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Abstract

As infectious disease outbreaks emerge, public health agencies often enact vaccination and

social distancing measures to slow transmission. Their success depends on not only strate-

gies and resources, but also public adherence. Individual willingness to take precautions

may be influenced by global factors, such as news media, or local factors, such as infected

family members or friends. Here, we compare three modes of epidemiological decision-

making in the midst of a growing outbreak using network-based mathematical models that

capture plausible heterogeneity in human contact patterns. Individuals decide whether to

adopt a recommended intervention based on overall disease prevalence, the proportion of

social contacts infected, or the number of social contacts infected. While all strategies can

substantially mitigate transmission, vaccinating (or self isolating) based on the number of

infected acquaintances is expected to prevent the most infections while requiring the fewest

intervention resources. Unlike the other strategies, it has a substantial herd effect, providing

indirect protection to a large fraction of the population.

Introduction

As outbreaks emerge, public health agencies often implement a variety of pharmaceutical and

non-pharmaceutical interventions to prevent epidemic expansion, including vaccination and

medical prophylaxis, school closures and other social distancing measures, and information

campaigns to promote awareness, hygienic precautions and voluntary isolation [1–4]. How-

ever, such measures require population adherence and are often hindered by failure to take

recommended actions [5]. Around the globe, for example, seasonal influenza vaccine coverage

falls significantly below the 75% baseline recommended by the World Health Organization,

but varies widely between countries and across age groups [6]. In the USA, 2015-2016 uptake

was only 59.3% in children and 41.7% in adults [7]. For measles, routine childhood vaccination

is declining in Texas and other areas of the United States where personal belief and other non-

medical vaccination exemptions are allowed [8–10]. Parental decision-making regarding

childhood vaccines is complex and context dependent [11], but likely influenced by false

claims regarding vaccine safety, low perceived risks of infectious diseases, and other forms of

PLOS ONE | https://doi.org/10.1371/journal.pone.0225576 December 3, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Herrera-Diestra JL, Meyers LA (2019)

Local risk perception enhances epidemic control.

PLoS ONE 14(12): e0225576. https://doi.org/

10.1371/journal.pone.0225576

Editor: Yang Yang, University of Florida, UNITED

STATES

Received: January 16, 2019

Accepted: November 7, 2019

Published: December 3, 2019

Copyright: © 2019 Herrera-Diestra, Meyers. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This project was supported by NIGMS

MIDAS grant U01-GM087719. JLHD is supported

by the São Paulo Research Foundation (FAPESP)

under grants 2016/01343-7 and 2017/00344-2.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-1688-3704
https://doi.org/10.1371/journal.pone.0225576
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225576&domain=pdf&date_stamp=2019-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225576&domain=pdf&date_stamp=2019-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225576&domain=pdf&date_stamp=2019-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225576&domain=pdf&date_stamp=2019-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225576&domain=pdf&date_stamp=2019-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225576&domain=pdf&date_stamp=2019-12-03
https://doi.org/10.1371/journal.pone.0225576
https://doi.org/10.1371/journal.pone.0225576
http://creativecommons.org/licenses/by/4.0/


misinformation from the “anti-vaxxer” movement [8, 11–13]. Recently, there have been calls

for a special government commission on vaccine safety, despite overwhelming scientific con-

sensus that vaccines are both safe and effective [12, 14–16].

As outbreaks unfold, people can take a variety precautionary measures to avoid infection,

including immunization and social distancing [1, 17–19]. They often judge personal risk based

on their impressions of overall disease prevalence and severity [2, 20–23]. When infection risk

appears low, small risks of adverse effects from the vaccine can seem relatively important and

cause vaccine coverage to drop below levels required to control transmission. A variety of

other factors can influence the perceived utility of disease prevention, including epidemiologi-

cal news and rumors, costs of vaccination and other control measures, trust in health profes-

sionals, government agencies, media and non-official information sources, as well as societal

pressure to ensure the health of one’s children [24–29].

Studies have shown that media reports about outbreaks that specify numbers of cases, hos-

pitalizations or deaths, can influence avoidance behavior and contact patterns at both individ-

ual and community levels. In some cases, oversimplified or erroneous media reports regarding

flawed vaccines can trigger panic and increases in vaccine hesitancy [30–33]. For both seasonal

and pandemic influenza, such interactions between vaccination decision-making and trans-

mission dynamics can profoundly shape the course of epidemics [20, 34–36].

Individual intervention decisions can have far-reaching effects. For example, vaccination

protects not only the immunized individual, but also social contacts who might have been

infected by the individual. Social distancing decisions may break chains of transmission by

protecting the decision-maker and more generally disrupting social dynamics. Following [37,

38], we refer to this indirect protection as a herd effect. Although previously equated to the

reduction in incidence in the unimmunized population [38], we quantify the herd effect of an

intervention effort by estimating the number of infections averted per vaccine administered (or

per individual social distancing action). The general phenomenon in which individual inter-

vention actions reduce the risk of infection to others has also been called vaccination effi-

ciency, vaccination effectiveness, herd immunity, and indirect protection [37–40].

The magnitude of the herd effect will critically depend on contact patterns [41, 42]. Mea-

sures taken by gregarious individuals may have greater immediate benefits than those taken by

solitary individuals, with downstream epidemiological consequences modulated by the full

social network [43, 44]. Contact patterns may also influence the decision-making process itself,

by constraining epidemiological perspectives. When gauging infection risk, individuals may

consider global information (e.g., from news media) or local first-hand encounters with disease

(e.g., infected acquaintances, friends or family members) [30, 31]. While traditional compart-

mental models assume homogeneity in both epidemiological risks and intervention benefits,

network-based models provide a tractable framework for studying the complex interplay

between contact networks, intervention decision making and disease transmission [34,

45–51].

Here, we investigate the epidemiological impacts of different decision paradigms using a

network-based SIR epidemic model, in which individuals also make vaccination or social dis-

tancing choices based on their perceived epidemiological risks. Depending on the decision

model, they estimate either overall disease prevalence, their number of infected social contacts,

or their fraction of infected social contacts. When the perceived threat is sufficiently high, they

take a measure that immediately affords full protection for the duration of the epidemic. We

compare the efficacy of these three different paradigms across a range of diseases in a realisti-

cally heterogeneous network, and show that the most naive model–simply counting one’s

infected contacts–affords the most epidemiological protection using the least amount of

resources (e.g., vaccinations or economic costs associated with social distancing).
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Materials and methods

We simulate the spread of an infectious disease in a network (population) with an exponential

degree distribution–as estimated for typical urban populations [46, 52]–using a susceptible-

infected-recovered (SIR) chain-binomial model [41, 53] with an additional immunized state.

At each time step, individuals decide whether or not to take an instantaneously protective

action to avoid infection, based on their perceived risk of infection, as defined by the given

local or global decision model. We assume that there are sufficient resources to immediately

protect any willing individuals.

Contact network

We model contact patterns in the population using an exponential network with N = 10000

nodes and mean number of contacts μ = 10 [54], generated according to the configuration

model [55], unless otherwise is specified. We assume that this network constrains both disease

transmission and local risk perceptions, when individuals monitor infected social contacts. To

evaluate the impact of network topology, we also analyze the SIR-intervention dynamics on a

homogeneous random graph (all nodes have same degree) and Barabási-Albert scale-free net-

work [56], with degree distributions constrained to achieve the same epidemic threshold as the

focal exponential network. All three networks share Tc ¼
hki

hk2i� hki ¼ 0:056 where hki and hk2i

are the average degree and squared degree in the network, respectively.

Epidemic dynamics

We model SIR transmission dynamics of a flu-like disease using chain-binomial stochastic

simulations [41, 53]. Epidemics begin at time t = 0 by infecting a single randomly chosen node

in an otherwise completely susceptible population and terminate when there are no remaining

infected individuals. Individuals remain infectious for l = 7 days before recovering with full

immunity to future infection [57, 58]. Infected individuals transmit disease to each susceptible

contact at a rate β. Immunized and recovered individuals are assumed to be fully resistant to

infection. Results are averages over 500 simulations.

The basic reproduction number (R0) is the expected number of secondary cases when a sin-

gle case of disease is introduced into a naive population, and is related to the epidemic growth

rate. To study the impact of transmission rate on the vaccination-epidemiological dynamics,

we consider R0 values ranging between one and ten, which spans the range for many common

human pathogens, including influenza, Ebola, SARS, Pertussis, HIV/AIDS, Mumps, Rubella,

Polio, Smallpox, Diphtheria, etc [52, 59–66]. For each value of R0, we determine the corre-

sponding β using [45]

R0 ¼ T
hk2i � hki
hki

� �

; ð1Þ

where T = 1 − (1 − β)l is the transmissibility over the entire infectious period, also known as

the secondary attack rate [67].

Immunization models

We assume that individuals make daily decisions regarding whether or not to take precaution-

ary measures based on their perceived risk (Fig 1). In other words, they have a general sense of

the contagiousness of a given disease based on past experience or conventional wisdom. We

use T as a rough proxy for perceived risk. If and when they choose to take action, they instantly

gain full resistance to infection for the remainder of the simulation. Although these models
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apply to any transmission preventing measure, we henceforth refer to the interventions as

vaccinations.
We model three different individual decision strategies in which individuals consider either

the disease states of their direct social contacts or the global situation, perhaps gleaned through

news or social media. Let vX(t) denote the willingness of a individual to vaccinate under strat-

egy X at time t.
Local decision strategies. In the first model, local prevalence, individuals assess infection

risk by tracking the fraction of their social contacts that are currently infected. The probability

that a susceptible individual i vaccinates at time t is given by

vlpði; tÞ ¼ 1 � ð1 � TÞ
ZiðtÞ
ki
�hki ð2Þ

where ηi(t) is the number of neighbors of i that are infected at time t, ki is the total number of

neighbors (degree) of i, and hki is the average degree of the network.

In the second model, local count, individuals track their number rather than proportion of

infected neighbors, and decide to vaccinate according to

vlcði; tÞ ¼ 1 � ð1 � TÞZiðtÞ : ð3Þ

Local prevalence is arguably a less plausible strategy than local count, given that the deci-

sions require the additional knowledge of total number of contacts (degree) of each individual.

Fig 1. Three decision strategies. Individuals decide to vaccinate based on one of three risk measures: The number of infected

contacts (local count), the fraction of infected contacts (local prevalence), or the overall fraction infected (global prevalence). In

this example, six of the 24 nodes are infected, yielding a global prevalence of 0.25. The white node towards the top has a single

contact that happens to be infected; the white node towards the bottom has two of its five contacts infected.

https://doi.org/10.1371/journal.pone.0225576.g001
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Global decision strategy. The global prevalence model assumes that individuals base their

vaccination decisions on the epidemiological state of the entire population, as given by

vgði; tÞ ¼ 1 � ð1 � TÞ
IðtÞ
N �hki; ð4Þ

where I(t) is the total number of infected individuals in the population at time t and N is the

size of the population. This assumes general knowledge of the evolving dynamics of the epi-

demic, perhaps through news, social media or public health messaging.

The mean degree (hki) appears in the global prevalence and local prevalence as a normal-

izer. If node i has the average degree (ki = hki) and its local prevalence mirrors global preva-

lence (
ZiðtÞ
hki ¼

IðtÞ
N ), then it will have the same probability of vaccinating across all three models.

In all three models, we assume that individuals will vaccinate with a probability equal to

their perceived real-time probability of being infected. For example, if an individual’s percep-

tion of infection in the immediate future is 25%, then a precautionary measure will be taken

with probability 0.25. The local count model comes closest to estimating actual risk of infec-

tion. Specifically, vlc is the probability that any currently infected contact will transmit disease

to the focal node at some point during his or her infections period. This exactly estimates risk

if all infected contacts were just infected and at the beginning of their infectious period, but

overestimates risk if some are nearing recovery. (S1 Fig illustrates how vaccination decisions

change under each of these models as disease prevalence increases.).

Herd effect

To assess the indirect and direct protection afforded by a given decision strategy D at a given

R0, we calculate a quantity we call the herd effect, given by

HðD;R0Þ ¼
hC0ðR0Þi � hCDðR0Þi

hVDðR0Þi
; ð5Þ

where hC0(R0)i and hCD(R0)i are the expected total number infections in epidemics without

vaccination and with vaccination decision strategy D, respectively, and hVD(R0)i is the

expected total number of individuals vaccinated under D. We estimate these expected values

by averaging over 500 simulations with the specified R0 and decision model. Barring extreme

stochasticity, we expect H> 0 for any reasonably protective vaccine strategy. When H is

between zero and one, more vaccines are given than infections averted, suggesting that vac-

cines may be mistimed or misplaced. This could happen, for example, if risk is underestimated

early in the epidemic and overestimated late in the epidemic. An H near one indicates that

approximately one infection is averted for every vaccine given. Note that this is an average,

and does not necessarily mean that every vaccination prevents infection of the recipient. If

each vaccine averts, on average, greater than one infection (H> 1), then the value of H corre-

sponds to the level of indirect protection achieved by the decision strategy.

Results

The decision models yield distinct vaccine adoption and disease transmission dynamics (Fig

2). As disease begins to spread, individuals perceive increasing risks and vaccinate according

to the decision model, thereby protecting themselves and interrupting potential chains of

transmission to others. While all three strategies reduce the total number of infections, the

local count strategy affords the greatest and most efficient protection of the three. Under the

global prevalence strategy, perceived risk is homogeneous. As cases mount, the vaccination
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rate rises synchronously throughout the population, arguably resulting in too much too late
vaccine coverage.

The local strategies avert more infections with fewer vaccinations than the global strategy.

As epidemics unfold, risk is both heterogeneous and dynamic, with some portions of the net-

work experiencing greater forces of infection than others. Local decision-making allows earlier

detection and response to increasing personal risk, and prevents unnecessary vaccination in

lower risk settings, both prior to and following epidemic waves. The local count strategy is

more protective than the local prevalence strategy. By tracking the number rather than propor-

tion of infected contacts, individuals more accurately assess the local force of infection. For

example, compare a solitary individual with just two social contacts and a gregarious individ-

ual with 20. If they both have two infected contacts, then their risk of infection will be similar

(assuming that time spent with each contact is sufficient for transmission). Under local count,

their perceived risk and consequent vaccination probability will be identical; under local prev-

alence, the solitary individual will perceive higher risk (i.e., 100% of contacts infected) than the

gregarious individual. Under all models, overall vaccine coverage increases as R0 increases,

with the global prevalence achieving near universal coverage by R0 = 5.

The relative and absolute impacts of each strategy are remarkably robust to the transmissi-

bility of the pathogen (Fig 3). Without vaccines, the expected epidemic size increases non-line-

arly with R0, reaching almost 100% by R0 = 10 (Fig 3A). All of the vaccine strategies avert a

large and increasing fraction of cases, as R0 increases. In fact, the total epidemic size is non-

monotonic, with slightly more expected infections around R0 = 4 than around R0 = 10. The

local count strategy consistently yields the greatest protection, followed by local prevalence.

The decision models result in dramatically different vaccination rates, with the global prev-

alence strategy leading to near universal vaccination, consistently more than double the

Fig 2. Disease and vaccination dynamics under different decision models. Shading indicates the fraction of nodes in each state:

susceptible (black), vaccinated (light gray), recovered (dark gray), infected (white). Columns corresponds to different strategies, as

labeled above; rows correspond to R0 = 2 (top) and R0 = 5 (bottom).

https://doi.org/10.1371/journal.pone.0225576.g002
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coverage produced by the local count strategy (Fig 3B). The population-level protection

afforded by the local count strategy exhibits a non-trivial trend with R0 (Fig 3C). Between R0 =

1 and R0 = 2, its impact grows logarithmically from less than one infection averted per vaccina-

tor to nearly two infections averted per vaccinator. Thereafter, the indirect benefits continue

to grow slowly, reaching three infections averted per vaccinator when R0 = 9.

To explore the dynamic interactions between behavior and epidemiology in the three mod-

els, we consider individual nodes based on their degree (number of contacts). In general, the

higher the degree of a node, the higher their risk for becoming infected and infecting others,

and the greater the number of local infections they could potentially perceive when making

vaccination decisions. Indeed, across all decision models, higher degree individuals vaccinate

earlier, in terms of the fraction of the population infected at time of vaccination (Fig 4A, bot-

tom). However, the fraction of individuals vaccinated in each degree class does not necessarily

increase with degree (Fig 4A, top). Local count is the only strategy under which vaccination

coverage monotonically increases with degree. Under global decision-making, coverage is

inversely related to degree, and under local prevalence, coverage peaks for moderately con-

nected individuals. By the time individuals choose to vaccinate under either of the two subop-

timal strategies, their local risk of infection is already quite high (Fig 4A, middle), particularly

for more gregarious individuals. Although the vaccinating individuals are immediately pro-

tected, comparable individuals (of the same degree class and local risk) who stochastically fail

to make the same low probability vaccination decision are likely to become infected. Conse-

quently, the risk of infection increases steeply with degree under all models except local count

(Fig 4B). In a sensitivity analysis, we find that these qualitative results are robust to our

assumptions about the efficacy of the vaccine, the time lag between an individual deciding to

vaccinate and becoming protected against infection, the size of the network and the duration

of the infectious period (S3 Fig).

Finally, we consider the impact of the underlying contact network on the interplay between

transmission and vaccination dynamics (Fig 5). We compare our focal exponential network to

a uniform random network in which all nodes have the same degree and a Barabási-Albert

scale-free network. The local count strategy robustly affords the most efficient population-level

protection, averting the maximum number of infections (or nearly maximum in the case of

the scale-free network and low R0) with the fewest vaccines.

Fig 3. Epidemiological impacts of decision strategies change with R0. (A) The proportion of individuals that are infected increases

and then declines slightly as R0 increases, across all three decision strategies. (B) The proportion of individuals that choose to

vaccinate initially increases sharply with R0 across all three strategies, but then declines for only the local count strategy. (C) Herd

effect is the proportion of infections averted per vaccinated individual, and is highest for the local count strategy across all R0. All

values are averages across 500 stochastic simulations.

https://doi.org/10.1371/journal.pone.0225576.g003
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Discussion and conclusions

Public health interventions and individual-level adherence decisions can profoundly influence

the fate of unfolding epidemics. In this study, we assume that individuals have access to a fully

protective measure, such as self-isolation, medical prophylaxis, or an immediately and

completely efficacious vaccine. They continuously make real-time risk assessments and

thereby decide whether or not to adopt the intervention, based on either direct knowledge of

infected friends and family (number or fraction of infected social contacts) or indirect infor-

mation about population-level prevalence, perhaps gleaned through news media.

Of the three decision models, global risk assessments prove least effective across a large

range of disease scenarios (R0 ranging from one to ten). Nearly all non-infected individuals

eventually vaccinate, yet the total cases more than double those occurring under the alternative

Fig 4. Vaccination decisions vary with degree. (A) For each degree class, we graph the proportion of individuals that vaccinate

(top) along with the epidemiological situation at the time a node chooses to vaccinate in terms of the number of its infected

neighbors (middle) and the overall disease prevalence in the population (bottom). Epidemiological risks—the chances of both

becoming infected and infecting others—generally increase with degree. The local count strategy (light blue) is the only strategy for

which the probability of vaccinating consistently increases with risk. Compared to the two other strategies, high degree individuals

vaccinate earlier in terms of both local and global disease prevalence and, consequently, are less likely to become infected. (B) The

number of individuals infected in each degree class under each decision strategy. The top of the curve indicates the number of

individuals in each degree class (i.e., the underlying degree distribution) on a log scale. For each degree class, the stacked values

indicate the expected number of individuals infected under the various strategies. The top of the gray area indicates the expected

number of infections in the baseline scenario without vaccines; red indicates individuals expected to remain uninfected. Generally,

local count has the lowest expected attack rate (light blue), followed by local prevalence (dark blue), and finally global prevalence.

This ranking does not hold for the lowest degree individuals; instead, local prevalence has a lower expected attack rate than local

count, as indicated by the dark blue line cutting through the light blue region. For all graphs, values are averages across 500

simulations, assuming R0 = 5.

https://doi.org/10.1371/journal.pone.0225576.g004
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strategies. There is a mismatch between risk and action. Risk is highly variable in time and

space, given the heterogeneity of the underlying contact network and branching nature of

transmission. Yet, the global model assumes that perceived risk and the consequent likelihood

of adherence is homogeneous throughout the network, though variable in time. By the time

Fig 5. Decision dynamics across social networks. We compare three different network structures–homogeneous (top), exponential

(middle), and scale-free (bottom)–and show the susceptible (black), infected (dark gray) and vaccinated (light gray) for two different

values of R0. Results are averages across 500 stochastic simulations.

https://doi.org/10.1371/journal.pone.0225576.g005
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global prevalence triggers wide-spread action, the highest risk individuals have already been

exposed and the lowest risk individuals may still not, and might never, require protection.

In contrast, when individuals make decisions based on local risk assessments, the interven-

tion efforts more closely track the epidemiological dynamics. Tallying infected contacts rather

than estimating the fraction of infected contacts provides a more accurate indication of real-

time risk and results in more efficient intervention. Assuming that all social contacts are

equally likely to transmit disease, two out of three infected contacts carries the same immediate

risk as two out of ten. The advantage of local risk assessment stems from two sources of varia-

tion in risk. First, disease transmission is an inherently local process in which risk aggregates

around currently infected individuals. Second, this is magnified in realistically heterogeneous

networks, by the concentration of risk around the center (most connected individuals) of the

network.

Although several prior studies have also explored the epidemiological impacts of local and

globally-informed vaccination decisions [48–51], ours is the first to consider a decision-model

based on counts rather than fractions of infected contacts and to systematically compare three

different decision paradigms across a range of network structures. Massaro et al. model two

networks–the epidemiological contact network through which disease spreads and the social

network through which risk information spreads. The more similar the two networks, the

greater the individual and population-level protection achieved by vaccination [49]. This is

consistent with our finding that locally-sourced decisions provide greater protection than

globally-sourced decisions. Bagnoli et al. compare the local fraction strategy across contact net-

works with different degree distributions, and likewise found that the herd effect is magnified

by heterogeneity in degree. [48].

Given infinite resources, all three of the decision paradigms would markedly diminish an

emerging outbreak. However, interventions may be constrained by limited supplies or lack of

population access to medical countermeasures, such as vaccines or antimicrobials. Even social

distancing measures, such as self-isolation, may be limited by economic necessity—the need to

go to work, school or daycare—or care-giving obligations for extended family. While such lim-

itations should be formally analyzed, our simple analysis suggests that the best paradigm for

averting infections also requires the fewest resources. For example, for a flu-like R0 of two,

compare the local count strategy, where individuals protect themselves as their number of

infected friends and family climb, to the global strategy, where decisions are based on popula-

tion prevalence. For every individual that takes action, almost two infections are averted under

the local strategy whereas less than one infection is averted under the global strategy. Local

counting results in far fewer total infections (3% versus 13%) while requiring far less interven-

tion resources (23% versus 60% of individuals taking protective action).

Several studies suggest that immunizing or isolating interventions should target the most

connected individuals in a population [42–44, 52]. However, we rarely know the full contact

network of a population. As proxies, we can target populations subgroups that tend to have

high numbers of potentially disease-spreading contacts, such as young and school-aged chil-

dren or health-care workers. We can also use biased sampling to identify highly connected

individuals, such as the random acquaintance strategy in which random individuals are asked

to name one of their social contact; individuals with more contacts are more likely to be

named [68–71]. In a sense, the winning paradigm of our study—counting infected contacts—

similarly biases interventions efforts towards more connected parts of the network. The more

connected one is, the more likely one is to have several infected contacts.

The model is intentionally simplistic, providing a best case scenario for each of the three

strategies. We assume that resources are unlimited, protection is immediate and complete, and

adherence probabilities perfectly mirror perceived risks. Furthermore, depending on the
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decision paradigm, individuals fairly accurately estimate the infectiousness of the disease, their

number or fraction of infected social contacts, or the population average risk of infection. The

model also assumes that individuals are short-sighted and make reactive decisions to avert

immediate threat. We conjecture that the qualitative results of our analysis—the optimality of

assessing risk based on the numbers of infected friends and family—are robust for a large class

of ‘on-the-fly’ interventions that afford relatively rapid protection in the heat of an epidemic,

but may not apply to preventative measures taken early in an outbreak or those with long effi-

cacy lags. (For example, see alternative models presented in S1 and S2 Figs).

As a final caveat, we highlight our assumption that all edges (contacts) in our networks are

equally likely to transmit disease. In reality, contacts can be highly heterogeneous, with house-

hold and health care contacts far more likely to transmit disease than casual social acquain-

tances. Our results should be robust when such heterogeneity is distributed randomly

throughout the network. However, if individuals with more contacts tend to spend less time

with each one, then epidemiological risk may be more homogeneous throughout the network

and the advantage of the local decision strategies reduced. Although we do not model this sce-

nario directly, we considered a homogeneous network where all individuals have the same

number of contacts. This is roughly equivalent to mass action models that assume homoge-

neous contact rates and complete mixing [54]. The local strategies still prevail, but their rela-

tive efficiency is reduced, with far more vaccines required to achieve the same benefit (Fig 5).

Conversely, in a network with greater heterogeneity (scale-free), the advantages of the local

strategies are magnified.

This study prompts two practical questions. First, how do people actually make interven-

tion decisions? Perhaps individuals fall nicely into one of these three decision-making camps.

More likely, individual risk assessments are constrained by historical inertia [21, 24, 34, 46,

72], influenced by decisions of friends and family [1, 3, 10, 26, 28, 46], and integrate informa-

tion from a combination of local and global data sources of variable reliability. Realistic deci-

sion models, driven by sociological survey data, can elucidate vaccine campaign failures and

identify key pressure points for increasing uptake. Second, how can we streamline intervention

campaigns to achieve efficient, rather than universal, adherence? This study reminds us that

more intervention is not necessarily better intervention. The decision paradigm that most

reduced transmission also required the least resources. Given the simplicity of our model, we

do not suggest that public health agencies should promote ‘infection-counting’. Rather, we

conclude that public health agencies should prioritize local disease surveillance and risk com-

munications efforts and believe that data-driven models can be instrumental in designing

effective outbreak information campaigns.

Supporting information

S1 Fig. Probability of vaccination as a function of the proportion of individuals infected.

Assuming R0 = 5, an individual with k = 65 in our exponential network, we plot the probability

of vaccination versus the proportion infected, which indicates either the fraction of neighbors

infected (local prevalence and local count) or the overall fraction of the population infected

(global prevalence). The behavior of the strategies that use prevalence is similar (blue); how-

ever, during the curse of a simulation, they have different values.

(TIF)

S2 Fig. Epidemiological outcomes for threshold-based vaccine decisions. Individuals deter-

mine their infection risk according to the original local count, local prevalence or global preva-

lence equations. However, they vaccinate if and when their perceived risk crosses a specified

vaccination threshold, rather than vaccinating probabilistically according to risk. This decision
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threshold (x-axes) impacts the proportion of the population that (A) vaccinates (and are not

infected), (B) becomes infected (with or without vaccination), and (C) remains susceptible,

under the three different decision models. Y-axes values are means across 500 stochastic simu-

lations, assuming R0 = 5.

(TIF)

S3 Fig. Sensitivity analysis with respect to (A) the delay between vaccination and protec-

tion and (B) both the network size and duration of the infectious period. In both sets of

graphs, the columns correspond to the three different strategies. Each point indicates a mean

over 500 stochastic simulations that assume R0 = 5. (A) The x-axes indicate the delay between

an individual deciding to vaccinate and becoming immune to infection. Each simulation

assumes an exponential network with N = 10000 individuals and that 80% of vaccinated indi-

viduals become protected against infection (the remaining 20% remain fully susceptible). (B)

The rows correspond to different network sizes (1000, 5000, 15000 and 20000).

(TIF)
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20. Funk S, Salathé M, Jansen VAA. Modeling the influence of human behaviour on the spread of infectious

diseases: a review. J. R. Soc. Interface, 7 (50) (2010), pp. 1247–1256. https://doi.org/10.1098/rsif.

2010.0142 PMID: 20504800

21. Durham DP, Casman EA. Incorporating individual health-protective decisions into disease transmission

models: a mathematical framework. J. R. Soc. Interface, 9 (68) (2012), pp. 562–570. https://doi.org/10.

1098/rsif.2011.0325 PMID: 21775324

22. De Zwart O, Veldhuijzen I, Elam G. Perceived threat, risk perception, and efficacy beliefs related to

SARS and other (emerging) infectious diseases: results of an international survey. Int. J. Behav. Med.,

16 (2009), pp. 30–40. https://doi.org/10.1007/s12529-008-9008-2 PMID: 19125335
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