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Cell-based glycan arrays for probing glycan–glycan
binding protein interactions
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Glycan microarrays provide a high-throughput means of profiling the interactions of glycan-

binding proteins with their ligands. However, the construction of current glycan microarray

platforms is time consuming and expensive. Here, we report a fast and cost-effective method

for the assembly of cell-based glycan arrays to probe glycan–glycan-binding protein inter-

actions directly on the cell surface. Chinese hamster ovary cell mutants with a narrow and

relatively homogeneous repertoire of glycoforms serve as the foundation platforms to

develop these arrays. Using recombinant glycosyltransferases, sialic acid, fucose, and analogs

thereof are installed on cell-surface glycans to form cell-based arrays displaying diverse

glycan epitopes that can be probed with glycan-binding proteins by flow cytometry. Using

this platform, high-affinity glycan ligands are discovered for Siglec-15—a sialic acid-binding

lectin involved in osteoclast differentiation. Incubating human osteoprogenitor cells with cells

displaying a high-affinity Siglec-15 ligand impairs osteoclast differentiation, demonstrating the

utility of this cell-based glycan array technology.
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G lycans decorate the cell surface of both eukaryotes and
prokaryotes, and in mammalian cells are involved in a
variety of physiological processes, including angiogenesis,

fertilization, stem cell development, and neuronal development1–3.
Changes in glycosylation patterns have also been shown to mark
the onset of cancer and inflammation2,3. In many cases, glycans
execute these cellular functions by interacting with glycan-
binding proteins (GBPs). Therefore, there is enormous interest in
understanding the structural basis of these interactions for the
dissection of the mechanisms of glycan-mediated biological
processes and for the development of new therapeutic agents to
treat glycan-regulated disease. Unfortunately, it is challenging to
probe glycan−GBP interactions in vivo because glycosylation is a
post-translational modification not under direct genetic control.
The dynamic process of glycosylation orchestrated by glycosyla-
tion enzymes results in heterogeneous glycoconjugates found on
the cell surface and on secreted proteins3.

Glycan microarrays were developed in response to the critical
need for high-throughput methods to identify GBP interac-
tions4,5. As highlighted in Transforming Glycoscience (section
5.1.1), these microarrays have been extensively employed to
interrogate binding specificities of a diverse range of GBPs,
determine dissociation constants, dissect binding energies, and
assess multivalent and hetero-ligand binding6. Currently, most
glycan arrays are constructed by coupling a chemically defined
glycan to a solid support, such as a glass slide4,5. Such homo-
geneous glycans and derivatives are either synthesized4 or pur-
ified from natural sources by multi-dimensional
chromatography7. Several noteworthy drawbacks are associated
with the current platforms. First, obtaining samples of pure, well-
characterized oligosaccharides for the assembly of glycan arrays
by chemical or chromatography-based purification is time con-
suming and can only be performed by a specialist. As such,
glycosyltransferases are often employed in combination with
chemical synthesis to facilitate the production of complex oligo-
saccharides8. However, only limited numbers of glycosyl-
transferases are present in carbohydrate chemists’ toolbox.
Therefore, many glycosidic linkages cannot be assembled in a
straightforward manner. The second drawback is that the current
glycan microarrays do not fully recapitulate the natural cell-
surface environment on which glycans are presented. Indeed,
Wong and co-workers have shown that the poor sensitivity of the
conventional microarrays arises from their surface-generated
pseudo-multivalent display9. To better mimic the natural multi-
valent presentation, several groups have developed creative stra-
tegies by attaching synthetic glycans to protein10 or polymer
scaffolds11. These approaches, however, also rely on the lengthy
synthesis of complex glycans.

Here, we describe a method to chemoenzymatically install
monosaccharides and their analogs directly on the cell surface to
create in-solution, cell-based arrays displaying chemically defined
peripheral glycan epitopes. The lectin-resistant Chinese hamster
ovary (CHO) cell mutant Lec2 that expresses a narrow and
relatively homogenous repertoire of glycoforms is employed as
the foundation platform. With the conserved core glycan struc-
tures already expressed on the cell surface, the lengthy synthesis
required to build complex carbohydrates is avoided. Using a
handful of glycosyltransferases compatible with cell-surface gly-
cosylation, sialic acid, fucose, and their analogs are introduced to
these cells’ peripheral glycans linkage specifically to form cell-
based arrays displaying diverse glycan epitopes. We demonstrate
the utility of these cell-based arrays to interrogate GBP specifi-
cities and ligand tolerance directly on the cell surface. This
method is applied to high throughput screening for the identifi-
cation of selective and high-affinity ligands of Siglecs, a family of
sialic acid-binding immunoglobulin-type lectins that are

differentially expressed primarily on immune cells. Using this
approach, a high-affinity glycan ligand for Siglec-15 is discovered
that can be used to modulate the differentiation of osteoclasts.

Results
Design and validation of cell-based glycan array strategy. As
proof-of-principle, we used the CHO glycosylation mutant Lec2
cells12 to construct in-solution, cell-based glycan arrays display-
ing defined periphery glycans (Fig. 1a). Lec2 cells have an inactive
CMP-sialic acid Golgi transporter. As a consequence, no sialy-
lation occur without the donor substrate CMP sialic acid avaliable
in the Golgi. In addition, there are no active α1-2, α1-3, and α1-4
fucosyltransferases (FTs) and, therefore, their cell-surface N-gly-
cans terminate with N-acetyllactosamine (LacNAc, Galβ1-
4GlcNAc) (Fig. 2c)12. Lacking terminal fucose or sialic acid
(Fig. 1a) makes Lec2 cells a rich source of acceptor substrates for
FTs and sialyltransferases (STs). Accordingly, Helicobacter pylori
α1-3FT13–15, human α2-3ST (ST3Gal4)16, and rat α2-6ST
(ST6Gal1)16–18 were employed to install fucose or sialic acid
onto the cell surface in a linkage-specific manner. The addition of
α1-3-linked fucose leads to the formation of Lewis X (Galβ1-4
(Fucα1-3)GlcNAc, LeX) (Fig. 1b). The addition of α2-6- or α2-3-
linked sialic acid leads to the formation of Siaα2-6Galβ1-
4GlcNAc or Siaα2-3Galβ1-4GlcNAc, respectively (Fig. 1d).

The cells displaying LeX were constructed by treating Lec2 cells
with GDP-fucose (GDP-Fuc) (1) (500 μM) and α1-3FT in Hanks
buffered salt solution (HBSS) for 10 min at 37 °C (Fig. 2a). Lec8
CHO cells that do not express LacNAc due to a mutation in the
UDP-Gal Golgi transporter were used as a negative control19. The
modified cells were then probed with fucoside binding proteins or
antibodies, including anti-stage-specific embryonic antigen-1
(anti-SSEA-1 or anti-LeX), Aleuria aurantia lectin (AAL), and
Lotus tetragonolobus lectin (Lotus A) as FITC conjugates20. Flow
cytometry reveals that anti-SSEA-1, AAL, and Lotus A all
exhibited strong binding to cells displaying the LeX epitope
(Fig. 2b). In contrast, only background binding was observed with
non-fucosylated Lec2 cells and control Lec8 cells.

The cells displaying Siaα2-3Galβ1-4GlcNAc and Siaα2-6Galβ1-
4GlcNAc were constructed by treatment of Lec2 cells with CMP-
Neu5Ac (6) (Fig. 2a) and ST3Gal4 or ST6Gal1, respectively, for 1
h at 37 °C. Again, Lec8 CHO cells were used as a negative control.
These two cells were first probed with FITC-conjugated Erythrina
cristagalli lectin (ECL) that is specific for terminal galactose and
N-acetylgalactosamine and as such, bound strongly to unmodified
Lec2 CHO cells (Fig. 2c)21. Consistent with the specificity of ECL,
the cells with installed sialic acid resulted in reduced binding
(Fig. 2c). The cells were then probed with FITC-conjugated
sialoside binding proteins, Sambucus nigra (SNA-I) and Maackia
amurensis lectin (MAL-II), specific for α2-6- and α2-3-linked
sialic acids, respectively20. SNA-I strongly bound to cells
displaying α2-6-linked sialic acid, whereas no binding was
observed for cells with α2-3-linked sialic acid (Fig. 2c). For
MAL-II, the opposite was observed (Fig. 2c). In these experi-
ments, as little as 1 μg/mL of GBPs was used. Together, these
results provide strong evidence that our approach for installing
monosaccharides to construct ligands for probing their interac-
tions with GBPs on cell surfaces is specific and sensitive.

Construct glycan arrays displaying unnatural epitopes.
Screening glycan libraries with unnatural substituents serves as a
powerful means to probe the binding pocket of a GBP especially
when there is limited structural information available. To apply
cell-based glycan arrays to profile the substrate tolerance of GBPs,
we constructed three arrays displaying LeX, Siaα2-3Galβ1-
4GlcNAc, Siaα2-6Galβ1-4GlcNAc and their structurally related
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derivatives using Lec2 CHO cells as the starting platform. The
array displaying LeX and its derivatives was constructed using
500 μM GDP-Fuc (1) or GDP-Fuc analogs (2−5) (Fig. 3a). Our
previous studies revealed that while α1-3FT is highly specific for
acceptor glycans possessing LacNAc, it has relaxed donor sub-
strate specificity and is able to accept GDP-Fuc donors with a
wide variety of functional groups at the C5 position of fucose15.
Kinetic analysis of the enzymatic transformation showed only
minor differences (2.8, 8.4, 6.2, 24 μM for 2–5 vs. 16 μM for GDP-
Fuc (1)) in Km values for GDP-Fuc donors with functional groups
at C5. Furthermore, there was no appreciable influence on the
Vmax (Supplementary Fig. 1). Therefore, we chose 500 μM as the
concentration for all donor substrates for surface fucosylation,
which was well above the saturated substrate concentration.

The arrays displaying Siaα2-3Galβ1-4GlcNAc, Siaα2-6Galβ1-
4GlcNAc and their derivatives were constructed using CMP-
Neu5Ac (6) or CMP-Neu5Ac analogs (7–9) (Fig. 3b). Upon
sialylation by ST3Gal4 and ST6Gal1, Lec2 CHO cells showed a
reduction in ECL binding indicating donor transfer regardless of
the sialic analog used (Supplementary Fig. 2). This observation is
consistent with an earlier discovery showing that ST6Gal1 was
promiscuous for C5-modified CMP-Neu5Ac analogs and could
even tolerate large C5 moieties like biotin22,23.

The array displaying LeX and its derivatives was probed with
fucoside binding proteins, SSEA-1, AAL, and Lotus A. The arrays
displaying Siaα2-3Galβ1-4GlcNAc, Siaα2-6Galβ1-4GlcNAc and
their derivatives were probed with SNA-I and MAL-II. Interest-
ingly, we discovered that this panel of GBPs exhibited distinct
binding tolerances to unnatural glycan derivatives. Anti-SSEA-1,
also known as anti-LeX antibody, was able to tolerate an alkyne
(2) and a hydroxyl group (4) at the C5 position of fucose, but not
an azide (3) or methoxy (5) functional group, which abrogated
interaction (Fig. 3c). All fucose analogs assessed resulted in a

reduction in AAL binding but did not entirely abolish this
interaction. Lotus A was very sensitive to C5 modification and the
interaction was completely blocked by any modification to the C5
position of fucose. On the other hand, SNA-I and MAL-II were
not sensitive to sialic acid modifications at C5, but demonstrated
linkage-specificity (Fig. 3d). SNA-I bound to all sialic acid analogs
when attached in an α2-6-linkage. Alternatively, MAL-II tolerated
all analogs attached in an α2-3-linkage.

Screen high-affinity Siglec-15 ligands. Having demonstrated
that our cell-based glycan array was capable of detecting GBP
binding specificity and substrate tolerance, we next assessed the
applicability of this method to identify high-affinity Siglec ligands.
Siglecs comprise a family of 15 members of sialic acid-binding
receptors that are differentially expressed on immune cells24–26.
Because of the restricted expression of Siglecs to one or a few
immune cell types, Siglecs are attractive targets for cell-directed
therapies in immune-cell-mediated diseases26–29. Furthermore,
Siglecs are endocytic receptors allowing efficient uptake of ther-
apeutic agents conjugated to an antibody or glycan ligand30–33.
High-affinity and highly selective glycan ligands represent
attractive alternatives to antibody-based therapeutics with several
notable advantages. Notably, nanoparticles bearing sialoside
ligands for delivery of therapeutic cargo have shown promise for
targeting Siglecs in vivo34. To date, high-affinity and selective
glycan ligands have been discovered for approximately half of
human Siglecs using conventional glycan microarray technol-
ogy35–38.

We sought to determine the applicability of our cell-based
array technique to discover high-affinity and selective glycan
ligands for Siglecs. One Siglec of interest where high-affinity and
selective ligands have not been discovered is Siglec-15. Siglec-15
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becomes expressed within days of RANKL (receptor activator of
nuclear factor κβ ligand)-induced differentiation of osteoclast
precursors into osteoclasts39–43. Studies have demonstrated that
Siglec-15 positively regulates osteoclast differentiation and,
consistent with this finding, loss of Siglec-15 results in impaired
osteoclast differentiation and osteopetrosis in Siglec-15-deficient
mice40. Therefore, Siglec-15 plays a critical role in bone
remodeling and is a considerable potential therapeutic target for
osteoporosis.

From what is known, Siglec-15 prefers α2-6-linked sialic acid
residues in native ligands43. As several high-affinity Siglec ligands
have been developed with functional modifications at the C5
position of Neu5Ac, we focused on this position on sialic acid to
create chemical diversity35–38. To do so, we employed ST6Gal1 to
install an α2-6-linked sialic acid bearing a bioorthogonal alkyne
tag at C5 onto the cell surface of Lec2 cells (Fig. 4a). The alkyne
tagged cells were then derivatized by reaction with a 40-member
azide library (Supplementary Table 1) via biocompatible Cu(I)-
catalyzed azide-alkyne cycloaddition (CuAAC) (Fig. 4a)44 to form
a cell-based glycan array . The library was chosen to contain
structures with a variety of different functional groups to cover a
range of chemical space. The resulting cell-based glycan array was
probed with a recombinant Siglec-15-Fc chimera pre-complexed
to APC-conjugated anti-human IgG1. From this screen, several

high-affinity glycan ligands for Siglec-15 were discovered (Fig. 4b).
Three structures (derived from azides A13, A31, and A37)
resulted in an increase in Siglec-15-Fc binding greater than 15-
fold compared to Lec2 CHO cells sialylated with native sialic acid
(6).

To determine if sialic acid derivatives functionalized with A13
and A31 still serve as high-affinity ligands for Siglec-15 when
displayed on the cell surface in different linkages, CMP-SiaA13
and CMP-SiaA31 (10 and 11; Fig. 4c) were synthesized and used
as the donor substrates for cell-surface in situ sialylation mediated
by three sialyltransfereases, ST6Gal1, ST3Gal4, and ST3Gal1,
followed by Siglec-15-Fc binding. First, the ability of each enzyme
to tolerate the alkyne-tagged CMP-SiaPoc (7) and CMP-Neu5Ac
analogs with larger functional groups (e.g. biotin) at C5 was
verified by the two-step (transfer CMP-SiaPoc in step 1 and react
with biotin-azide in step 2) and one-step (directly transfer a C5
biotin functionalized Neu5Ac analog) labeling, respectively, and
followed by detection with streptavidin-APC (Supplementary
Fig. 3). The one-step procedure was found to be more efficient
than the two-step method for all sialyltransferases, consistent
with previous reports23. Lec2 CHO cells were then subjected to
the one-step labeling with 10 and 11 by ST6Gal1, ST3Gal4, or
ST3Gal1. ST6Gal1 and ST3Gal4 install CMP-Neu5Ac analogs on
terminal LacNAc residues of N-glycans resulting in a display of
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α2-6- or α2-3-10 or -11 sialosides, respectively, whereas ST3Gal1
is responsible for transferring Neu5Ac analogs to the galactose of
Galβ(1-3)GalNAc on O-glycans to form α2-3-linked sialosides
(Fig. 4c)13,37,45. Siglec-15 bound to both α2-6-10 and α2-3-10 on
N-glycans with similar affinity (Fig. 4d). By contrast, Siglec-15

preferred sialoside α2-6-11 on N-glycans. Interestingly, Siglec-15
did not bind to either 10 or 11 derived sialosides when displayed
in α2-3-linkages on O-glycans.

Many high-affinity glycan ligands for Siglecs lack the necessary
specificity required for downstream applications35. To examine
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the specificity of the Siglec-15 glycan ligands discovered here, we
analyzed the binding of a panel of human Siglec-Fc chimeras to
Lec2 CHO cells displaying α2-6-10 or α2-6-11 (Fig. 4e). Both α2-
6-10 and α2-6-11 were found to be high-affinity ligands for
Siglec-2, with a 123- and 81-fold increase in Siglec-2-Fc binding

compared to the negative control, respectively. Cells displaying
α2-6-10 also showed weak binding to Siglec-10-Fc. Subsequently,
we screened the same panel of Siglecs using cells displaying α2-3-
10 and α2-3-11 (Fig. 4f). Interestingly, both α2-3-10 and α2-3-11
showed dramatically increased specificity for Siglec-15—the
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interaction with Siglec-2 was completely abolished. Although cells
displaying α2-3-10 still exhibited weak binding to Siglec-9, cells
displaying α2-3-11 showed remarkable specificity for Siglec-15
with negligible binding to all other Siglec-Fc chimeras assessed.

High-affinity Siglec-15 ligands engage in cell−cell interactions.
With the identification that 10 could serve as the donor substrate
to form high-affinity Siglec-15 ligands on the Lec2 cell surface, we
then evaluated if these ligands could enforce interaction of
modified cells with Siglec-15-expressing cells. Toward this end,
we stained α2-3-10 and α2-6-10 displaying Lec2 CHO cells with
CellTracker orange (CTO) as their identity marker. Unlabeled
Lec2 CHO cells and cells labeled with the native ligand, α2-6-6,
were used as controls. Subsequently, the Lec2 CHO cells stained
with CTO were mixed with Siglec-15-expressing CHO cells that
express extracellular Siglec-15 fused to intracellular GFP in a
100:1 ratio. The formation of cell clusters was determined by
double staining and analyzed by flow cytometry and fluorescence
microscopy (Fig. 5). Compared to the control non-sialylated Lec2
cells and cells modified with natural Neu5Ac, Lec2 cells modified
with 10 induced significantly more cluster formation with Siglec-
15-expressing cells.

While α2-6-10 was found to also bind to Siglec-2 weakly,
osteoclasts and human osteoprogenitor cells (HOPs; CD14+

peripheral blood mononuclear cells) do not express Siglec-2.
Therefore, after confirming that cells displaying α2-6-10 could
engage in cell−cell interactions via Siglec-15 binding, we assessed
if Lec2 CHO cells displaying α2-6-10 also could block osteoclast
formation of RANKL -treated HOPs. RANKL, also known as
osteoclast differentiation factor, is a cytokine secreted by
osteoblasts that serves to activate osteoclasts, which are critically
involved in bone resorption42. To determine if Lec2 CHO cells
displaying α2-6-10 could block osteoclast formation from HOPs,
HOPs were isolated and plated. Osteoclast differentiation was
induced by the addition of human macrophage colony-
stimulating factor (hM-CSF) and RANKL46. Cells were allowed
to differentiate for 7 days. On day 5, Lec2 CHO cells labeled with
the high-affinity Siglec-15 glycan ligand, α2-6-10, or the native
ligand, α2-6-6, were added to the plated cells. In these
experiments, unlabeled Lec2 CHO cells were used as the negative
control. On day 7, the formation of osteoclasts, which express
abundant tartrate-resistant acid phosphatase (TRAP), was
measured using the TRAP staining assay47. Osteoclasts were
identified as TRAP-positive with 3 or more nuclei46,47. Remark-
ably, the addition of Lec2 CHO cells labeled with the high-affinity
Siglec-15 ligand on day 5 resulted in over 50% reduction in
osteoclast formation compared to the addition of unlabeled Lec2
CHO cells and HOPs treated with RANKEL and and hM-CSF
only (Fig. 6). Furthermore, Lec2 CHO cells modified with α2-6-
linked natural sialic acid did not exhibit significant effects on
osteoclast formation presumably due to the relatively low affinity

of α2-6-6 for Siglec-15 compared to α2-6-10 (Supplementary
Fig. 4).

Discussion
The use of molecular diagnostic techniques for the detection of
biological markers in the genome or proteome has dramatically
increased over the last several decades, which has stemmed from
the advancements in molecular biology techniques and the
miniaturization of high-throughput microarrays48,49. Microarrays
are widely used to study disease-specific gene mutations or pro-
tein expression and to correlate these expression signatures with
disease progression. As a result, clinicians are increasingly able to
treat patients according to their individual gene and/or protein
expression profiles, known as personalized medicine. While
microarrays comprised of nucleic acid or peptides/proteins are
well-established and accessible for common users, glycan
microarray technology remains highly specialized50.

The in-solution, cell-based glycan array platforms described
here are developed to address this unmet need. By combining
STs, ST6Gal1 and ST3Gal4, and α1-3FT with Lec2 CHO cells
possessing a narrow and relatively homogeneous repertoire of N-
linked glycoforms, cell arrays displaying sialosides, fucosides and
their structurally related analogs can be assembled easily using
instruments available in most biology labs. With the necessary
glycosyltransferases and nucleotide sugar donors prepared in
advance, it only requires 2–3 h to fabricate a cell-based glycan
array displaying >30 distinct glycan epitopes in a 96-well plate. By
contrast, it takes days to weeks to assemble a conventional glycan
array using comparable chemoenzymatic chemistry because each
individual glycan to be printed needs to be synthesized and
purified4,7. Importantly, the diversity of cell-based glycan array
platforms can be significantly expanded by including the recently
developed CHO and HEK cell lines with simplified surface gly-
cans via precision genome editing as foundation platforms51.

Using conventional glycan microarray technology, high-affinity
and selective glycan ligands have been identified for six out of 15
human Siglecs, which involves the synthesis of hundreds of sia-
lylated oligosaccharides bearing unnatural substituents35–38. The
cell-based array technique described here has proven to be a
simpler alternative for this endeavor. By using STs to install
unnatural sialic acids directly onto the cell surface in a linkage-
specific manner, the lengthy synthesis of sialylated oligosacchar-
ides is avoided. Because sialylation reactions are performed on the
cell surface, significantly fewer materials are required to produce
the desired structures.

Recently, Boltje and co-workers reported an alternative
method to discover Siglec ligands directly on the cell sur-
face52,53. This method involved metabolic labeling using an
alkyne functionalized ManNAc precursor followed by cell-
surface CuAAC. Although a few high-affinity ligands were dis-
covered by this approach, none were specific for a particular
Siglec. This is likely due to the lack of linkage specificity of this

Fig. 4 Cell-based glycan arrays for screening Siglec-15 ligands. a The workflow for the construction of cell-based glycan arrays on the cell surface of Lec2
cells using a chemoenzymatic strategy for screening specific and high-affinity Siglec-15 ligands. Cells were first treated with ST6Gal1 and the alkyne
functionalized CMP-sialic acid analog 7, followed by reacting with a library of azide-containing molecules via the biocompatible CuAAC to form a cell-
based glycan array. The modified cells were incubated with Siglec-15-Fc pre-complexed with Anti-human IgG APC, then analyzed by flow cytometry. b
Flow cytometry data presented in bar graph. Fold difference in MFI of Siglec-15 Fc binding was determined by comparison with the negative control (no
transfer of 7) (n= 3, error bars are reported as SEM). c Structures of CMP-SiaA13 (10) and CMP-SiaA31 (11) and resulting glycan structures after
sialyltransferase-mediated cell-surface glycosylation. d Siglec-15-Fc binding after the one-step labeling of Lec2 CHO cells using ST6Gal1, ST3Gal1 or
ST3Gal4-mediated transfer of 10 or 11, respectively. Fold difference in MFI of Siglec-15 Fc binding was determined by comparison with the negative control
(n= 3, error bars are reported as SEM). e Evaluating the specificity of α2-6-linked Siglec-15 ligands, α2-6-10 and α2-6-11 (n= 3, error bars are reported as
SEM). f Evaluating the specificity of α2-3-linked Siglec-15 ligands, α2-3-10 and α2-3-11(n= 3, error bars are reported as SEM)
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approach. Most Siglecs differentially bind to sialosides based on
their Neu5Ac linkage. Metabolic labeling leads to incorporation
of unnatural sialic acids in both α2-3- and α2-6-linkages, largely
complicating the downstream Siglec binding studies. By con-
trast, the cell-based microarray described here utilized STs to

install unnatural sialic acids directly on cell-surface glycans
linkage specifically.

Siglec-15 is constitutively expressed in osteoclasts. During the
RANKL-induced osteoclast differentiation, Siglec-15 is con-
siderably upregulated39–42. Several antibodies targeting RANKL
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are FDA-approved, or are in late stage clinical trials for the
treatment of osteoporosis and cancer-induced bone loss, and
there are keen interests in targeting Siglec-15 for the same ther-
apeutic applications54–56. In fact, Tremblay and co-workers dis-
covered a monoclonal antibody for Siglec-15 that impaired
osteoclast differentiation both in vitro and in vivo46. Exposure of
human HOPs during differentiation to Lec2 CHO cells displaying
the high-affinity Siglec-15 ligand (α2-6-10) impaired osteoclast
formation, suggesting that this ligand may serve as the lead
compound to be further optimized for clinical evaluation. While
our method serves as a useful tool for the high-throughput
screening of high-affinity glycan ligands for Siglecs and other
GBPs, cells may display a range of glycans containing the mod-
ified monosaccharide. For the future evaluation of its therapeutic
potential, isolation, purification, characterization, and validation
of the high-affinity Siglec-15 ligand are required. Currently, we
are in the process of using the cell-based glycan array technique
to identify specific and high-affinity ligands for other Siglecs.

Methods
Cell culture conditions. Lec2 and Lec8 CHO cells were grown in monolayer in
alpha-Minimum Essential medium (α-MEM) (Invitrogen) supplemented with 10%

fetal bovine serum (FBS) (Sigma-Aldrich). In all cases, cells were incubated in a
5.0% carbon dioxide, water-saturated incubator at 37 °C.

Synthesis of 10 and 11. CMP-SiaPoc (7) (10 mM) and azide A13 or A31 (12 mM)
were dissolved in 1:1 DMSO/H2O containing premixed 3-[4-({bis[(1-tert-butyl-
1H-1,2,3-triazol-4-yl)methyl]amino}methyl)-1H-1,2,3-triazol-1-yl]propa-
nol (BTTP)-CuSO4 complex (2 mM CuSO4, 4 mM BTTP) and 5 mM freshly pre-
pared sodium ascorbate and agitated for 3 h at 30 °C. Reaction completion was
monitored by TLC and LCMS. Upon consumption of 7, the reaction was quenched
with EDTA (4 mM). The mixture was concentrated in vacuo and crude reaction
products were purified by Bio-Gel P2 gel filtration chromatography eluted with
NH4CO3 (50 mM). Only the fractions containing the product were collected and
lyophilized.

General procedure of cell-surface in situ glycosylation. In situ fucosylation of
cells was performed as previously described57. Briefly, cells were resuspended in
100 μL HBSS buffer containing 20 mM MgSO4, 3 mM HEPES, 0.1% FBS, 50 μM
GDP-fucose analogs (1−5), 30 mU α1-3FT. After incubation at 37 °C for 10 min,
the cells were washed three times with PBS. In situ sialylated of cells was performed
as previously described18,23. Briefly, cells were washed three times with PBS and
resuspended in 100 μL serum-free α-MEM containing 0.65 μL BSA (2 mg/mL),
0.65 μL Shrimp Alkaline phosphatase (1000 U/mL, New England BioLabs), 31 μL of
1.5 M sucrose, 4.2 μL ST6Gal117 or ST3Gal416 (1 mg/mL) and 4 μL CMP-sialic acid
analogs (6−11) (10 mM) with a density of 0.5−1.0×106 /100 μL in 96-well plates at
37 °C for 1 h. The treated cells were then washed three times with PBS.

Fig. 5 High-affinity Siglec-15 ligands bridge cell interactions. Lec2 CHO cells displaying high-affinity Siglec-15 ligands or unmodified Lec 2 CHO cells were
stained with CTO and mixed with Siglec-15-expressing CHO cells that express extracellular Siglec-15 fused to GFP in the intracellular domain. The
formation of cell clusters was determined by double staining and analyzed by flow cytometry and fluorescence microscopy. a Dot plot displaying GFP+
population (Siglec-15-expressing CHO cells) that are interacting with CTO-stained Lec2 CHO cells. b Percentage of GFP+ population (Siglec-15-expressing
CHO cells) that interact with CTO-stained Lec2 CHO cells (n= 3, error bars are reported as SEM, significant difference compared with control was
assessed using Student’s t-test (*P < 0.0001)). c Percentage of Siglec-15-expressing CHO cells (GFP+) that interact with CTO-stained Lec2 CHO cells by
fluorescence microscopy (n= 3, error bars are reported as SEM, significant difference compared with control was assessed using Student’s t-test (*P <
0.0001)). d Fluorescence microscopy images of Siglec-15-expressing CHO cells (GFP+) and CTO-stained, unlabeled, Lec2 CHO cells (scale bar: 40 μm). e
Fluorescence microscopy images of Siglec-15-expressing CHO cells (GFP+) interacting with CTO-stained Lec2 CHO cells labeled with α2-6-10 (scale bar:
40 μm)

60

a b e

dc

*

*
50

40

30
%

 O
st

eo
cl

as
t

po
pu

la
tio

n
20

10

0

ST6Gal1 –

– –

– +

10

+Lec2 CHO–Lec2 CHO

Nucleotide

Sugar donor

Fig. 6 Siglec-15 ligands impair osteoclast differentiation. Osteoclast differentiation was induced by the addition of hM-CSF and RANKL to the plated HOPs.
On day 5, Lec2 CHO cells labeled with the high-affinity Siglec-15 glycan ligand, α2-6-10, or the native ligand, α2-6-6, were added to the plated cells.
Quantitative analysis of osteoclast formation by a TRAP-staining assay was performed on day 7 on cells with no addition of Lec2 CHO cells (scale bar: 4
mm) (a), with the addition of unlabeled Lec2 CHO cells (scale bar: 4 mm) (b), and with the addition of Lec2 CHO cells labeled with α2-6-10 (scale bar: 4
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General procedure of cell-surface CuAAC. Alkyne-bearing cells, prepared as
described above using the CMP-sialic acid analog 7 (CMP-SiaPoc), were reacted
with 1 μL azide (5 mM stock) in a 100 μL PBS containing premixed BTTPS-CuSO4

complex (75 μM CuSO4, 450 μM BTTPS) and 2.5 mM freshly prepared sodium
ascorbate for 5 min. The Cu(I)-catalyzed azide-alkyne cycloaddition was quenched
by adding bathocuproine sulfonate (BCS, 1 mM).

Cell-surface lectins and antibody staining. Cells subjected to in situ fucosylation
were assessed for binding of LeX lectins as follows. For SSEA-1, the cells were
incubated with mouse monoclonal anti-SSEA-1 (5 μg/mL, R&D systems, Inc.) in
100 μL PBS with 2% FBS for 30 min followed by staining with PE-conjugated anti-
mouse-IgM (5 μg/mL, Jackson ImmunoResearch Laboratories, Inc.) in 100 μL PBS
with 2% FBS for 40 min. For AAL and Lotus A, the cells were incubated with Lotus
A-FITC (0.1 mg/mL, EY Laboratories, Inc.), or AAL-FITC (10 μg/mL, Vector
Laboratories) in 100 μL PBS with 2% FBS for 40 min. Cells were then washed three
times with PBS, and resuspended in PBS with 2% FBS and 2 mM EDTA for flow
cytometric analysis. Cells subjected to in situ sialylation were assessed for binding
of LacNAc and sLacNAc lectins as follows. For ECA and SNA-I, the cells were
incubated with ECA-FITC (1 μg/mL, EY Laboratories), or SNA-I-FITC (1 μg/mL,
EY Laboratories) in 100 μL PBS with 2% FBS for 30 min on ice. For MAL-II, the
cells were incubated with MAL-II-FITC (1 μg/mL, EY Laboratories) in 100 μL PBS
with 2% FBS and 1mM CaCl2 for 30 min on ice. Cells were then washed three times
with PBS, and resuspended in PBS with 2% FBS and 2mM EDTA for flow cyto-
metric analysis.

Cell-surface binding of Siglec-Fc chimeras. Siglec-Fc chimeras containing the N-
terminal Ig domains fused to the Fc region of human IgG1 were prepared as
described previously35. Labeled Lec2 CHO cells were resuspended in 100 μL of
recombinant Siglec-Fc chimera supernatants pre-complexed with anti-human IgG
APC (1:40 dilution, 200 μg/mL). Briefly, 2.5 μL of anti-Human IgG APC (200 μg/
mL) was added to 50 μL of recombinant Siglec Fc chimera supernatant and
incubated in the dark at room temperature for 15 min followed by dilution with 50
μL of PBS containing 1% BSA. Cells resuspended in this solution were incubated
for 30 min on ice before being washed three times with PBS, and resuspended in
PBS with 2% FBS and 2mM EDTA for flow cytometric analysis.

Cloning and expression of Siglec-15 in CHO cells. Siglec-15 contains a lysine
residue in its transmembrane region that pairs with Dap-12. Since Dap-12 is not
expressed in standard cell lines (e.g. CHO), we took another approach to expres-
sing the extracellular portion of human Siglec-15 as a transmembrane portion of
Siglec-15 by cloning a chimeric protein consisting of amino acids 1−260 of human
Siglec-15 with the transmembrane and cytoplasmic tail of human CD22 fused to a
C-terminal eGFP. This chimeric protein was cloned into pcDNA5/FRT/TOP/V5/
His (Invitrogen) using the NheI and AgeI restriction enzymes. CHO Flp-in cells
(Invitrogen) cells stably transfected with this vector according to the manu-
facturer’s protocol. After selection of cells with Hygromycin-B for 2 weeks, all cells
were found to be expressing high levels of GFP by flow cytometry.

Lec2 CHO cell and Siglec-15-expressing CHO cell clustering. For flow cyto-
metry analysis, Lec2 CHO cells were labeled with CellTracker orange (CTO) fol-
lowing the manufacturer’s protocols (ThermoFisher Scientific), sialylated (as
described above) and mixed with hSig15-expressing CHO cells that also express
GFP in a ratio of 100:1 for 20−30 min on ice prior to analysis by flow cytometry.
The GFP+ cell population was analyzed for CTO staining and interacting cells
were defined as double stained. For fluorescence microscopy analysis, Lec2 CHO
cells stained with CTO were sialylated as described above, mixed with hSig15-
expressing CHO cells that also express GFP in a ratio of 100:1 for 20−30 min on
ice prior to plating and incubation at 37 °C for 10 min to allow adherence. Plates
were gently rinsed once with PBS and cell clustering was imaged by fluorescence
microscopy. Images of each sample were analyzed for cell−cell interactions. The
number of hSig15 CHO cells that were interacting with Lec2 CHO cells was
counted and expressed as a percentage of the total number of hSig15 CHO cells
analyzed.

Osteoclast differentiation. HOPs (CD14+ peripheral blood mononuclear cells)
were isolated from normal human peripheral blood mononuclear cells using
EasySep Human Monocyte Isolation Kit (StemCell Technologies) following the
manufacturer’s instructions. HOPs were plated at 0.5×106 cells/well in a 24-well
plate with 1 mL media (αMEM supplemented with 1 mM sodium pyruvate and 10%
FBS). To stimulate osteoclast formation, 25 ng/mL of human macrophage colony-
stimulating factor and 30 ng/mL of human RANKL (R&D Systems) were added.
Cells were allowed to differentiate for 7 days with half media replaced every 3 days.
On Day 5, Lec2 CHO cells (0.1×106 cells) sialylated as described above using
glycosyl donor 10 were added to wells. Unlabeled Lec2 CHO cells were used as a
negative control. On Day 7, cells were fixed and permeablized followed by staining
for TRAP using the TRAP kit following manufacturer protocols (Sigma Aldrich).
Osteoclasts were defined as TRAP+ with 3 or more nuclei.

Data availability. All data are available from the authors upon reasonable request.
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