery of the RPE transplants.

In this study, we have designed a set of clinically applicable
devices to manufacture, transport, and deliver intact hiPSC-
derived RPE sheets. This RPE transplant kit includes a
custom-designed trephine for the production of RPE
transplants, a carrier for storage and transportation, and a
surgical device for subretinal delivery of RPE transplants. Cell
viability assay confirmed biocompatibility of the transplant
carrier and high preservation of RPE transplants upon storage.
With our novel surgical transplantation device hiPSC-RPE
transplants were delivered in the subretinal space of the pig
retina precisely and safely utilizing technology to allow smaller
incisions within the retina and sclera. Post-operative evaluation
confirmed deployment of the hiPSC-RPE transplants at the target
location with no associated damage to the host retina and
choroid. Thus, our new devices provide an effective all-
encompassing surgical kit for RPE monolayer transplantation.

MATERIALS AND METHODS

Human-Induced Pluripotent Stem
Cell-Derived Retinal Pigment Epithelium
Cell Culture
A human episomal iPSC line derived fromCD34+ cord blood was
used in this study (A18945, ThermoFisher Scientific) (Burridge
et al., 2011) and routinely tested for mycoplasma contamination
by PCR. hiPSC culture and retinal organoid differentiation were
conducted as previously described (Zhong et al., 2014). hiPSC-
derived RPE was generated according to Flores-Bellver et al.
(2021). Briefly, retinal organoids at 60 days of differentiation were
used to isolate retinal pigment epithelium (RPE) tissue. Dissected
RPE spheroids were enzymatically dissociated into single cells
and seeded onto Transwell (No.3460, Corning) coated with
Matrigel matrix (No.354230, Corning). The transwell
membrane is a 10 μm thick polyester membrane of 0.4 μm
pore size and 4 × 106/cm2 pore density. RPE cells were
maintained at 37°C and 5% CO2 in MEM-α modified medium
(M4526, Sigma), containing 1:100 ml/ml N1 supplement (N6530,
Sigma), 250 mg/L taurine (T0625, Sigma), 0.013 μg/L triiodo-l-
thyronine (T5516, Sigma), 20 μg/L hydrocortisone (H0396,
Sigma), non-essential amino acid solution (M7145, Sigma),
and 1:100 ml/ml glutamine-penicillin-streptomycin (G1146,
Sigma), and 5% fetal bovine serum (Atlanta Biologicals) as
previously described (Maminishkis et al., 2006). Cell culture
media was changed every other day and hiPSC-RPE
monolayers were used for experiments after 40 days of
differentiation.

hiPSC-RPE Transplant Preparation and
Storage Conditions
We used a scalpel to harvest the hiPSC-RPE (with the polyester
membrane) from the transwell insert, and the hiPSC-RPE (with
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the polyester membrane) was transferred to a Petri dish. Then,
hiPSC-RPE transplants were obtained from the transwell
membranes by means of a custom-designed trephine (MedOne
Surgical, FL) as described in results. hiPSC-RPE transplants were
then placed in the purpose-built carrier (described in results), and
the carrier introduced into a sterile 2 ml tube filled with RPE
culture media. The tubes containing the carriers loaded with RPE
transplants were divided into 3 groups: one group was
maintained within a tissue culture incubator (37°C, 5% CO2),
a second group was kept at standard room conditions (25°C,
0.04% CO2), and a third group was shipped and delivered via 24 h
express (FedEx, US) (10–23°C, 0.04% CO2). A fourth control
group was maintained in standard culture conditions in Petri
dishes within a cell culture incubator. At the end of the storage
period (24 h) viability tests were performed using Ethidium
homodimer-1 (EthD-1) (L3224, LIVE/DEATH Cell Viability
Assays, ThermoFisher) and Hoechst (H3570, ThermoFisher).
Experiments were done in triplicates (3 biological replicates, 2
technical replicates each) including a cell-death positive control
induced by treatment with 5% saponin for 10 min at room
temperature. Each transplant was imaged as a whole with an
invertedmicroscope (Ti Automated InvertedMicroscope, Nikon)
and the total number of cells (Hoechst positive) and the number
of dead cells (EthD-1 positive) were counted using Imaris 7.0
(Oxford Instruments). To analyze the location of the dead cells
within the transplant, transplant areas were defined as follows: 1)
edge area corresponding to 20 µm from the edge of themembrane
towards the center; 2) central area corresponding to the
remaining surface of the transplant.

Animals
Wild type domestic pigs (n = 2; 6 months old, females; National
Swine Resource and Research Center, University of Missouri,
MO) were used to evaluate the performance of our new RPE
transplant delivery device. The animal study was approved by the
University of Colorado Institutional Animal Care and Use
Committee and carried out in strict accordance with the
Association for Research in Vision and Ophthalmology
(ARVO) Statement for the Use of Animals in Ophthalmic and
Vision Research and the ARRIVE guidelines (Percie Du Sert et al.,
2020).

hiPSC-RPE Transplantation Device and
Surgical Procedure
Pigs were sedated with Telazol 10 mg/kg (Fort Dodge Animal
Health, IA), and anesthesia was maintained on isoflurane
(1.5–2.5%). Heart rate, respiration and temperature were
continuously monitored. The periocular area was sterilized
with 5% povidone-iodine solution. Phenylephrine
Hydrochloride Ophthalmic Solution (2.5%) and Tropicamide
Ophthalmic Solution (1%) were used for pupil dilation. A lid
speculum was placed and 2% lidocaine injected sub-tenon.
Localized conjunctival peritomies were performed to expose
sclera and 3 surgical ports were placed 3.5 mm from the
limbus using 23 gauge valved trocar cannulas (Alcon Surgical).
A core vitrectomy was performed (Constellation, Alcon Surgical).

Intravitreal triamcinolone was injected into the vitreous cavity to
stain the posterior hyaloid. Using aspiration, a posterior vitreous
detachment was induced and the peripheral vitreous shaved.
Subsequently, subretinal surgical procedures were adapted
from Koss et al. (2016) and Fernandes et al. (2017). Briefly, a
localized retinal bleb was created in the superonasal visual streak
using a PolyTip Cannula 25/38G (MedOne Surgical).
Endodiathermy was applied to the base of the retinal bleb for
hemostasis and a retinotomy was created using intraocular
scissors. hiPSC-RPE transplants (carrier-incubator group) were
loaded into the transplantation device from the transplant carrier;
the tip of the transplantation device was introduced into the
vitreous cavity through a separate pars plana scleral incision and
the hiPSC-RPE transplants were released into the subretinal
space. After transplant delivery, the sclerotomy was sutured
immediately to stabilize intraocular fluid dynamics. Fluid air
exchange and laser photocoagulation were performed to flatten
the detached bleb and seal the retinotomy. The sclerotomies and
conjunctival incisions were closed with a 7–0 absorbable suture
(Vicryl, Ethicon). Neomycin and Polymyxin B Sulfates,
Bacitracin Zinc and Hydrocortisone Ophthalmic Ointment
(Bausch & Lomb) was placed in the eye, and the eye patched
and shielded. Pigs were subjected to immunosuppression regime
based on suprachoroidal injection of triamcinolone acetonide
(4 mg; Amneal Pharmaceuticals) 1 week before surgery,
intramuscular injection of methylprednisolone acetate
(5 mg/kg; Teva Pharmaceuticals) and sub-tenon injection of
triamcinolone acetonide (20 mg; Amneal Pharmaceuticals) at
the time of surgery, followed by oral prednisone (1 mg/kg; Par
Pharmaceutical) daily until end of study.

Evaluation After Transplantation Surgery
In vivo assessment was performed by spectral domain optical
coherence tomography (SD-OCT) (Envisu, Bioptigen) 1 week
post transplantation surgery. Histological and
immunohistochemical analysis was also performed.
Enucleated eyes were cryopreserved according to previously
published protocols (Cuenca et al., 2018). The tenon’s capsule
and extraocular muscles were removed as much as possible,
and a cut was made around the limbus with a scalpel blade to
allow the fixative solution to enter into the eye cavity. Eyes
were fixed in 4% paraformaldehyde for 2 h at room
temperature. After washing with 0.1 M sodium phosphate
buffer (pH 7.4), eyes were immersed in increasing
concentrations of sucrose (up to 25%) before freezing.
Cryosections (12 mm thickness) were collected and
processed for immunofluorescent labeling with anti-Ku80
antibody (rabbit anti-human, 1:200, ab80592, Abcam), and
melanosome antibody (mouse anti-human, 1:200, HMB45,
Dako). DAPI (4′,6-diamidino-2-phenylindole) was used for
nuclear counterstaining (Molecular Probes). Fluorescence
images were acquired with a confocal microscope (C2, Nikon).

Statistics and Graphs
Statistical analysis was performed using one-way ANOVA in
SPSS Statistics Version 23.0 (SPSS Inc., IBM Company, Armonk,
NY) and Prism Software Version 7 (GraphPad Software Inc., La
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Jolla, CA). The differences were considered statistically significant
when the p-value was less than 0.05. The cartoons in Figures 2A,
3A were created with BioRender.com (agreement number:
RG22SB5FYK, QD22SB5ZJ4).

RESULTS

Generation of Human-Induced Pluripotent
Stem Cell-Derived Retinal Pigment
Epithelium
We previously demonstrated that human-induced pluripotent
stem cells (hiPSC) can form three-dimensional retinal
organoids containing neural retina and retinal pigment
epithelium (RPE) cells in vitro (Zhong et al., 2014; Flores-
Bellver et al., 2021). To generate hiPSC-derived RPE
monolayers to use as substrate for our RPE transplants, we
harvested the RPE spheroids from retinal organoids
(Figure 1A), and cultured the dissociated RPE cells on
10 μm thick transparent polyester membranes. After 40 days
of differentiation, hiPSC-RPE cells showed the characteristic
pigmentation, typical hexagonal morphology, and intact
F-actin cytoskeleton (Figures 1B,C). We next characterized
our hiPSC-RPE cells by the expression of key proteins involved
in normal RPE cell differentiation and function, including
premelanosome protein (PMEL17), orthodenticle homeobox 2

(OTX2), and zonula occludens-1 (ZO-1). While PMEL17 is
known to be enriched in premelanosomes (Lee et al., 1996;
Raposo et al., 2001), OTX2 is crucial for differentiation of RPE
cells and transactivation of the genes involved in melanosome
formation (Martinez-Morales et al., 2001; Martinez-Morales
et al., 2003), and ZO-1 is a membrane-associated tight junction
adaptor protein that links junctional membrane proteins to the
cytoskeleton and plays an important role in RPE homeostasis
in vivo (Paris et al., 2008; Georgiadis et al., 2010). The
appropriate expression of PMEL17, OTX2, and ZO-1
confirmed that our hiPSC-RPE tissue achieved a healthy
and functionally mature state (Figures 1C,D).

Production of hiPSC-RPE Transplants
To obtain hiPSC-RPE transplants, we used a custom-designed
trephine according to the desired size and shape of the
transplants (Figures 2A–C). The RPE graft was designed as
a circular scaffold surface 2 mm in diameter to target atrophic
RPE lesions within the clinical macula of AMD patients
(Spitznas, 1975; Treumer et al., 2011). At one edge of the
circular graft surface, we designed an asymmetric tab
(1.03 mm × 0.80 mm) to facilitate transplant manipulation
and loading. By grasping at the tab of the transplant with our
surgical transplantation device, the RPE transplant slides into
the lumen of the transplantation device without damage to the
RPE graft itself. Furthermore, the asymmetric design of the tab
allows the surgeon to easily identify the proper orientation of

FIGURE 1 |Generation of human-induced pluripotent stem cell-derived retinal pigment epithelium. (A) A three-dimensional retinal organoid containing neural retina
and retinal pigment epithelium (RPE) cells representative of the ones used in this study. (B) hiPSC-derived RPE showed characteristic pigmentation and typical
cobblestone morphology upon 40 days in culture. (C) Intact F-actin cytoskeleton (Phalloidin) and proper localization of premelanosome protein (PMEL17) in hiPSC-
derived RPE monolayers at 40 days. (D) Orthodenticle homeobox 2 (OTX2), and zonula occludens-1 (ZO-1) also showed proper pattern of expression in hiPSC-
derived RPE monolayers at 40 days in culture. n > 3.
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the RPE transplant by identifying the side of the scaffold that is
covered by the RPE monolayer from the non-cellular side.

Preservation and Transportation of
hiPSC-RPE Transplants
A critical stage of the transplantation process is transportation
and viability preservation during transport of the hiPSC-RPE
transplants. To address this important need we set to develop a
transplant carrier designed to safely transport the hiPSC-RPE
transplants, ensuring proper orientation of the transplant, and
avoiding preservation media leakage, contamination, and any
possible mechanical damage to the transplants. The hiPSC-RPE
transplant carrier was made by three-dimensional (3D) printing
using VeroClear. VeroClear was selected as the 3D printing
material because its optical clarity enables the visualization of
RPE transplants stored inside. The carrier is composed of two
separate components: a drawer and a chest (Figures 2A,D). The
drawer is rectangular in shape (33.00 mm × 3.60 mm × 0.80 mm)
and has symmetrically distributed chambers (capable of
accommodating a maximum of 7 chambers) for hiPSC-RPE

transplants placement. The size of each chamber is 3.20 mm ×
2.00 mm × 0.50 mm, matching the size of our hiPSC-RPE
transplants. Two small symmetrical flat pieces at the top of
the chamber act as a “roof” and prevent the hiPSC-RPE
transplants from floating away from the chamber (Figure 2E).
The chest component is a 33.78 mm × 3.90 mm × 5.50 mm
cuboid. Two rows of through holes enable free flow of the
preservation medium within the chest. The drawer containing
the hiPSC-RPE transplants slides into the hollow center of the
chest smoothly. The whole carrier can be perfectly set into a 2 ml
tube without wiggling during transportation.

In previous studies, Kamao et al. demonstrated that the stem cell-
derived RPE graft viability in graft storage medium could be
maintained up to 5 h after graft preparation (Kamao et al., 2017).
da Cruz et al. preserved stem cell-derived RPE transplants in saline
up to 8 h before transplantation (Da Cruz et al., 2018). Here we
evaluated the biocompatibility and performance of our transplant
carrier on hiPSC-RPE transplant preservation upon 24 h storage
time (Figure 3A). hiPSC-RPE transplants were incubated for 24 h in
the presence of RPE culture media (preservation media) under the
following conditions: 1) transplant carrier in a cell incubator (37°C,

FIGURE 2 | Custom-designed trephine and carrier for production and preservation of hiPSC-RPE transplants. (A) Brief workflow outlining production,
preservation, transportation, and sub-retinal delivery of hiPSC-RPE transplants and the custom-designed devices developed for each step. (B) Custom-designed
trephine for hiPSC-RPE transplant production. (C) Shape and size of the hiPSC-RPE transplants produced with the trephine. (D) The transplant carrier includes a chest
(left), and a drawer (right); the drawer contains chambers for docking the hiPSC-RPE transplants, and by sliding into the chest, the drawer protects the transplants
from moving or damage. (E) A hiPSC-RPE transplant positioned inside a chamber of the drawer (dotted line); two small symmetrical flat pieces at the top of the chamber
(asterisks) prevent the hiPSC-RPE transplants from floating away from the chamber.
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5% CO2; carrier-incubator group); 2) transplant carrier at standard
room conditions (25°C, 0.04% CO2; carrier-bench group); 3)
transplant carrier using standard 24 hours express (10–23°C,
0.04% CO2; carrier-express group); 4) Petri dish in a cell
incubator (37°C, 5% CO2; dish-incubator group; control); and 5)
Petri dish in a cell incubator treated with saponin (saponin-treated
group; cell death positive control). At the end of the 24 h storage
time, using the Live/Death Cell Viability Assay (ThermoFisher) we
determined that the total cell number of the hiPSC-RPE transplants
in the dish-incubator, carrier-incubator, carrier-bench, and carrier-
express groups were 12,435 ± 1,596, 12,400 ± 786, 12,166 ± 932, and
13,075 ± 1722 respectively, with no significant differences among the
four groups while the total cell number of the saponin-treated group
was significantly lower (567 ± 3,953, p < 0.05).More importantly, we
determined no significant differences in the number of dead cells
among the carrier-incubator group (8.26%), the carrier-bench group
(7.95%), and the carrier-express group (6.82%). Furthermore, the
number of dead cells in these three groups showed no significant
differences compared to the dish-incubator (control) group (3.47%,

p > 0.05) (Figure 3B). Based on these results we infer that VeroClear
itself is nontoxic to the RPE cells and therefore a suitable
biocompatible material for our transplant carrier. We next asked
whether the observed cell death was caused by the environmental
conditions within the carrier or by mechanical injury caused by the
trephine. To address this, we analyzed the distribution of dead cells
and found that most of the dead cells were at the periphery of the
transplant outlining the trephine-cutting edge (dish-incubator group
89%, carrier-incubator group 84%, carrier-bench group 81%),
carrier-express group 79% (Figure 3C), indicating that most of
cell death resulted from the trephine, and that the carrier provided a
suitable environment for preserving hiPSC-RPE transplants viability,
even in express shipment conditions.

hiPSC-RPE Transplant Delivery Device
A hiPSC-RPE transplant surgical device was designed to deliver
the transplant into the subretinal space (Figures 4A–C). The
device consists of an 88-mm-long ergonomic handpiece and an
18-gauge curved shaft with micro-jaws. The handpiece has a

FIGURE 3 | Cell viability of hiPSC-RPE transplants stored in the carrier. (A)Workflow and representative pictures of live and dead cell viability assay in hiPSC-RPE
transplants incubated for 24 h in Petri dish in a cell incubator (37°C, 5% CO2; Petri dish-incubator group; control), carrier in a cell incubator (37°C, 5% CO2; carrier-
incubator group), at standard room conditions (25°C, 0.04% CO2; carrier-bench group), and transported from the lab to the hospital by express shipping (10–23°C,
0.04%CO2; carrier-express group). (B) Total cell number (white bars) and dead cell number (dark bars) in carrier-incubator, carrier-bench, carrier-express and Petri
dish-incubator groups. (C) Distribution of dead cells within hiPSC-RPE transplants among carrier-incubator group, carrier-bench group, carrier-express group, Petri
dish-incubator group, and saponin-treated group.
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wheel that can be turned to advance and retract the tubular shaft.
By rolling the wheel forward, the shaft moves forward and
eventually slides over the jaws. As the shaft slides over the
jaws, it forces them to close, enabling them to grasp the tab of
the RPE transplant. As the shaft continues to advance past the
jaws, the transplant folds concavely into the lumen, protecting the
transplant during surgical manipulation and delivery, and
minimizing the size of the scleral and retinal incisions. When
the instrument tip is positioned at the delivery location, the
transplant can be delivered using the reverse process. By
rolling the wheel backward, the shaft retracts and the
transplant unfolds back to its initial shape and the jaws re-
open releasing the transplant into the target location. The
curved translucent Teflon shaft fits the curve of the posterior
pole of the retina allowing a better approach angle to the delivery
location and enables the visualization of the transplant during
loading and releasing thus making the subretinal delivery precise.

To evaluate the safety and reproducibility of the surgery
procedures, we delivered four hiPSC-RPE transplants into two
WT pigs (one transplant per eye). At first, we performed standard
3-port pars plana vitrectomy (PPV). The ports were placed
3.5–4 mm from limbus to prevent injury to the lens because
the pig’s lens thickness (about 7 mm) is thicker than human’s

(about 4 mm) (Wong et al., 2007; Jonas et al., 2012). We then
created a retinal bleb at the visual streak in the superonasal
quadrant of the retina. This specific area was chosen because the
visual streak has the highest cone density resembling the human
macula, and the superonasal quadrant has relatively fewer vessels,
thus minimizing hemorrhage during and post-operation
(Chandler et al., 1999). A 1.5 mm incision was made at the
base of the bleb, and the tip of the cannula (containing the
hiPSC-RPE transplant) was inserted subretinally through the
incision. Through the translucent tip of the cannula, hiPSC-
RPE transplants were released under wide field visualization to
the target position accurately in all operated eyes without causing
any iatrogenic injuries such as host RPE detachment, retinal
damage, or choroidal hemorrhage (Figures 4D–F).
Supplementary Video S1 highlights the complementary
design of the transplant carrier and delivery device and the
ease of workflow during surgical procedure.

Post-Transplantation Surgery Evaluations
Spectral Domain Optical coherence tomography (SD-OCT) is an
imaging technique that can provide in vivo morphological
evaluation of the transplants after surgery (Li et al., 2017; Liu
et al., 2020). Thus, using OCT we assessed the outcome of the

FIGURE 4 | Surgical delivery instrument and outcome of subretinal delivery of the hiPSC-RPE transplants. (A) Lateral view of the transplantation device. (B) The
bent translucent Teflon cannula enables the visualization of the transplant during loading and releasing. (C) A 25-degree tip allows the transplant to roll concavely into the
lumen of the Teflon cannula. (D) During the transplantation surgery, a standard pars plana vitrectomy was performed, (E) A localized retinal bleb was created using a
Polytip Cannula 25/38G, and (F) hiPSC-RPE transplant was delivered within the subretinal space with our surgical delivery instrument. (G–I) A week after
transplantation surgery, (G) fundus photo showed the hiPSC-RPE transplant properly localized at the target position; (H) OCT demonstrated that the transplant laid flat
between the host neural retina and RPEwith no undesired injuries observed in the host retina, RPE and choroid; (I) Immunofluorescence for detection of human PMEL17
and human nuclear Ku80 proteins showed a continuous human RPE monolayer covering the polyester membrane scaffold; no human cells were found outside the
scaffold. RGC, retinal ganglion cell; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; IS/OS, inner segments/outer
segments; hiPSC-RPE, human induced pluripotent stem cell-derived retinal pigment epithelial cells.
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hiPSC-RPE graft transplantation 1 week post-surgery and found
that all the transplants were located stably at the target position,
with no retinal detachment, hemorrhage or any other visible
damage to the host tissues (Figures 4G,H). Furthermore, in
enucleated eyes immunofluorescence detection of the anti-
human nuclear antigen proved that the hiPSC-RPE cells were
attached to the polyester membrane forming a continuous
monolayer under the host neural retina (Figure 4I). No
human cells were found outside the polyester membrane
suggesting that there was no significant hiPSC-RPE cell
detachment from the polyester membrane during the delivery
process.

DISCUSSION

The transplantation surgical kit reported here addresses the needs
for all steps involved in hiPSC-RPE transplantation process
including the generation of asymmetric RPE transplants using
a trephine, transportation and preservation of RPE transplants
before surgery by use of the carrier, and safe and accurate
subretinal delivery of hiPSC-RPE transplants with the
subretinal delivery device. Our tools offer a safe and effective
all-encompassing surgical kit for RPEmonolayer transplantation.

In recent years, increasing attention has been given to RPE
monolayer transplantation as an improved strategy for RPE
regenerative therapies compared to RPE single cell suspensions
(Kamao et al., 2017; Kashani et al., 2018; Mehat et al., 2018;
Sharma et al., 2019). For this approach to be successful, delivery of
the RPE monolayer with the proper orientation is critical to
ensure appropriate function of RPE to maintain the health and
integrity of photoreceptors (Bharti et al., 2006; Bharti et al., 2011).
Various asymmetrical transplants have been previously designed
to facilitate delivery of the RPE monolayers with the proper
orientation (Fernandes et al., 2017; Kamao et al., 2017; Da Cruz
et al., 2018). What is more, the addition of a tab to the graft is
helpful to facilitate grabbing, transferring and loading.
Accordingly, we designed a trephine with a customized shape
including a circular transplant area and an asymmetrical tab that
allows for easy identification of the surface covered by the RPE
monolayer, and convenience for loading the RPE transplants into
the transplantation device.

Another critical aspect for the success of RPE transplantation
is ensuring tissue preservation during storage and transportation
time. In previous studies stem cell-derived RPE transplants were
stored for up to 8 h in Petri dishes or tubes prior to
transplantation surgery (Kamao et al., 2017; Da Cruz et al.,
2018). Compared to Petri dishes, sealed tubes are easier to
transport and less prone to contamination and leakage.
Nonetheless, neither of these methods provide a proven safe,
reproducible, and reliable system for ensuring long-term viability
and ease of transport of RPE transplants. The RPE transplant
carrier reported herein addresses this important need. Our carrier
perfectly fit the size of the commercial 2 ml tubes to prevent
movement during transportation. Importantly, RPE transplants
stored at 25°C, 0.04% CO2 as well as those shipped on express
courier, showed comparable viability to the ones stored in 37°C,

5% CO2. We therefore anticipate that the RPE transplants might
tolerate mild environment changes, at least in a relatively short
time (24 h) and be amenable to controlled shipment conditions.

Several RPE transplantation devices have been previously
designed, all of them being highly customized to fit the
various shapes and sizes of the RPE transplants. In all cases,
these devices provide some advantageous properties while lacking
other significantly important features. Minimization of surgical
trauma and usability are highly desirable properties to ensure
high performance of transplant delivery instruments. Elements
affecting surgical trauma include injection speed control, shape
and orientation of the device tip, and size of sclerotomy and
retinotomy. In our preliminary studies (data not shown), the
straight shaft of the transplantation device could easily lead to
trauma in the host RPE or Bruch’s membrane during subretinal
delivery due to the steep angle required by a straight shaft
approaching a curved surface. Thus, a curved tip that fits the
curvature of the posterior pole of the eyeball was incorporated in
our final design and is preferred and recommended (Kamao et al.,
2017; Da Cruz et al., 2018; Sharma et al., 2019). The ability to
control delivery speed is also essential for minimizing trauma in
such delicate surgery. This can be accomplished with the use of a
wheel gear, a common feature inmany surgical devices. Use of the
viscous fluid injector device of the vitrectomy system has been
used as an alternative option, however this results in additional
fluid being delivered into the bleb along with the implant which
may cause other difficulties such as implant drift in the stream
(Kamao et al., 2017; Kashani et al., 2018; Mehat et al., 2018;
Sharma et al., 2019). Finally, a foldable transplant enables a
smaller incision in both scleral and retina. With the foldable
design, Fernandes et al., 2017 delivered a 3.5 mm wide RPE
transplant with a 1.5 mm scleral incision. Another advantage
of the foldable design is that the RPE is protected within the
lumen of the device avoiding scratching during the loading and
delivery process (Luo et al., 2018). As mentioned before, usability
is another highly desirable property. Elements affecting usability
include loading procedure, ability to reload in vivo, and
ergonomic handle. For example, transplantation devices
featuring forceps or injectors permit a one-step direct loading
of the RPE transplants in vitro which is convenient for the
surgeon. Moreover, a rare but possible scenario is when
unexpected intraoperative complications happen, and the RPE
transplant needs to be reloaded in the device for delivering to the
target area or removing it from the vitreous cavity; once again a
forceps-based design like the one in our delivery instrument
enables re-grasping of the transplants in vivo. Finally, an
ergonomic handle also improves the usability of the device
because it not only enhances the comfort of surgeons
performing the procedure but also improves efficiency when
completing the tasks (Sancibrian et al., 2014). The
transplantation device we developed combines all these
essential properties and is therefore the first to provide
foldable technology that minimizes incision size, controlled
delivery speed, no fluid reflux, curved translucent tip, usability
of loading and in vivo reloading, and ergonomic handle.

Worth noting, our surgical kit is highly customizable and
could be adapted to fit specifications for a variety of retinal grafts,
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including RPE grafts of different shapes and sizes, and eventually
even stem cell-derived retinal sheets and composite transplants
containing RPE and neural retina. These could be achieved by
minor adjustments to the design of our trephine, carrier, and
delivery instrument. In addition, our carrier can be also adapted
by incorporating a temperature- and CO2-controlled system to
enable global transportation of transplants even in harsh climate.

CONCLUSION

This study provides a practical surgical kit for generation,
preservation, and subretinal delivery of RPE transplants in pre-
clinical studies. Furthermore, all devices included in our kit can be
deployed into clinical settings for clinical trials and eventually
standard of care for diseases requiring regeneration of RPE tissue.
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