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Abstract

Recent data comparing germ-free to conventionally-raised mice demonstrated that energy

homeostasis of colonocytes is dependent on gut microbiota through regulation of short

chain fatty acids (SCFA) production and glucose utilization. We sought to evaluate 18F-

FDG PET-CT as a novel technique for functional imaging of alterations in glucose metabo-

lism as a result of the interaction between the gut microbiota and the human host. We con-

ducted a prospective study in healthy humans that underwent 18F-FDG PET-CT and

sampling of the gut microbiota before and after orally administered broad-spectrum antibiot-

ics. The primary outcomes were total and regional physiologic colonic 18F-FDG uptake

(measured as the mean and max standardized uptake values [SUVmean and SUVmax]).

The study demonstrated significant increases in physiologic colonic 18F-FDG uptake in all

study participants following antibiotic treatment and a 4-5log reduction of gut bacterial load.

The mean increase in SUVmax was 0.63±0.37 SD (p = 0.004) and the median increase was

0.42 with an IQR of 0.40–0.81. The mean increase in SUVmean was 0.31±0.24 SD (p =

0.01) and the median increase was 0.41 with an IQR of 0.06–0.55. A likely explanation for

this phenomenon is a shift in colonocyte metabolism to glycolysis due to a shortage of

SCFA.

Introduction

The gut microbiota is regarded by many as a distinct organ within the human body with a cen-

tral role in metabolism, immunity, and inflammation [1]. Conditions such as obesity [2–3]
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and diabetes [4–5], auto-immune and allergic diseases [6–9], inflammatory bowel disease [10]

and cancer [11–15] have been previously associated with alterations in the composition of the

gut microbiota, referred to as dysbiosis. While recent advances in high throughput sequencing

techniques together with the development of computational tools have enabled investigators

to determine the composition of complex microbiota communities with unprecedented preci-

sion, to date there are no clinical tools to directly demonstrate the interaction between the gut

microbiota as a whole and the human host. The gut microbiota is required for energy homeo-

stasis in colonocytes, and short chain fatty acids (SCFA), produced by the gut microbiota

mainly from the fermentation of undigestible carbohydrates, serve as the main nutrient for

colonocytes [16–18]. Previous in vitro and in vivo studies [18] demonstrated a shift in colonic

metabolism from SCFA to glycolysis in germ-free compared to conventionally-raised mice.

We recently demonstrated, both in mice and humans, that the use of a combined protocol of

two antibiotics (vancomycin and neomycin taken for 3 consecutive days) and Polyethylene

glycol (PEG) on the second day reduces both culturable bacteria and 16S gene copy number

by approximately 4–5 logs, creating a gut microbial environment that more closely mimics a

germ-free mouse [19].

The uptake of 18F-FDG by tissues is a marker for the tissue uptake of glucose, which in

turn is closely correlated with certain types of tissue metabolism. After 18F-FDG is injected

into a patient, a PET scanner can form two-dimensional or three-dimensional images of the

distribution of 18F-FDG within the body.

Positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro- D-glucose integrated

with computed tomography (18F-FDG PET-CT) uses a radioactive fluorodeoxyglucose (FDG)

as a marker for the tissue uptake of glucose in order to trace glucose metabolism. The PET

scanner form images of 18F-FDG distribution within the body. The biological principle

behind 18F-FDG PET means that it can potentially be used as a novel method for functional

imaging of the host-microbiota interaction by capturing the change in tissue metabolism fol-

lowing changes in gut microbiota load and composition.

The aim of the current study was to determine whether physiologic colonic 18F-FDG

uptake can serve as a functional imaging tool capable of capturing the colonic metabolic shift

occurring in the human host following reduction in gut bacterial load (required for the pro-

duction of SCFA). This aim was investigated using a prospective clinical trial which compared

the colonic 18F-FDG uptake in healthy humans before and after significantly reducing gut

microbiota bacterial load via the administration of broad-spectrum antibiotics and a PEG

purge. This clinical trial was embedded within a parent study (the FARMM study) which

investigated the effect of diet and antibiotics on human gut microbiome and metabolomes

[19].

Materials and methods

Study design

We conducted a sub-study embedded within a parent study, the FARMM study [19]. FARMM

is a randomized controlled feeding experiment examining the effect of diet and antibiotics on

the composition of stool microbiome and fecal and plasma metabolome of 30 healthy volun-

teers age 18–60 years who were sequestered at the Clinical and Translational Research Center

at the University of Pennsylvania for the duration of the study. Individuals with inflammatory

bowel disease (IBD), celiac disease, irritable bowel syndrome (IBS) and those who took antibi-

otics in the 6 months prior to study initiation were excluded. As part of the FARMM protocol

subjects provided fecal samples and underwent sigmoidoscopy with rectal mucosal biopsy

prior to initiating a controlled diet. All participants were followed for 15 days. All participants
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were treated with broad-spectrum antibiotics daily for 3 days (days 6–8) (i.e., vancomycin

500mg orally every 6 hours and neomycin 1000mg orally every 6 hours). Of note, these antibi-

otics are largely non absorbable from the gastrointestinal tract and have no known effect on

the colonic epithelium [20,21]. On day 7, the participants also consumed 4L of polyethylene

glycol (PEG) based bowel purgative (GoLytely1). Stool samples were collected daily. Rectal

biopsies were obtained at days 5, 9, and 15 (Fig 1). The current study included 7 of the 30 par-

ticipants in the FARMM study who consented to undergoing PET-CT before and after the

antibiotic treatment. In a previous publication from the FARMM study we demonstrated a 4-

5-log reduction in bacterial load following antibiotic administration using 16S rRNA gene

copy PCR [19]. The study was approved by the Institutional Review Board at the University of

Pennsylvania.

18F-FDG PET-CT imaging

PET scans were performed on days 4 and 8 of follow-up and at the same time of the day. Sub-

jects were fasting for 4 hours prior to FDG injection. Blood glucose levels were measured

before the administration of FDG and did not exceed 200 mg/dL at the time of injection. PET

imaging scans of the abdomen and pelvis were performed 60 minutes after injection of 5 mCi

18F-FDG. CT images were acquired using a low-dose technique (120kV peak and 30–50 mAs)

for attenuation correction of PET images. All images were performed using the same scanner

(Philips, Ingenuity TF PET-CT). 18F-FDG PET-CT image analysis: Image data was analyzed

using a dedicated image visualization and analysis software (OsiriX MD 64bit version). In each

person, Regions of interest (ROIs) were drawn manually on each transaxial slice around the

outer boundaries of the four colonic regions (cecum and ascending, transverse, descending,

and rectosigmoid) (Fig 2). In addition, we defined ROI for abdominal subcutaneous tissue in

three transaxial slides below the lower pole of the right kidney for adjustment purposes as a ref-

erence tissue. The drawings were done according to anatomic definitions using CT images. In

case of overlap between areas of colon and small bowel, the areas were excluded from the

ROIs. Uptake was measured using standardized uptake value (SUV, the concentration of

tracer measured by PET in the target tissue divided by the activity injected divided by body

weight) in order to remove variability caused by the amount of 18F-FDG injected and differ-

ences in patient size. A single investigator (BB) read the scans and was blinded to both subject

and timing of the image (before or after antibiotics).

Fig 1. Timing of bacterial eradication, PET imaging and endoscopy.

https://doi.org/10.1371/journal.pone.0192747.g001
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Primary outcome

The primary outcomes were average and maximum colonic 18F-FDG uptake (SUVmean and

SUVmax) measured within all ROIs of the relevant colonic region of each individual, both

before and after antibiotic treatment.

Statistics

The primary analysis compared SUVmean and SUVmax, both in the entire colon and in spe-

cific colonic regions, before and after antibiotic treatment using paired t-test. The results were

adjusted for abdominal subcutaneous FDG uptake using linear regression. All statistical analy-

ses were performed using STATA 13 (STATA Corp. College Station, TX, USA).

Results

Among the 30 participants of the FARMM study 7 individuals took part in the prospective

PET sub-study.

Table 1 presents colonic 18F-FDG uptake among individuals in the prospective study

before and after antibiotic therapy, both as total colonic SUVmax and total colonic SUVmean.

Both values increased in all patients after antibiotic treatment. The change in uptake was the

highest in the cecum and ascending colon (Table 1). The mean increase in SUVmax was 0.63

±0.37 SD (p = 0.004) and the median increase was 0.42 with an IQR of 0.40–0.81. The mean

increase in SUVmean was 0.31±0.24 SD (p = 0.01) and the median increase was 0.41 with an

IQR of 0.06–0.55. The absolute change in SUVmax was the largest in individuals with the low-

est SUVmax before antibiotic administration. Table 2 demonstrated the increase in total

colonic and regional SUVmax and SUVmean following antibiotic therapy. Fig 3 presents PET

images of 18F-FDG uptake in different colonic regions before and after antibiotic therapy in

the first individual that was enrolled.

Discussion

We demonstrated an increase in physiologic colonic 18F-FDG uptake in all study participants

following antibiotic treatment that results in a 4-5log reduction in gut bacteria load. Using

Fig 2. Definition of colonic regions and example of a typical region of interest (ROI). (A) Proximal colon defined from the cecum to the hepatic flexure.

Transverse colon defined from the hepatic to the splenic flexure. Descending colon defined from the splenic flexure to the left iliac crest. Recto-sigma defined from

the left iliac crest to the anus. (B) A typical region of interest (ROI) definition in the proximal colon.

https://doi.org/10.1371/journal.pone.0192747.g002
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18F-FDG PET scans, we visually demonstrated for the first time in healthy human subjects a

change in colonic glucose metabolism resulting from a decrease in bacterial load following

treatment with broad spectrum antibiotics. These results are supported by both in vitro and in
vivo data showing a shift in colonic metabolism in germ-free mice from SCFA (mainly buty-

rate), normally produced by the gut microbiota, to glycolysis.

Of note, the degree of change in physiologic colonic 18F-FDG uptake was inversely corre-

lated to the initial uptake before antibiotic treatment (Fig 2). Thus, individuals with the lowest

initial uptake, reflecting normal diverse microbiota that allows metabolism based on SCFA,

had the highest increase in SUV following antibiotic treatment and resulting decrease in bacte-

rial load and transition to glycolysis-based metabolism.

Table 1. Physiologic colonic 18F-FDG uptake among individuals before and after antibiotic therapy.

Before Abx. After Abx. Delta SUVmax

(SUVmax before

Abx.

–SUVmax after

Abx.)

Cecum and ascending colon

SUVmean

Total

SUVmax

Total

SUVmean

Cecum and ascending colon

SUVmean

Total

SUVmax

Total

SUVmean

Subject

1

0.518 0.976 0.591 1.036 1.779 1.140 0.803

Subject

2

0.656 1.529 0.679 1.120 2.845 1.088 1.316

Subject

3

0.958 1.834 0.922 1.457 2.250 0.956 0.416

Subject

4

1.929 1.809 1.204 1.794 2.220 1.278 0.411

Subject

5

1.130 1.735 1.046 1.616 2.009 1.105 0.274

Subject

6

0.996 1.466 0.832 1.990 2.271 1.387 0.805

Subject

7

0.992 2.084 1.063 2.351 2.486 1.551 0.402

https://doi.org/10.1371/journal.pone.0192747.t001

Table 2. Change in total colonic and regional SUVmean and SUVmax among individuals in the FARMM study

before and after antibiotic therapy.

Before Abx. After Abx. P-value

Entire colon

SUVmean 0.99 (0.73–1.24) 1.22 (1.06–1.38) 0.03

SUVmax 1.75 (1.36–2.13) 2.25 (1.99–2.52) 0.01

Cecum and ascending colon

SUVmean 1.13 (0.70–1.56) 1.57 (1.19–1.96) 0.04

SUVmax 1.94 (1.21–2.67) 3.03 (2.37–3.69) 0.01

Transverse colon

SUVmean 0.86 (0.66–1.06) 0.99 (0.84–1.14) 0.14

SUVmax 1.57 (1.20–1.95) 1.78 (1.61–1.95) 0.14

Descending colon

SUVmean 1.03 (0.78–1.27) 1.14 (1.01–1.27) 0.19

SUVmax 1.75 (1.36–2.14) 1.98 (1.68–2.28) 0.16

Rectosigmoid

SUVmean 1.05 (0.79–1.31) 1.28 (1.03–1.52) 0.05

SUVmax 1.84 (1.37–2.31) 2.40 (1.76–3.05) 0.03

https://doi.org/10.1371/journal.pone.0192747.t002
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The current results also suggest a possible explanation for a clinical observation, previously

described in the literature, showing diffuse colonic 18F-FDG PET uptake in diabetic patients

that are treated with metformin [22,23]. This uptake can be reduced if the medication is

stopped 48 hours prior to PET imaging [24–26]. Metformin, an oral hypoglycemic medication,

is known to activate the AMP-activated protein kinase (AMPK) pathway, a key regulator of

cell metabolism, promoting glycolysis and generation of ATP while inhibiting anabolic path-

ways, thus increasing 18F-FDG avidity [27–29]. This change is prominent in the colon since it

is a metabolically active tissue that under normal conditions utilizes SCFA as an energetic

source. This alteration observed among metformin users is similar to the metabolic shift in gut

metabolism from SCFA to glycolysis following reduction in colonic bacterial load. Of note,

some of the therapeutic effects of metformin were recently shown to be mediated through

change in the gut microbiota [23].

Fig 3. 18F-FDG PET uptake in different colonic regions before and after antibiotic therapy in the first individual enrolled to the study.

https://doi.org/10.1371/journal.pone.0192747.g003
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The study had the advantage of evaluating healthy subjects without recent antibiotic expo-

sure that received a fixed diet under medical supervision for the study duration. All PET scans

were performed during the same time of day and in the same scanner. All images were read by

the same physician that was blinded to both patient and timing of the test in relation to antibi-

otic treatment. Since analysis was performed within individuals as a paired t-test, comparing

uptake before and after antibiotics, there was minimal risk for additional confounding as an

explanation for study results. Furthermore, in contrast to previous studies [30], we used antibi-

otics with intraluminal activity and no known anti-inflammatory activity reducing nonspecific

uptake.

The current study had several limitations. Our study had a small sample size. However we

were still able to detect a consistent increase in 18F-FDG uptake in all colonic regions (al-

though not significant for transverse and descending colon) and correlate this increase with

previously described biological pathways [18]. The normal gastrointestinal tract exhibits low

physiologic 18F-FDG uptake [31]. Suggested sources for the uptake include mucosal metabolic

activity, smooth muscle contractions, and glandular secretions [30]. Additional studies sug-

gested that this uptake may also occur due to intra-luminal activity. Since gut microbes are

one of the main luminal components, it was proposed that the gut microbiota may play an

additional role in concentrating luminal 18F-FDG [32]. A single study demonstrated suppres-

sion of mean background 18F-FDG uptake in individuals without known colonic disease fol-

lowing pretreatment with the antibiotic rifaximin for 2 days [30]. However since rifaximin has

an additional anti-inflammatory activity, it is possible that the decrease in uptake was second-

ary to decrease in inflammation. So far, no study has been able to measure intra-luminal or

fecal 18F-FDG or suggest a mechanism for possible 18F-FDG transition from the intra-vascu-

lar compartment to the gut lumen. In the current study we demonstrated not only an increase

in total colonic 18F-FDG uptake but also an increase in each of the different colonic regions,

further supporting a diffuse metabolic effect rather than a local effect (such as muscle contrac-

tion or inflammation) as an explanation for the results. Finally, we cannot rule out possible

direct effects of the antibiotic therapy or the PEG on the colonic mucosa as a possible explana-

tion for the increased uptake, however since the PET imaging was done after this treatment it

is a less likely explanation.

Although the current study measured both SUVmean and SUVmax and found similar sta-

tistically significant results for both measures, we recommend using SUVmax for future mea-

surements of physiologic colonic uptake. While SUVmean includes the entire luminal uptake

within the ROI which is mainly composed of air that has no 18F-FDG uptake, SUVmax con-

sists largely of true mucosal uptake, increasing our ability to detect even minor changes.

In summary, we observed that reduction of colonic bacterial load by broad-spectrum anti-

biotics can be detected in humans by observing an increase in physiological colonic 18F-FDG

uptake possibly due to a shift in colonocyte metabolism from lipolysis of SCFA to glycolysis.

Therefore, colonic 18F-FDG uptake may represent a novel imaging approach to capturing the

functional consequence of the microbiota-host interaction. This method may provide in the

future a simple tool for early detection of a large number of diseases that are associated with

change in the microbiota. Future studies are required in order to validate our results, evaluate

the effect of specific diets on the microbiota and 18F-FDG uptake, and assess options of using

different tracers, such as SCFA, as a way to image additional metabolic pathways. The de-

scribed method views the microbiota as a distinct organ that communicates with its environ-

ment and affects multiple biological pathways. Using PET imaging allows us to study the

functional aspects of microbiota-host interaction compared to genetic methods that focus on

identification of specific bacterial phyla. Together these two methods are complementary and

of utmost clinical significance.
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