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Graphical abstract

Abstract

Di-2-ethylhexyl phthalate (DEHP) is an extensively used plasticizer which has raised some concerns about its safety on 
human health. This study aimed at evaluating the effects of vanillic acid (VA) and vitamin C (VC) supplementation on DEHP-
induced testicular toxicity. Thirty-five adult male Wistar rats were randomly divided into 7 groups (A–G) (n = 5) receiving 
distilled water; 250 mg/kg bw of DEHP only; 30 mg/kg bw of VA and 250 mg/kg bw of DEHP; 30 mg/kg bw of VC and 250 
mg/kg bw of DEHP; 30 mg/kg bw of DEHP plus 30 mg/kg bw of VA and 30 mg/kg bw of VC; 30 mg/kg bw of VA only; and 
30 mg/kg bw of VC only, respectively. At the end of the experiment, blood was taken from the heart via cardiac puncture 
and stored, semen was collected from the caudal epididymis for immediate sperm analysis, while the testes were excised 
and preserved for histological examination and biochemical analysis. The results showed a significant decrease (P < 0.05) 
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in body weights, sperm motility, sperm volume, sperm viability and count, antioxidant levels, and reproductive hormonal 
levels, with a significant increase (P < 0.05) in sperm morphological defect and lipid peroxidation level in DEHP-only group 
compared with the control but was ameliorated after VA and VC administration compared to the DEHP-only treated 
animals. VA and VC supplementation attenuated the toxic effects of DEHP on the testicular functions, morphology, and 
semen characterization of the experimental adult male Wistar rats.

Lay summary

Male infertility is considered when identifiable female causes of infertility are excluded and semen quantity and quality 
fail to fulfil World Health Organization criteria. From conception through to adulthood, people are exposed to limitless 
environmental toxicants among which di-2-ethylhexyl phthalate (DEHP) commonly found in personal care products, 
cosmetics, and medical devices is prevalent. The present study elaborated on the importance of taking antioxidant-rich 
foods containing vitamin C and vanillic acid, such as those found in various fruits, olives, whole wheat, and cereal grains, 
in combating infertility caused by environmental toxicants. An experiment was carried out on rats to see the effect of 
vanillic acid and vitamin C supplementation on preventing DEHP-induced testicular toxicity. The testicles and semen were 
analyzed from five rats in each treated and control groups. The data led us to conclude that vanillic acid and vitamin C 
supplementation do have attenuating effects on DEHP-induced testicular toxicity, due to their high antioxidant and anti-
inflammatory properties.
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Introduction

Infertility in males refers to a man’s failure to achieve 
conception in a fertile female (Olooto 2012). Male 
infertility is frequently due to sperm and semen quality 
defects (Cooper et  al. 2010). It is estimated that 60% of 
married couples having regular unprotected intercourse 
achieve pregnancy after 6 months of co-habitation, 90% 
achieve pregnancy by 12 months, and 95% between 18 and 
24 months (Agboola 2005).

Evidence has shown that endocrine-disrupting 
chemicals (EDCs) have probable deleterious consequences 
on development, growth, metabolism, and reproduction, 
as they can intervene in the production, release, transport, 
metabolism, binding movement, or removal of the natural 
hormones inside the body (Nassouri et al. 2012). Majority 
of the previous findings on the endocrine disruptors 
categorized as anti-androgens deal with phthalates (Albert 
& Jegou 2014). Phthalic esters are compounds widely 
used as plasticizers. Worldwide, nearly three million tons 
of phthalic esters are produced per year, and they can be 
found in many everyday products, including plastic bags, 
polyvinylchlorides (PVCs), cosmetics, food packaging, 
industrial paints, and also in blood transfusion packs 
(Muczynski et  al. 2012). Because of the non-covalent 
nature of their link with plastics, phthalates can leach 

from these products easily and, therefore, be ingested 
(Kavlock et  al. 2002). Di-2-ethylhexyl phthalate (DEHP) 
is the most common member of the class of phthalates. 
DEHP is also called bis(2-ethylhexyl) phthalate or dioctyl 
phthalate (Huang et al. 2008). From conception through to 
adulthood, people are exposed to limitless anthropogenic 
and naturally occurring EDCs, among which DEHP is the 
most extensively used plasticizer in PVC plastics, which is 
prevalent in personal care products, cosmetics, and medical 
devices, accounting for ~80% of the total phthalates’ global 
consumption (Kamrin 2009). As DEHP is not chemically 
bound to PVC, it leaches easily, migrates, and evaporates 
into indoor air and the surrounding atmosphere, 
foodstuffs, and other materials (Zhang et al. 2018). DEHP is 
a well-known reproductive toxicant. Extensive studies on 
phthalate-induced male reproductive toxicity have been 
reported since Shaffer et al. (1945) published the first report 
on DEHP-induced testicular injury in an animal model. The 
mechanism by which DEHP causes testicular toxicity has 
not been fully elucidated (Erkekoglu et al. 2010). Previous 
evidence showed that DEHP via activation of peroxisome 
proliferator-activated receptors exerts its anti-androgen 
effect by inhibiting fetal testosterone biosynthesis (Culty 
et  al. 2008), and subsequent suppression of antioxidant 
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enzymes, leading to the production of free radicals and 
oxidative stress, which contributes to oxidative DNA 
damage (O’Brien et al. 2005).

Antioxidants when applied to foods of humans and 
animals minimize the rate of chemical compound’s toxicity 
(Ansar 2013). They prevent toxicity by stimulating the 
body’s detoxifying enzymes or by inhibiting the ultimate 
production of carcinogenic metabolites (Ansar 2013). Rich 
sources of diversified pharmacological products have been 
found to be fruits, spices, vitamins, and even various herbs 
(Ansar & Iqbal 2013). Such reagents have antioxidant and 
free-radical scavenging properties (Wang et al. 2012, Zeng 
et al. 2013). Vanillic acid (VA) is a phenolic derivative from 
edible plants and fruits known to possess antimicrobial, 
anti-filarial (Varma et  al. 2013), and antibacterial effects 
(Rai et  al. 2006). It may be found in a variety of fruits, 
olives, whole wheat, and cereal grains, as well as in wine, 
beer, and cider (Siriamornpun & Kaewseejan 2017). 
The main phenolic components in samples of potatoes 
(Solanum tuberosum L.) were identified by Kim et  al. 
(2019). The scientific name of VA is 4-hydroxy-3-methoxy 
benzoic acid (Zeng et al. 2013). It is an oxidized portion of 
vanillin (4-hydroxy-3 methoxybenzaldehyde) (Sinha et al. 
2008), exhibiting several bioactive properties, including 
antimicrobial action against yeasts, moulds (Tipparaju 
et al. 2005), and bacteria (Rupasinghe et al. 2006) and as an 
antioxidant (Burri et al. 2009). Vanillin has antimutagenic, 
anticlastogenic, and antitumor properties and may hence 
be known as a nutraceutical agent (Shyamala et al. 2007). 
VA also functions as an intermediate in the ferulic acid 
synthesis of vanillin (Cinolani et al. 2010). The antioxidant 
activity of VA seems to be an important action (Wang 
et  al. 2012). The in vitro antioxidant mechanisms of VA 
include free radical scavenging activity, reducing power, 
and inhibition of lipid peroxidation (Chou et  al. 2010). 
Furthermore, VA reduced lipid peroxidation products 
and significantly restored enzymatic antioxidants and 
nonenzymatic antioxidants in the plasma of hypertensive 
rats (Kumar et  al. 2011). In view of the facts mentioned 
earlier, this study is focused on the antioxidant effect of VA 
and vitamin C (VC) supplementation on DEHP-induced 
testicular toxicity in adult male Wistar rats.

Materials and methods

Chemicals

DEHP was procured from Sigma Company, and VA and VC 
were procured from Max International, Salt Lake, UT, USA. 

All other chemicals used in the study were of analytical-
reagent grade.

Animals

In this prospective cohort study, a total of 35 adult male 
Wistar rats weighing 150–200 g and aged 8–10 weeks 
(Rattus norvegicus) were obtained from the animal house, 
Department of Human Anatomy, Federal University of 
Technology, Akure. The rats were collected in isolated cages 
in the experimental house of the Department of Human 
Anatomy, College of Health Science, Federal University of 
Technology, Akure. They were maintained with a constant 
12 h light/12 h darkness cycle. All animal handling 
procedures were approved by the Ethics Committee of the 
Federal University of Technology, Akure CHS/FUA/2021/031.

Experimental protocol

The rats were divided into seven groups (n = 5), labeled as 
groups A, B, C, D, E, F, and G. DEHP dosage was administered 
accordingly using the protocol by Zhang et al. (2018), while 
VA and VC dosage were administered accordingly using the 
procedure by Ma et al. (2020).

I.	 Group A represents control and received water as 
placebo (negative control).

II.	 Group B received 250 mg/kg bw of DEHP only (positive 
control).

III.	 Group C received 30 mg/kg bw of VA and 250 mg/kg 
bw of DEHP.

IV.	 Group D received 30 mg/kg bw of VC and 250 mg/kg 
bw of DEHP.

V.	 Group E received 250 mg/kg bw of DEHP plus 30 mg/
kg bw of VA and 30 mg/kg bw of VC.

VI.	 Group F received 30 mg/kg bw of VA only.
VII.	Group G received 30 mg/kg bw of VC only.

All administrations were done orally, co-treatment via 
gastric gavage daily for 28 days, and all animals were 
observed for any behavioral anomalies, illnesses, and 
physical anomalies. The experimental procedures were 
in accordance with the provided recommendations in 
the ‘Guide for the Care and Use of Laboratory Animals’ 
prepared by the National Academy of Sciences. The rats 
were fed with standard rat chow and drinking water was 
supplied ad libitum. The weights of the animals were 
recorded at procurement, during acclimatization, at the 
commencement of the experiment, and weekly throughout 
the experimental period using a CAMRY electronic scale 
(EK5055, Indian).
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Surgical procedure

After the last administration, the rats were administered 
i.p. pentobarbital sodium (40 mg/kg), and their abdominal 
region was opened and the testes of all the animals were 
immediately removed. The testicular weights of each 
rat were recorded. The rats were decapitated and blood 
samples were collected for analysis. The blood samples 
were centrifuged at 4°C for 10 min at 250 g, and the serum 
obtained was stored at −20°C until assayed. The harvested 
testis specimens were fixed in Bouin’s fluid for histological 
analysis (Avwioro 2010).

Epididymis sperm count, viability, and motility

The spermatozoa from the cauda epididymis were obtained 
by cutting into 2 mL of medium (Hams F10) containing 
0.5% BSA (Feng et al. 2001). After 5 min of incubation at 
37°C (with 5% CO2), the cauda epididymis sperm reserves 
were determined using a hemocytometer. Sperm motility 
was analyzed with a microscope (Leica DM750) and 
reported as the mean number of motile sperm according to 
the method developed by the World Health Organization 
(WHO 1999).

Biochemical estimations

The level of lipid peroxidation products was estimated in 
accordance with the method published by Niehaus and 
Samuelsson (1968). Nonenzymatic antioxidants such as 
reduced glutathione (GSH) and enzymatic antioxidant 
markers such as catalase (CAT) were estimated as described 
by Ellman (1959) and Sinha (1972), respectively; superoxide 
dismutase (SOD) activity in the testes was determined 
according to the method described by Marklund and 
Marklund (1974).

Hormone determination

The hormonal levels of testosterone (TT), follicle-
stimulating hormone (FSH), and leutenizing hormone 
(LH) were measured using available immunoassay 
(ELISA) kits (Randox Laboratories Ltd, Admore Diamond 
Road, Crumlin, Co., Antrim, United Kingdom, Qt94QY) 
according to manufacturer’s instructions.

Testicular histology preparation

The testes of the rats were harvested and fixed in Bouin’s 
fluid for 24 h before being transferred to 70% alcohol for 

dehydration. The tissues were passed through 90% and 
absolute alcohol and xylene for different durations before 
being transferred into molten paraffin wax for 1 h each in 
an oven at 65°C for infiltration. The tissues were embedded, 
and serial sections cut on a rotary microtome set at 5 μm were 
performed. The tissues were picked up with albumenized 
slides and allowed to dry on hot plates for 2 min. The slides 
were dewaxed with xylene and passed through absolute 
alcohol (two changes), 70% alcohol, 50% alcohol, (in that 
order), and then in water for 5 min. The slides were then 
stained with hematoxylin and eosin, mounted in DPX, and 
photomicrographs were taken at a magnification of 100× on 
a Leica DM750 microscope (Adelakun et al. 2019).

Statistical analysis

The data obtained were analyzed statistically using one-
way ANOVA, followed by Dunnett’s comparison test. Data 
were expressed as mean ± s.e.m. The level of significance 
was at P < 0.05. Data were analyzed using GraphPad Prism 
5 Windows (GraphPad Software).

Results

Effect of VA and VC supplements on the body weight 
on DEHP induced normal and experimental rats

The result revealed that rats treated with DEHP only (group 
B) showed significant decrease (P < 0.05) in body weight 
when compared with the control (group A) (Fig. 1). There 
was also a significant difference in the body weights of the 
animals treated with DEHP only (group B) when compared 
with the animals administered with VA and DEHP (group 
C), VC and DEHP (group D), DEHP plus VA plus VC (group 
E), VA only (group F), and VC only (group G) groups (Fig. 1).

Figure 1 Effect of VA and VC supplements on the body weight on 
DEHP-induced normal and experimental rats. *P < 0.05 as compared to 
group A; &P < 0.05 as compared to groups C, D, E, F, and G.
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Effect of VA and VC supplements on testis weight 
(right and left) on DEHP-induced normal and 
experimental rats

The result revealed that rats treated with DEHP only (group 
B) showed a significant decrease (P < 0.05) in testis weight 
(both left and right) when compared with the control 
(group A) (Fig. 2). There was also a significant difference 
in testis weight (both left and right) of the animals treated 
with DEHP only (group B) when compared with the 
animals administered with VA and DEHP (group C), VC 
and DEHP (group D), DEHP plus VA plus VC (group E), VA 
only (group F), and VC only (group G) groups (Fig. 2).

Effect of VA and VC supplements on sperm 
morphology (neck, tail, and head defects and normal) 
on DEHP-induced normal and experimental rats

The result revealed that rats treated with DEHP only (group 
B) showed a significant increase (P < 0.05) in defective 
sperm morphology (neck defect (ND) and tail defect 
(TD)), but no significant difference in head defect (HD) 
when compared to the control (Fig. 3). However, the rats 
administered with DEHP plus VA plus VC (group E) showed 
a significant increase (P < 0.05) in sperm morphology 
(normal) and a decrease in sperm morphological defects 
(ND, TD), but no significant difference in HD when 
compared with the DEHP only group (group B) (Fig. 3). 
Furthermore, the animals treated with VA plus DEHP 
(group C) and also VC plus DEHP (group D) showed a 
significant improvement (P < 0.05) in sperm morphology 
(normal) and a decline in sperm morphological defects 
(ND, TD), but no significant difference in HD when 
compared with the DEHP only group (group B) (Fig. 3). In 
addition, there was no significant difference in the levels 
of sperm morphology (normal) and sperm morphological 
defects (ND, TD, and HD) in the animals treated with VA 

only and VC only (group F and G) when compared with 
the control (Fig. 3).

Effect of VA and VC supplements on sperm motility, 
concentration count, semen volume, and sperm 
viability on DEHP-induced normal and 
experimental rats

The results revealed that rats treated with DEHP only 
(group B) showed a significant decline (P < 0.05) in sperm 
motility, concentration count, semen volume, and sperm 
viability relative to the control group (Fig. 4). However, 
the rats administered with DEHP, VA, and VC (group E) 
showed a significant increase (P < 0.05) in sperm motility, 
concentration count, semen volume, and sperm viability 
when compared with the DEHP only group (Fig. 4). In 
addition, there was a significant decrease (P < 0.05) in these 
characteristics when the rats administered with DEHP only 
was compared with the rats treated with VA plus DEHP 
(group C) and VC plus DEHP (Fig. 4). Furthermore, there 
was no significant difference between the control group 
and animals administered with the DEHP, VA, and VC 
(group E) when compared with each another. There was 
no significant difference in sperm motility, concentration 
count, semen volume, and sperm viability when the 
control (group A) and the animals that received VA only 
(group F) and VC only (group G) were compared with one 
another (Fig. 4).

Figure 2 Effect of VA and VC supplements on testis weight (right and left) 
on DEHP-induced normal and experimental rats. *P < 0.05 as compared 
to group A; &P < 0.05 as compared to groups C, D, E, F, and G.

Figure 3 Effect of VA and VC supplements on sperm morphology (neck, 
tail, and head defects and normal) on DEHP-induced normal and 
experimental rats. *P < 0.05 as compared to group A; &P < 0.05 as 
compared to group E; #P < 0.05 as compared to group B; $P < 0.05 as 
compared to group B; %P < 0.05 as compared to group A.
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Effect of VA and VC supplements on MDA, GSH, SOD, 
and CAT levels on DEHP-induced normal and 
experimental rats

The results revealed a significant increase (P < 0.05) in 
malondialdehyde (MDA) level and a corresponding 
increase (P < 0.05) in CAT, SOD, and GSH levels among the 
animals treated with DEHP only (group B) when compared 
to the control group (group A) (Fig. 5). Although, there was 
a significant increase (P < 0.05) in CAT, SOD, GSH levels and 
a corresponding decrease (P < 0.05) in MDA level among 
the animals that received the combined administration 
of DEHP plus VA plus VC (group E) when compared 
with animals treated with DEHP only (group B) (Fig. 5). 
Furthermore, there was a significant increase (P < 0.05) 
in CAT, SOD, GSH serum levels and a decrease (P < 0.05) 
in MDA serum level among the animals that received VA 
plus DEHP (group C) and VC plus DEHP (group D) when 
compared with the DEHP only group (group B) (Fig. 5). 
In addition, there was a significant increase (P < 0.05) in 

MDA level and a corresponding increase (P < 0.05) in CAT, 
SOD, and GSH levels among the animals that received the 
combined administration of DEHP plus VA plus VC (group 
E) when compared to the control group (group A) (Fig. 5). 
However, there was no significant difference in CAT, SOD, 
GSH, and MDA levels when the control (group A) and the 
animals that received VA only (group F) and VC only (group 
G) were compared with one another (Fig. 5).

Effect of VA and VC supplements on serum level of 
FSH, LH, and TT on DEHP-induced normal and 
experimental rats

There was a significant decrease (P < 0.05) in FSH, LH, and TT 
serum levels in animals that were treated with DEHP only 
(group B) when compared to the control group (group A) 
(Fig. 6). However, there was a significant increase (P < 0.05) 
in FSH, LH, and TT serum levels among the animals that 
received of DEHP plus VA plus VC (group E) when compared 
with animals treated with DEHP only (group B) (Fig. 6). In 
addition, there was a significant increase (P < 0.05) in FSH, 
LH, and TT serum levels among the animals that received 
VA plus DEHP (group C) and VC plus DEHP (group D) 
when compared with the DEHP only group (group B) (Fig. 
6). Although, there was no significant difference in FSH, 
LH, and TT serum levels when the control (group A) and 
the animals that received DEHP plus VA plus VC (group E), 

Figure 4 Effect of VA and VC supplements on sperm motility, 
concentration count, semen volume, and sperm viability on DEHP-
induced normal and experimental rats. *P < 0.05 as compared to group A; 
&P < 0.05 as compared to group E; #P < 0.05 as compared to group B; $P < 
0.05 as compared to group B; %P < 0.05 as compared to group A.

Figure 5 Effect of VA and VC supplements on MDA, GSH, SOD, and CAT 
levels on DEHP-induced normal and experimental rats. *P < 0.05 as 
compared to group A; &P < 0.05 as compared to group E; #P < 0.05 as 
compared to group B; $P < 0.05 as compared to group B; %P < 0.05 as 
compared to group A.
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VA only (group F) and VC only (group G) were compared 
with one another (Fig. 6).

Testicular photomicrographs showing the effect of 
VA and VC supplements on DEHP-induced normal and 
experimental rats

The testicular histoarchitecture of the DEHP only group (B) 
(Fig. 7B) showed necrosis and degeneration with a decrease 
in germinal epithelium thickness and a reduction in the 
diameter of the seminiferous tubules when compared 
with the control (group A) (Fig. 7A). In addition, DEHP 

caused distortion in the seminiferous tubules with loss 
of normal distribution of epithelial lining and vacuolar 
cytoplasm compared with the control. However, testicular 
photomicrograph of the control group had similar 
characteristics with the VA only (group F) and VC only 
(group G) treated animals, showing oval or circular 
presentation with distinctive stratified seminiferous 
epithelium whose lumen possesses spermatogenic cells 
and prominent Leydig cells (Fig. 7F and G). The testicular 
section of the groups administered with both DEHP, VA, 
and VC (group E) as well as those administered with DEHP 
and VA (group C) and DEHP and VC (group D) showed 
restored microarchitecture of the testicular morphology 
showing mild distortion of the tubular architecture and 
disorganization of the spermatogenic cells in seminiferous 
tubules (Fig. 7C, D and E).

Discussion

Human male infertility is a worldwide condition that affects 
around 7% of all males and accounts for 40–50% of all cases 
of infertility (Jungwirth et al. 2012). The testis is vulnerable 
to a number of stressors, including heat, inflammation, 
radiation, and exposure to substances that cause germ cell 
apoptosis (Angulo et  al. 2011). Lifestyle factors, as well as 
various environmental agents, may impair male fertility 
(Pflieger-Bruss et al. 2004). Male gonadal function is affected 
by a large number of factors including age, smoking, 
alcohol consumption, environmental agents, and 
occupational factors (Latini et  al. 2006). Male subfertility 
is closely related to environmental endocrine disruptors 
(Chevrier et  al. 2012, Nordkap et  al. 2012). One of the 
most representative environmental endocrine disruptors 
is DEHP, which has been shown to cause abnormal male 

Figure 6 Effect of VA and VC supplements on serum level of FSH, LH, and 
TT on DEHP-induced normal and experimental rats. *P < 0.05 as 
compared to group A; &: P < 0.05 as compared to group E; #P < 0.05 as 
compared to group B; $P < 0.05 as compared to group B; %P < 0.05 as 
compared to group A.

Figure 7 (A) Group A: testicular photomicrograph 
of the control group; (B) Group B: testicular 
photomicrograph of the DEHP-only treated group; 
(C) Group C: testicular photomicrograph of the 
vanillic acid plus DEHP treated group; (D) Group 
D: testicular photomicrograph of the vitamin C 
plus DEHP treated group; (E) Group E: testicular 
photomicrograph of the DEHP plus vanillic acid 
and vitamin C treated group; (F) Group F: 
testicular photomicrograph of the vanillic 
acid-only treated group; (G) Group G: testicular 
photomicrograph of the vitamin C only treated 
group. L, lumen; SPZ, spermatozoa; arrow, 
spermatogenic cells.
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reproductive development possibly through an oxidative 
stress-related mechanism (Tetz et  al. 2013, Skinner 2016). 
DEHP is rapidly hydrolyzed to mono(2-ethylhexyl)-
phthalate (MEHP) when it enters the body. Subsequently, 
MEHP inhibits mitochondrial respiration and generates 
excessive reactive oxygen species (ROS), such as H2O2 

(Tang et  al. 2018). These actions increase the oxidative 
stress level, which can lead to DNA damage, and eventually 
causes cell death or apoptosis (Tetz et  al. 2013). Because 
oxidative stress is one of the primary causes of germ cell 
apoptosis, the testis contains high levels of antioxidants 
including ascorbic acid, often known as VC, to protect 
germ cells against oxidative damage (Liang et al. 2012). VC 
deficiency actually causes disturbance of spermatogenesis; 
thus, the defense mechanism against oxidative stress plays 
a critical role in the maintenance of spermatogenesis 
(Angulo et  al. 2011). Natural compounds are always a 
prime choice for the treatment of various diseases. Various 
researchers explore natural compounds in in vitro and in 
vivo studies. VA is a phenolic molecule that is an oxidized 
molecule of vanillin. VA may be found in a variety of foods, 
including fruits, whole grains, juices, herbs, beers, green 
tea, and wines (Sharma et al. 2020). It has been shown to 
have anti-inflammatory, antioxidant, cardioprotective, 
immunostimulating, hepatoprotective, neuroprotective, 
and antiapoptotic properties (Kim et  al. 2011, Vinothiya 
& Ashokkumar 2017). The present study evaluated the 
antioxidative effect of VA and VC supplementation on 
DEHP-induced testicular toxicity in mice.

The result from this study revealed that rats treated with 
DEHP only showed a significant decrease in body weight 
when compared with the control group. Body weight is a 
good indicator of the negative effects of xenobiotics, and 
it is considered a determinant parameter of toxicity testing 
(Zahra et al. 2020). The reduction in body weight by DEHP 
is consistent with a study conducted by Abd-Ellah et  al. 
(2016). However, there was a significant increase in the 
body weights of the animals treated with DEHP, VA, and VC 
when compared with the DEHP-only treated group. The 
increase in body weight following DEHP administration 
by VA can be likened to its anti-inflammatory property 
and analgesic action which is further explained by Calixto-
Campos et al. (2015).

Apoptosis is a process of cell death that occurs not 
only in normal germ cells but also in cells damaged by 
toxic substances (Park et al. 2002). From this study, it was 
also discovered that rats treated with DEHP only showed 
a significant increase in defective sperm morphology 
when compared to the control. DEHP can be said to have 
produced a marked increase in apoptosis in testis. DEHP’s 

testicular toxicity at gonadotoxic levels lowers litter 
size in male rats, which is linked to reduced epididymal 
sperm density, testicular atrophy, and an increase in 
abnormal sperm numbers (Agarwal et al. 1986). However, 
on co-administration of DEHP, VA, and VC, there was a 
significant increase in normal sperm morphology and a 
corresponding decrease in sperm morphological defects 
when compared with the DEHP-only treated group. This 
result is in accordance with Oyagbemi et al. (2016).

The testicular sperm counts, volume, motility, and 
viability are important indicators of spermatogenesis 
(Wang et  al. 2014). In this study, the administration of 
DEHP only reduced sperm motility, concentration count, 
sperm volume, and viability when compared with the 
control. These results come in accordance with Ma et  al. 
(2012), who showed an obvious reduction in the total 
sperm count, volume, motility, and viability after DEHP 
treatment. However, on co-administration of DEHP, VA, 
and VC, there was a significant increase in sperm motility, 
concentration count, sperm volume, and viability when 
compared with the DEHP-only treated group. This result 
is consistent with the outcome of a study carried out by 
Calixto-Campos et al. (2015).

Antioxidants are vital in the defense mechanism 
against pathological events, but the imbalance of free 
radicals and antioxidants may harm the organs and their 
normal functions (Zahra et al. 2020). In most mammalian 
cells, mitochondria are an important source of ROS 
which can damage proteins, lipids, and DNA (Poprac et al. 
2017). The first line of defense against ROS in the body is 
endogenous enzymes system such as SOD, CAT, and GSH 
while MDA is a marker for oxidative stress. The results of 
this study revealed a significant increase in MDA level and a 
corresponding increase in CAT, SOD, and GSH levels among 
the animals treated with DEHP only. This is in accordance 
with a study conducted by Tetz et  al. (2013) which stated 
that DEHP exposure leads to the production of excessive 
ROS. Antioxidants fight against free radicals and serve 
as protection against a variety of ailments. The hunt for 
effective free radical scavenger and gonadoprotective 
sources has been a constant pursuit. From this study, the 
co-administration of DEHP, VA, and VC significantly 
increased the CAT, SOD, and GSH levels while reducing the 
MDA level. The scavenging effects of VA might be attributed 
to the presence of polyphenolics, carotenoids, and other 
antioxidant constituents. This supports earlier research on 
the antioxidant and anti-inflammatory properties of VA 
(Kumar et al. 2011, Bezerra et al. 2016).

The testis is an androgen-dependent organ and 
reproductive hormones such as the LH, FSH, and TT are 
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essential to maintain the structure and function of the 
testis and accessory sex glands (Rezvanfar et  al. 2013). 
From this study, there was a significant decrease in FSH, 
LH, and TT serum levels in animals that were treated 
with DEHP only when compared to the control group. 
The mechanisms by which DEHP causes its toxic effects 
on the reproductive system, according to Ge et  al. (2007) 
and Noriega et al. (2009), are related to its anti-androgenic 
potential. Leydig cells are the primary source of TT and 
other major reproductive hormone production in males, 
and differentiation of Leydig cells in the testes is one of 
the primary events in the development of the male body 
and fertility (Zhang et al. 2008). Available data suggest that 
Leydig cells are one of the main targets of phthalates (Ge 
et  al. 2007). However, on co-administration of DEHP, VA, 
and VC, there was a significant increase in FSH, LH, and 
TT serum levels when compared with animals treated with 
DEHP only. This is consistent with previous studies by 
Hashem et al. (2018) and Sharma et al. (2020).

The histopathological findings from this study showed 
necrosis and degeneration with a decrease in germinal 
epithelium thickness and a reduction in the diameter 
of the seminiferous tubules in animals administered 
with DEHP only when compared with the control 
group. In addition, DEHP also caused a distortion in the 
seminiferous tubules with a loss of normal distribution of 
epithelial lining and vacuolar cytoplasm when compared 
with the control. These findings are in accordance with a 
study conducted by Gangolli (1982) who reported that the 
testicular photomicrographs of DEHP-treated rats showed a 
marked reduction in the diameter of seminiferous tubules, 
the germinal epithelium consisted only of Sertoli cells, 
spermatogonia and a few spermatocytes, and also a cessation 
of spermatogenesis. However, restored microarchitecture 
of the testicular morphology showing mild distortion 
of the tubular architecture and disorganization of the 
spermatogenic cells in seminiferous tubules was observed 
in animals administered with DEHP, VA, and VC. This can 
be attributed to the anti-inflammatory and antiapoptotic 
coupled with the antioxidative properties of VA (Agarwal 
et al. 1986, Bezerra et al. 2016) as well as the ability of VC in 
maintaining spermatogenesis (Angulo et al. 2011).

Conclusion

It can be concluded from this study that DEHP (a well-
known plasticizer and an environmental toxicant) is 
detrimental to male gonads and can lead to testicular 
toxicity. However, VA (a phenolic-rich substance) together 

with VC supplementation showed great potential in 
attenuating the toxic effects of the phthalate in question, 
most especially its toxic effects on the testis.
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